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Abstract

Electronic gambling machines include a suite of design characteristics that may contribute to gambling related harms and
require more careful attention of regulators and policymakers. One strategy that has contributed to these concerns is the
presentation of “losses disguised as wins” (LDWs), a type of salient losing outcome in which a gambling payout is less than
the amount wagered (i.e., a net loss), but is nonetheless accompanied by the celebratory audio-visual stimuli that typically
accompanies a genuine win. These events could thereby be mistaken for gains, or otherwise act as a reward signal, reinforcing
persistent gambling, despite being a loss. This study aimed to determine whether LDWs evoke a reward positivity component
in a task modelled on slot-machine gambling. A prominent account of the reward positivity event-related potential suggests
that it is evoked during the positive appraisal of task related feedback, relative to neutral or negative events, or that it is
evoked by neural systems that implement the computation of a positive reward prediction error. We recruited 32 individuals
from university recruitment pools and asked them to engage in a simple gambling task designed to mimic key features of a slot
machine design. The reward positivity was identified using temporospatial principal components analysis. Results indicated a
more positive reward positivity following LDWs relative to clear losses, consistent with the theory that LDWs contribute to
positive reinforcement of continued gambling, despite being net losses.
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Myles, D., Carter, A., Yücel, M., & Bode, S. (2024). Losses disguised as wins evoke the reward positivity event-related potential

in a simulated machine gambling task. Psychophysiology, 00, e14541. https://doi.org/10.1111/psyp.14541

1

https://doi.org/10.1111/psyp.14541


P
os
te
d
on

23
F
eb

20
24

—
C
C
-B

Y
-N

C
4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
68
66
07
23
.3
5
75
26
61
/v

2
—

T
h
is

is
a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Hosted file

TF5SF1_v3.svg available at https://authorea.com/users/628226/articles/648889-losses-

disguised-as-wins-evoke-the-reward-positivity-event-related-potential-in-a-simulated-

machine-gambling-task

2

https://authorea.com/users/628226/articles/648889-losses-disguised-as-wins-evoke-the-reward-positivity-event-related-potential-in-a-simulated-machine-gambling-task
https://authorea.com/users/628226/articles/648889-losses-disguised-as-wins-evoke-the-reward-positivity-event-related-potential-in-a-simulated-machine-gambling-task
https://authorea.com/users/628226/articles/648889-losses-disguised-as-wins-evoke-the-reward-positivity-event-related-potential-in-a-simulated-machine-gambling-task


 1 

Losses disguised as wins evoke the reward-positivity event-
related potential in a simulated machine gambling task 

Dan Myles1,2*, Adrian Carter1, Murat Yücel1, Stefan Bode2  

2023-06-12 

1School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia 
2 Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia 

* Corresponding author  

AUTHOR CONTACT INFORMATION: 
Author ORCiD Email 
Dan Myles 0000-0002-0378-7027 dan.myles@monash.edu  
Adrian Carter 0000-0002-3593-0772 adrian.carter@monash.edu 
Murat Yücel 0000-0002-4705-452X murat.yucel@monash.edu  
Stefan Bode 0000-0002-0258-7795 sbode@unimelb.edu.au  

Keywords:  

Losses disguised as wins; Gambling; Event related potential; Reward positivity; Slot machine; Electronic 
gambling machines 

