Development and Application of an MRM Method for Simultaneous Quantification of Sodium Channels Na v 1.1, Na v 1.2 and Na v 1.6 in Stable HEK293 cell lines, and Solubilized Membrane Proteins from Rodents and Human Brain Tissues.

Luis Sojo¹, Raibow Kwan¹, Prerna Das¹, Neelan Gerrebos¹, Jenny Li¹, Xin Yin Wang¹, Gina DeBoer¹, Vanessa Emnacen-Pankhurst¹, Sophia Lin¹, Raymond Feng¹, and Sam Goodchild¹

¹Xenon Pharmaceuticals Inc

June 30, 2023

Abstract

Rationale Na v1.1, 1.2 and 1.6 are transmembrane proteins acting as voltage gated sodium channels implicated in various forms of epilepsy. There is a need for knowing their actual concentration in target tissues during drug development. **Methods** Unique peptides for Na v1.1, Na v1.2 and Na v1.6 were selected as quantotropic peptides for each protein and used for their quantification in plasma membranes from stably transfected HEK293 cells and rodent and human brain samples using ultra-high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. **Results** Na v 1.1, 1.2 and 1.6 protein expressions in three stably individually transfected HEK293 cell lines were found to be 2.1 ± 0.2 , 6.4 ± 1.2 and 4.0 ± 0.6 fmole/µg membrane protein respectively. Na v1.2 showed the highest expression, with approximately 3 times higher (p<0.003) in rodents than in human at 3.05 ± 0.57 , 3.35 ± 0.56 in mouse and rat brains and 1.09 ± 0.27 fmole/µg in human, respectively. Both Na v1.1 and 1.6 expressions were much lower than Na v1.2, with approximately 40% less expression in human Na v1.1 when compared with rodents Na v1.1 at 0.49 ± 0.1 (mouse), 0.43 ± 0.3 (rat), and 0.28 ± 0.04 (human); while Na v1.6 was approximately 60% less expression in human when compared to rodents at 0.27 ± 0.09 (mouse), 0.26 ± 0.06 (rat) and 0.11 ± 0.02 (human) fmole/µg membrane proteins. **Conclusions** MRM was used to quantify sodium channels Na v1.1, 1.2 and 1.6 expressed in stably transfected HEK293 cells and brain tissues from mouse, rat, and human. We found significant differences in the expression of these channels in mouse, rat, and human brains. Na v expression ranking among the three species was Na v1.2 >> Na v1.1> Na v1.6, with the human brain expressing much lower concentrations overall in comparison to rodents.

Hosted file

Nav_quantification_Kwan et al_2023_RCMS_Submission_1.docx available at https://authorea. com/users/634613/articles/652414-development-and-application-of-an-mrm-method-forsimultaneous-quantification-of-sodium-channels-na-v-1-1-na-v-1-2-and-na-v-1-6-instable-hek293-cell-lines-and-solubilized-membrane-proteins-from-rodents-and-human-braintissues