Abbreviations:  
AUD – Australian Dollars 

CS – Conditioned Stimuli 

EEG – Electroencephalography 

EGM – Electronic Gambling Machine 

ELPD – Expected Log Pointwise Predictive Density 

EOG – Electrooculogram 

ERP – Event Related Potential 

fMRI – Functional Magnetic Resonance Imaging 

HDPI – Highest Density Posterior Interval 

Hz – Hertz  
ICA – Independent Components Analysis 

LDWs – Losses Disguised as Wins 

OR – Odds Ratio 

OSF – Open Science Framework 

PCA – Principal Components Analysis 

RewP – Reward Positivity 

RPE – Reward Prediction Error 



 2 

Abstract 

Electronic gambling machines include a suite of design characteristics that may contribute to gambling 
related harms and require more careful attention of regulators and policymakers. One strategy that has 
contributed to these concerns is the presentation of “losses disguised as wins” (LDWs), a type of salient 
losing outcome in which a gambling payout is less than the amount wagered (i.e., a net loss), but is 
nonetheless accompanied by the celebratory audio-visual stimuli that typically accompanies a genuine 
win. These events could thereby be mistaken for gains, or otherwise act as a reward signal, reinforcing 
persistent gambling, despite being a loss. This study aimed to determine whether LDWs evoke a 
reward positivity component in a task modelled on slot-machine gambling. A prominent account of 
the reward positivity event-related potential suggests that it is evoked during the positive appraisal of 
task related feedback, relative to neutral or negative events, or that it is evoked by neural systems that 
implement the computation of a positive reward prediction error. We recruited 32 individuals from 
university recruitment pools and asked them to engage in a simple gambling task designed to mimic 
key features of a slot machine design. The reward positivity was identified using temporospatial 
principal components analysis. Results indicated a more positive reward positivity following LDWs 
relative to clear losses, consistent with the theory that LDWs contribute to positive reinforcement of 
continued gambling, despite being net losses. 
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Introduction 
The use and availability of gambling products is positively associated with a long list of social, personal, 
and economic harms; from addictive gambling, to bankruptcy, loss of employment, financial crime, 
both perpetrating and experiencing domestic violence, and an increased risk of suicide (Banks, 2017; 
Dowling et al., 2016; Giovanni et al., 2016; Langham et al., 2016). Products that allow for rapid and 
continuous wagering—such as electronic gambling machines (EGMs) or live sports betting—appear to 
inflate the incidence of these harms, or attract disproportionate use among individuals already 
experiencing harm (Armstrong & Carroll, 2018; Badji et al., 2020; Bischof et al., 2016; Markham et al., 
2016). These higher-risk risk products also appear to accelerate the transition to addictive gambling 
(Breen & Zimmerman, 2002) and account for a greater proportion of individuals seeking treatment for 
gambling related issues or reporting gambling-related problems (Gainsbury, 2014; Petry, 2003). 

A public health approach to addressing gambling harm asserts that any meaningful solution must not 
only attempt to provide support and treatment to individuals who experience these harms, but also 
seek to prevent harm from occurring by attending to its determinates. Addressing or preventing these 
harms requires a broad frame of reference that positions the psychobiology of harmful gambling 
behaviour within the regulatory, commercial or cultural environments that enable it (Wardle et al., 
2019). A key feature of this approach has been to consider how the commercial incentives to design 
gambling products that maximise profit has also motivated the design of product features that facilitate 
the initiation and maintenance of addictive behaviour (Schüll, 2012). The higher rates of harm 
associated with EGMs has been partially attributed to specific product design features thought to 
influence human cognition and reinforce the extended or repetitive use of these products (Blaszczynski 
et al., 2015; Livingstone et al., 2019; Yücel et al., 2018). Of particular concern are those features that 
provide a source of reward while gambling that is incommensurate with their utility, or features that 
encourage inaccurate appraisals of the structure of a wager and its outcome. One such feature are 
"losses disguised as wins" (LDWs); a type of gambling event in which a net loss is celebrated in a 
manner comparable to a genuine win (Dixon et al., 2010). 

LDWs are a common event in multiline video slot machines, a prevalent type of EGM. These devices 
accept simultaneous wagers along numerous “pay-lines”, where a pay-line refers to a set positions 
along the EGM display in which matching symbols will produce a payout (see Figure 1 where a 
matching outcome has been highlighted along pay-line 6). Like classical slot machines, a winning 
outcome will occur when a set of matching symbols line up across the centre most position along of 
each vertical reel (typically pay-line 1). However, these multiline machines will also accept additional 
and concurrent wagers on an array of different pay-lines, such the outcome displayed below in Figure 
1. LDWs occur when a winning outcome on one pay-line fails to win back more than the total stake. In 
the example displayed in Figure 1 below, a 1c bet was placed across 25 different pay-lines for a total 
wager of $0.25. The match of three ace of spades symbols has occurred along pay-line 6 and this 
represents a 15-fold return on the wager. While the exact presentation of these outcomes can differ 
between jurisdictions (Stevens & Livingstone, 2019), a typical device will prominently display the 
payout of $0.15 under the text “WIN”, highlight the matching symbols with a brief animation of 
flashing lines, and celebrate the outcome with a short musical fanfare. This sequence of events closely 
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resembles the sequence of events that occurs following a small genuine win, despite the fact it has 
resulted in a net-loss of −$0.10. Losing pay-lines are not highlighted and the net return is not displayed 
on the screen of typical devices.  

 

Figure 1 An illustrative example of an LDW. The 1c bet on 25 pay-lines results in a total wager of $0.25. The match 
of three ace of spades symbols has occurred along pay-line 6 for a payout of $0.15. The display of this outcome 
closely resembles a genuine win, despite the fact it has resulted in a net-loss of −$0.10. 

LDWs could contribute to addictive or harmful use of EGMs in two critical ways. First, by increasing 
the frequency of LDWs, manufacturers can reduce the probability of clear losses without change to the 
long-run financial expectation. If LDWs are less aversive than clear losses, this could mitigate extinction 
effects by reducing the incidence and length of consecutive strings of losses that would otherwise 
accumulate to dissuade continued wagering (Haw, 2008). Consistent with this concern, Leino et al. 
(2016) observed that consumers were more likely to terminate a gambling session following a loss than 
an LDW, a conclusion based on data extracted from 8,636 EGM user accounts provided by a state-
owned gambling company in Norway. A second concern is that LDWs may increase the frequency of 
positive reinforcers while gambling. This may occur firstly because LDWs appear to be commonly 
mistaken for actual gains. Numerous self-report studies have found that both experienced and novice 
gambler’s overestimate the rate at which they have won more than they wagered when LDWs are 
present, relative to when they are absent, in realistic simulated EGM gambling scenarios (Dixon et al., 
2015; Dixon, Graydon, et al., 2014; Graydon et al., 2017, 2021; Jensen et al., 2013; Myles et al., 2023; 
Templeton et al., 2015). A further concern is that the celebratory audio-visual stimuli paired with both 
wins and LDWs may serve as conditioned reinforcers regardless of whether these events are 
miscategorised as gains (Dixon, Harrigan, et al., 2014). This may enable a second-order random-ratio 
reinforcement schedule in which behaviour is maintained by two levels of reinforcement (Myles et al., 
2019). The first “unit-order” of reinforcement being the frequent presentation of a conditioned 
reinforcer, in this case LDWs; the second being the relatively rare presentation of larger wins. Second-
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order schedules are a highly effective technique in separating reward motivated behaviour from the 
actual presentation of that reward and for increasing resistance to extinction phases (Everitt & Robbins, 
2000; Schindler et al., 2002).  

Methodologies from cognitive neuroscience could provide an additional line of evidence to 
complement these behavioural findings and further illuminate whether LDWs contribute to the 
addictive potential of EGMs (Myles et al., 2019). One promising electroencephalography (EEG) 
measure of neural activity related to reward or outcome processing is the reward positivity1 (RewP) 
event-related potential (ERP) (Holroyd et al., 2008; Holroyd & Coles, 2002; Proudfit, 2015). This 
component is typically observed as a positive difference in amplitude at frontocentral electrode sites, 
approximately 200 to 350ms following the presentation of subjectively favourable outcome 
information, relative to neutral or unfavourable information.  

Studies employing concurrent functional magnetic resonance imaging (fMRI) and EEG, or within-
subjects EEG-fMRI designs (Becker et al., 2014; Carlson et al., 2011), have demonstrated that the RewP 
is correlated with metabolic activity in the ventral striatum, as well as medial prefrontal and cingulate 
regions of the cortex. These cortical regions receive dopaminergic inputs from the ventral striatum and 
ventral tegmental area and are likely candidates for the primary source of electrical activity measured 
at the scalp (Hauser et al., 2014; Smith et al., 2015). Together, these regions are also key areas of the 
brain’s reward system, a network of regions thought to implement the computation of reinforcement 
learning, beginning with the phasic firing of dopamine neurons in the ventral tegmental area and 
spreading systematically to efferent sites, including but not limited to, the ventral striatum, amygdala, 
hippocampus, anterior cingulate cortex and medial prefrontal cortex (Montague et al., 1996; Niv, 2009). 
Decades of research have linked the activity of this system to motivation, addiction and reward 
processing more generally, and further studies have demonstrated associations with financial gains 
presented during gambling tasks (Corlett et al., 2022; Fauth-Bühler et al., 2017; Linnet, 2014; Murch & 
Clark, 2016; Myles et al., 2019; Shao et al., 2013). 

The RewP is also reliably associated with the subjective valance attributed to outcomes across a diverse 
range of tasks (Cockburn & Holroyd, 2018; Glazer et al., 2018; Hajcak et al., 2006; Holroyd et al., 2006; 
Proudfit, 2015). This valence dependency of the RewP has been reproduced in a large sample of 500 
participants (Williams et al., 2021) and in a meta-analysis of 55 experiments involving monetary 
outcomes (Sambrook & Goslin, 2015). Most relevant to the current study, numerous studies have 
reported that this measure is sensitive to the distinction between wins and losses in tasks designed to 
simulate slot-machine gambling (Lole et al., 2013, 2015; Luo et al., 2011).  

The primary motivation for this study was to test the theory that slot-machine LDWs are rewarding in 
a manner comparable to small wins, and unlike losses. To test this hypothesis, we developed a novel 
computer-based gambling task intended to mimic the key features of how a slot machine displays 
LDWs. We hypothesised that the LDWs produced by this task would elicit an increase in amplitude 

 
1 Historically the reward positivity has also been referred to as the feedback related negativity, among other names. We follow 
Greg Proudfit’s (2015) terminology here as this term more accurately describes the measure’s specific response to gains and the 
relative positive difference in amplitude relative to losses. 
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relative to losses within the time course and topography of the RewP. We further hypothesised that the 
difference in amplitude between LDWs and losses would exceed any difference between LDWs and 
small gains. 

Methods 
Participants 

Participants were recruited using flyers placed around University of Melbourne and Monash 
University campuses, and the online participant recruitment pool provided at both institutions. 
Inclusion criteria included right-handedness, normal or corrected to normal vision, no history of 
neurological or psychiatric disorder and limited gambling activity of no more than twice in the previous 
12 months. The final sample consisted of 32 individuals, including 22 women, 9 men, and one 
participant not endorsing a binary gender. Participants were between 18 and 47 years of age, and 
median age was 23. Twenty-nine participants were currently enrolled to study in a university program, 
and all 32 participants had completed high school or a tertiary qualification. Participants were informed 
that they would be paid for any credits remaining at the end of the experiment. In addition, all 
participants received a fixed participation fee of $10 AUD. This study was performed in line with the 
principles of the Declaration of Helsinki. Ethics approval was obtained from the University of 
Melbourne Human Research Ethics Committee (Project ID 20440). A copy of this initial approval, along 
with relevant documentation was co-registered with the Monash University Human Research Ethics 
Committee (Project ID: 27157).  

Experimental Paradigm 

Participants completed a novel computer-based gambling task that was purpose built to mimic 
essential features of the presentation of LDWs in slot-style EGMs (the “9 Line Slot Task” available at 
https://github.com/danmyles/9Line_Slots_Task).  

The sequence of events presented to participants during each trial is displayed below in Figure 2A. On 
every trial, participants first made a wager of 90 credits (described below). Following the wager, the 
task presented an H-shaped grid of 7 rectangles, arranged as two vertical columns either side of a 
central rectangle. A sequence of events was then presented within this grid beginning with an 
animation of spinning symbols within the left and right columns intended to resemble slot machine 
reels. The left reel stopped first, followed by the right reel. Potential pay-line matches were then 
highlighted sequentially (500 ms), followed by a fixation marker displayed at the centre of the screen 
for 800–1000 ms (random uniform temporal jitter). The outcome stimulus was then displayed at the 
fixation point for 1500 ms before continuing to the next trial. No sound was paired with any stimulus 
to avoid potential confounds due to auditory ERPs. A payout occurred when the outcome stimulus 
matched symbols in both the left and right columns, allowing for 9 pay-lines (Figure 2B). The numeric 
payout was immediately displayed within the outcome stimulus (Figure 2D and 2E).  
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Figure 2 A schematic representation of the 9 Line Slot Task. A.  Timeline of the sequence of events displayed on 
each trial. B. Screen capture during pay-line highlighting phase. Note that for the combination show here a second 
highlight would also occur on the yellow triangles. C. Screen capture displaying a winning outcome matching on 
the red circle. D. Screen capture displaying a clear loss. E. Screen capture displaying an LDW. This outcome 
matches on the blue diamond and represents a net loss of 40 credits after subtracting the cost of the wager (90 
credits). 

There were 5 different symbols in total, and the sequence of symbols on each reel was designed so that 
the same symbol could not appear more than once within the same reel. This design ensured that prior 
to the presentation of the outcome stimulus, each trial presented between 1 and 3 potential matches, 
but that no more than a single pay-line could pay out on any one trial. Payouts included two LDWs of 
30 (i.e., net −60) or 50 (net −40) credits; two small genuine wins, 130 (net +40) or 150 (net +60) credits; 
or a larger win of 450 (net +390) credits. Non-matching or losing outcomes were indicated as 0 (net −90) 
credits. 

An active betting choice was presented at the start of each trial, and participants could choose between 
two alternate gambles, labelled “Blue Game” and “Green Game” displayed either side of the screen. 
This was primarily intended to provide a sense of control or agency during the experiment as previous 
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work has indicated that RewP amplitudes are attenuated in passive gambling tasks (Mühlberger et al., 
2017). Although the influence of the preceding outcome on decision behaviour was considered in an 
analysis of choice behaviour (see Results). The position of the “Green Game” and “Blue Game” was 
randomly exchanged between the left or right side of the screen on each trial. This bet choice screen 
also clearly displayed the cost of each wager (90 credits) and any remaining credits. Participants 
indicated their choice using a keyboard press and their choice was briefly highlighted with a red 
rectangle. The outcomes for both the “Green Game” and “Blue Game” were generated using the same 
process so that each choice had the same negative expected value and frequency of each event type.  

For each participant the events corresponding to each betting choice and were randomly sorted into 
blocks of 30 trials containing exactly 15 losses, 6 LDWs (3 x 30 credits; 3 x 50 credits), 6 small wins (3 x 
130 credits; 3 x 150 credits), and 3 large wins. This block design was chosen for methodological and 
practical reasons. First, to ensure a satisfactory number of repeated observations for each event type for 
each participant. Second, to prevent a-typical long runs of the same event. Finally, this procedure 
ensured that each participant’s payment would be approximately comparable, that payments could not 
exceed our available funds, and that losses could not accrue to the extent that they exceeded a 
participants’ starting credits. However, participant choices could produce incomplete final blocks, 
resulting in a slightly different event frequency for each participant at the conclusion of the experiment. 

In total this resulted in 360 trials comprised of approximately 180 losses and 180 “events”; the latter of 
which included approximately 72 LDWs (36 x 30 credits + 36 x 50 credits), 72 small wins (36 x 130 
credits + 36 x 150 credits), and 36 large wins (450 credits). The frequency and magnitude of these 
payouts delivered a negative expected value, or an average loss of 9 credits per 90 credit wager. This 
value was based on an analysis of the average house-edge of EGMs in Victoria, Australia (Woolley et 
al., 2013). 

A short screen capture video demonstrating a series of example trials has been included in the 
supplementary online materials, along with the task instructions presented to participants. OSF link: 
https://osf.io/s8wrb/ 

Procedure 
All participants were provided with a plain language statement explaining that the purpose of the 
experiment was to investigate how people observe and understand gambling outcomes using a 
computer-based gambling task and a non-invasive measure of brain activity. Losses disguised as wins 
were not explicitly mentioned in this statement as previous behavioural studies have reported that 
awareness of LDWs may reduce their influence on win-overestimation (Graydon et al., 2017).  

Upon entry to the lab participants were provided with an opportunity to sign a written consent form 
and confirm that they met the study inclusion criteria. Consenting and eligible participants were then 
fitted with EEG electrodes. Participants were seated in front of a 24.5” 240 Hz LCD monitor (all 
hardware and software is described on the OSF page). The task was presented in MATLAB (R2022a) 
using extensions from the Psychophysics Toolbox (PTB-3) (Brainard, 1997). Task instructions were 
presented on screen while the experimenter remained present to answer questions and confirm 
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participants’ understanding. Participants were provided with a starting balance of 20,000 credits and 
informed that they would be paid for any credits remaining at the end of the experiment (1,000 credits 
= $1 AUD). During the EEG experiment, participants were presented with a break screen every 60 trials. 
Median completion time for the gambling task was 52m 0s (min = 44m 1s, max = 1h 11m 51s) and the 
median duration of each trial was 6.85 seconds. 

Following the gambling task participants were directed to complete a short demographic survey. 
Finally, participants were provided with a plain language debriefing statement explaining that the 
primary aim of the study and describing LDWs. They were then reimbursed $10 AUD for their time in 
addition to a payment proportional to the credits remaining at the end of the gambling task (median = 
$16.74, minimum = $15.90, maximum = $17.27). 

EEG recording 
EEG was recorded at a sampling rate of 1024 Hz using a BioSemi Active-Two system and Actiview 
acquisition software. This system employs a common mode sense active electrode and driven right leg 
passive electrode in place of a traditional ground. Data were recorded from 64 active electrodes 
positioned in a fabric electrode cap according the 10/20 system and 2 active electrodes were affixed to 
the left and right mastoid. Concurrent electrooculogram (EOG) was recorded from 4 active electrodes 
attached above and below the right eye and adjacent to each lateral canthi. 

EEG pre-processing 
EEG data were pre-processed using the EEGLab v2022.1 toolbox (Delorme & Makeig, 2004), ERPlab 
v9.00 (Lopez-Calderon & Luck, 2014) and MATLAB 2022a. Data were first down sampled to 256 Hz 
and band-pass filtered between 0.1 and 30 Hz (ERPLab Butterworth filter, order 2). Remaining line 
noise was identified and removed using the Cleanline plugin for EEGlab (Mullen, 2012). Ocular 
artefacts were identified and corrected using independent components analysis (ICA) (EEGlab 
extended runica algorithm). All data were referenced offline to the right mastoid during pre-processing 
and re-referenced to the average of both mastoid electrodes following ICA and prior to artefact rejection 
and averaging. To improve the performance of both the Cleanline algorithm and the ICA, we applied 
a 1Hz high-pass filter (EEGlab Basic FIR filter new, default settings) to a copy of the dataset prior to 
each procedure. Signal identified as line noise in this copy of the data was then subtracted from the 
primary data set and ICA components were copied from the 1Hz filtered data set to the primary 
dataset, as recommended by Bigdely et al. (2015) and Luck (2022). 

Following line noise removal and prior to implementing the ICA, the data were segmented to remove 
breaks and long periods of non-responding at the bet choice screen (> 5 seconds). Problem electrodes 
were manually identified and deleted based on persistent discontinuities, excessive noise, or frequent 
artefacts isolated to single electrodes during the planned epoch period (range = 0 – 8 electrodes deleted, 
median = 2.5; Fz, FCz and Cz were not affected). Electrodes with low maximum correlations across the 
whole dataset, or low correlations across 500 randomly selected windows, were scrutinised more 
closely for deletion, as were electrodes displaying unusual log power spectral density. Finally, 
segments of data containing large artefacts across multiple electrodes were excluded from the ICA 
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dataset. ICA components were manually identified based on broad scalp topography, temporal 
association with a bipolar EOG electrode, and with additional support from the IClabel plugin for EEG 
lab (Pion-Tonachini et al., 2019).  

Following the ICA correction, any deleted electrodes were interpolated using spherical spline 
interpolation. The data were then re-referenced to the average of both mastoid electrodes and 
segmented into feedback locked epochs, comprising of a 200 ms baseline period and an 800 ms post-
feedback interval. We then conducted a semi-automatic artefact detection process. Trials containing 
eye movements within 200 ms of outcome presentation or containing larger artefacts during the full 
epoch were rejected. Where artefacts were detected on single electrodes without issues at remaining 
sites, single trial interpolation of the electrode was employed to prevent unnecessary data loss. 
Following this process all participant data sets retained greater than 80% of the total trials. 

Data reduction 
One methodological concern with isolating the RewP is that this component typically exhibits temporal 
and spatial overlap with the nearby P2 and P3 components (Glazer et al., 2018). One approach to 
alleviate this concern and to facilitate a data-driven selection of ERP latency is the to use temporospatial 
principal components analysis (PCA) (Dien, 2012). This approach has been used in numerous recent 
RewP studies (e.g., Carlson et al., 2011; Foti et al., 2011; Mulligan & Hajcak, 2018; Sambrook & Goslin, 
2016), including studies investigating slot-machine style tasks specifically (Lole et al., 2013, 2015).  

In the present study we also adopted these procedures. Each participant data set was randomly 
shuffled and split into two “sessions” containing the same number of each type of payout (±1), before 
averaging by payout magnitude (0, 30, 50, 130, 150, or 450 credits). This step was performed to enable 
a varying slopes analysis of the resulting PCA factor. We then conducted a two-step temporospatial 
PCA using the ERP PCA Toolkit (Dien, 2010b). As outlined in the toolbox guidelines (Dien, 2010a, 2012) 
we first analysed temporal variation using promax rotation. The data were reduced to 11 temporal 
factors based on a parallel test, which selects factors with eigenvalues greater than those generated 
from a random noise data set (Horn, 1965). A separate spatial PCA was then performed for each of 
these 11 temporal factors using infomax rotation. The ERP PCA Toolkit computes a single parallel test 
for this second step averaged across all remaining temporal factors, requiring the same number of 
spatial factors be retained for each temporal factor. This process resulted in a total of 33 temporospatial 
factors (3 spatial factors for each of the 11 temporal factors). 

Collectively all components accounted for 84.3% of the variance in the data, and 8 individual 
components accounted for greater than 1% unique variance. As the intention of this study was to 
analyse the RewP component specifically, this component was identified based on latency, temporal 
position relative to other factors and scalp topography (see Figure 3). The ERP PCA Toolkit facilitates 
the reconstruction of these factor scores back to the microvolt scale, and these values were used in all 
following statistical analyses. Further information pertaining to remaining factors explaining > 1% 
unique variance has been made available in the appendix for interested readers. Two of these 
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resembled a feedback P3 and Late Positive Potential (Glazer et al., 2018). A brief exploratory analysis 
is reported in the appendix for each of these. 

 

Data Analysis 
Additional data processing was performed in R (R Core Team, 2022) with support from data.table 
(Dowle & Srinivasan, 2022) and stringr (Wickham, 2022) packages. All visualisations were composed 
using R and ggplot2 (Wickham, 2016) with additional functions from the cowplot (Wilke, 2020) and 
eegUtils (Craddock, 2022) packages. 

Bayesian Estimation 

Parameter estimates for the regression models outlined below were derived using Bayesian estimation. 
In Bayesian estimation all model parameters are first assigned a prior probability distribution that 
represents a feasible range of parameter values weighted by a pre-determined probability. These values 
are then updated using Bayes' rule, to produce a posterior probability distribution for each parameter, 
such that the continuous range of values for each parameter is weighted to represent the degree to 
which each value is compatible with the data observed and structural assumptions of a statistical 
model, including any prior constraints placed on the parameter’s values. 

Bayesian estimation enables a proportionate consideration of the full range of uncertainty associated 
with an estimate because the primary output is a complete posterior distribution, rather than a point 
estimate, or the results of statistical test which may obscure the extent to which a continuous range of 
values are consistent with the data. The advantages of estimation over null-hypothesis significance 
testing are well summarised by Geoff Cumming (2014). For an excellent introduction to Bayesian 
estimation see McElreath (2020), and for an account of the advantages of Bayesian estimation over 
ordinary least squares or maximum likelihood estimation, see Kruschke & Liddell (2018). 

In this study we used uninformative or mildly regularising priors that set minimal prior constraints on 
these values (see below for details). These priors did not provide information related to the research 
hypothesis or prior research. Unless otherwise indicated, posterior point estimates refer to the median 
of a posterior distribution and these are reported alongside the lower and upper bounds of a 95% 
highest density posterior interval (HDPI). 

All regression models were fit using brms (Bürkner, 2017), which provides a convenient interface for 
specifying Bayesian models in R using the Stan modelling language (Carpenter et al., 2017). All models 
were fit with 8 chains, 1,000 warmup draws, and 2,500 post-warmup draws, resulting in a total of 20,000 

posterior draws. The reported models all achieved good convergence (R" < 1.01) and bulk and tail 
effective sample sizes for all parameter estimates were greater than 1,000 (Vehtari et al., 2021).  

Behaviour 

Behavioural data from participant decisions to bet on either the Blue Game or Green Game were 
modelled using logistic regression. The purpose of this analysis was to consider whether there was an 
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influence of the preceding outcome on decision behaviour on the following trial. Outcomes were coded 

as a binary variable such that Switch = 1 when the choice on the preceding trial differed from the 

choice on the subsequent trial. Each preceding event type was assigned a dummy coded predictor 
(LDW, small win, large win), and varying intercepts and slopes were assigned by participant. The 
syntax used to model behavioural data is displayed below in Code Block 1. We used a Normal(0, 1.5) 
prior on the model intercept. This prevents prior density amassing at extreme values close to 0 or 1, but 
is otherwise approximately flat across the bulk of the probability scale (McElreath, 2020). Very mild 
regularising Normal(0, 1) priors were set on the dummy coded predictors and any remaining priors 
were set as explained in the Reward Positivity section below. 

brm(formula = Switch ~ 1 + LDW + SW + LW + (1 + LDW + SW + LW | id), 
    family  = bernoulli(), 
    prior   = c( 
      prior(normal(0, 1.5), class = "Intercept"), 
      prior(normal(0, 1), class = "b"), 
      prior(lkj(2), class = "L"), 
      prior(exponential(1), class = "sd")), 
    etc...) 

Code Block 1 brms  syntax used to model behavioural data. 

Reward Positivity 

The association between payout magnitude (0, 30, 50, 130, 150, or 450 credits) and the RewP amplitude 
(identified as the temporospatial factor outlined above) was modelled using hierarchical regression. 
This model structure included an intercept and a set of dummy coded predictors representing each 
payout amount (30, 50, 130, 150, 450). Both the intercept and slopes were permitted to vary by 

participant, to accommodate the repeated measures (brm(formula = Amplitude ~ 1 + payout + 

(1 + payout | id), etc... )). 

Heterogeneity 

The average ERPs used to compute the PCA were derived using a different number of trials for the loss 
condition (2 sets of 90 trials minus artefact contaminated trials) relative to the other events (2 sets of 18 
trials minus artefact contaminated trials). This averaging procedure would produce heteroscedasticity. 
It is also conceivable that the residual standard deviation may vary across conditions due to some 
feature of the data generating process. For example, if ERPs in response to LDWs were more variable 
than those following small gains. To accommodate this, we fit two alternative distributional models to 
assess the assumption of homogeneity. Distributional models (Bürkner, 2022) allow a linear model to 
be fit to the residual standard deviation as well as the mean, to explicitly accommodate heterogeneity 
of variance.  

To accommodate heterogeneity due to the averaging method, we estimated residual standard deviation 
separately for the loss condition and pooled across all remaining conditions in which the outcome was 

not a loss, to account for the averaging process (i.e., log(sigma) ~ 1 + event where event is a single 

dummy coded predictor for any non-loss outcome). To accommodate heterogeneity due to some 
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feature of the data generating process, an alternative model provided a separate estimate of for each 

trial type to test the assumptions of condition-wise homogeneity (i.e., log(sigma) ~ 1 + payout, 

where payout is as above).  

Influential Values 

Influential data points were identified during leave-one-out cross validation based on pareto k values 
greater than 0.7. The original regression model assumed a Gaussian likelihood (i.e., normally 
distributed residuals). Inspection of the data distribution indicated a small number of extreme scores 
that would not be well accounted for by thin tails of a Gaussian distribution. To minimise bias due to 
these influential observations we fit each model again using a robust Student-t likelihood (McElreath, 
2020, p. 233).  

Model Comparison 

The best performing of these robust models was then selected using leave-one-out cross validation 
which provides an approximate and relative measure of out of sample predictive performance 
indicated by a reduction in the expected log pointwise predictive density (ELPD) (Vehtari et al., 2017). 
The distributional model with a single dummy coded predictor across all non-loss payout events was 
the best performing by this metric, which indicated a substantial improvement relative to the standard 
homogenous model (ELPD Difference = −10.06, Standard Error = 3.46) and similar or marginally 
improved performance relative to the full condition-wise model (ELPD Difference = −2.87, SE = 2.40). 
This model was also felt to best account for the averaging method and regardless estimates for the fixed 
effects were closely comparable to the more complex model, and so the results of this simpler model 
are reported in the current paper. 

Priors 

Prior to analysis all outcome measures were centred relative to the loss condition mean and scaled by 
the standard deviation of the loss condition. This approach was adopted to aid in setting mild 
regularising priors on the model intercept. Following model fitting, all posterior estimates were 
transformed back to the microvolt scale and all estimates are reported on this scale. Accordingly, we 
used a Normal(μ = 0, σ = 0.5) prior for the model intercept. Fixed effects retained default brms uniform 
priors. A mild regularising Exponential(λ = 1) prior was set for the standard deviation of parameters 
varying by participant and LKJ(η = 2) priors were used for correlations between parameters (McElreath, 
2020). Robust regression models included a Gamma(3, 1) prior for the Student t normality parameter, 
ν with a lower bound of 1. This prior was chosen to induce the model towards a more conservative t 
distribution with fatter tails, whilst excluding distributions for which the mean is undefined. A 
Normal(e, 2) prior was used for the intercept of the residual error term to centre the prior at 1 following 
transformation to the unit scale (brms uses a natural log link), and Normal(μ = 0, σ = 1) priors were 
used for the coefficients.  
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Results 
Behaviour 
A varying intercepts Bayesian logistic regression indicated approximately even odds of choosing the 
“Blue Game” (p = .51, 95% HDPI = [.45, .56]; odds = 1.02, [0.80, 1.27]) relative to the “Green Game” for 
an average participant. This result was as expected, given the symmetry of the two betting options. We 
then considered whether the probability of switching between bets would differ following each 
outcome type. We fit a Bayesian logistic regression that included the preceding event type as a dummy 
coded predictor (LDW, small win, large win), and varying intercepts and slopes by participant. The 
results reported in this section indicate the probability of switching bets (p). Odds ratios (OR) and 
differences in probability estimates are reported for each contrast. All estimates include the lower and 
upper bounds of a 95% HDPI in square brackets.  

The probability of switching bets was higher following losses (p = .33, [.26, .39]) than it was following 
LDWs (p = .24, [.18, .30]; difference = −.09, [−.13, −.05]; OR = 0.65, [0.53, 0.79]), small wins (p = .18, [.13, 
.23]; difference = −.15, [−.20, −.10]; OR = 0.45, [0.33, 0.58]), or large wins (p = .19, [.14, .24]; difference = 
−.14, [−.19, −.08]; OR = 0.48, [0.34, 0.64]). The probability of switching following an LDW was higher 
than the probability of switching following a small gain (difference = .06, [.02, .10]; OR = 1.45, [1.14, 
1.78]). Finally, the odds of switching were approximately even when comparing large wins to small 
wins (difference = −.01, [−.05, +.03]; OR = 0.94, [0.71, 1.19]). 

Event Related Potentials 
Reward Positivity 

PCA factor TF5/SF1 (Figure 3B) mapped closely onto a large early peak in the difference wave (Figure 
3D) derived from the classical grand average ERP (Figure 3C) when contrasting losses against other 
payout conditions. The latency, frontocentral scalp topography, and temporal position of this factor 
relative to other factors, resembled the features of the RewP identified using PCA in previous ERP 
studies of slot machine gambling (Lole et al., 2013), and within-subjects EEG-fMRI designs (Carlson et 
al., 2011). It was therefore concluded that the PCA had successfully isolated the RewP component. The 
virtual RewP component and topography of this factor are displayed below in Figure 3 alongside the 
traditional ERP and difference wave at electrode Fz. 

We next considered posterior estimates from the statistical analysis of RewP amplitudes by payout 
condition. We first compared the average RewP for all payout conditions (i.e, 30, 50, 130, 150, 450 
credits) to losses (0 credits). We found that relative to losses, all payout events were associated with a 
reliable average increase in RewP amplitude, see Table 2. This included the two LDWs of 30 and 50 
credits, each of which represented a net loss of 60 and 40 credits respectively, after accounting for the 
cost of the bet (90 credits). Consistent with our secondary hypothesis we observed that the average 
RewP amplitudes following each of the LDW outcomes were closer on average to small gains, than 
they were to losses, see Figure 3 and Table 2. 
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Figure 3 A. Topographic plot for temporospatial factor identified as the RewP. This topographic plot displays factor weight 
rescaled to amplitude at 242 ms post outcome stimulus for each payout condition. B. Virtual ERP for RewP/TF5SF1. The 
virtual ERP is displayed alongside posterior estimates of the average factor amplitude by payout amount. Error bars indicate 
67% and 95% highest density posterior intervals around the mean amplitude estimates. Note that the horizontal position of 
these point estimates is simply to aid visibility and does not indicate time. C. Traditional grand average ERP at Fz. D. 
Difference wave relative to losses at Fz. Dotted vertical line indicates peak latency (242ms) of temporospatial factor TF5SF1, 
identified as the reward positivity in the present study. 

The large gain of 450 credits (net 360) was associated with a substantially more positive RewP, relative 
to all other events, which may indicate some influence of either novelty or reward magnitude on the 
RewP amplitude, see Table 2. We also observed evidence of heterogeneity of variance depending on 
whether the outcome was a loss or payout event, as expected. The residual standard deviation for the 
RewP was larger (0.87; 95% HDPI = [0.39, 1.29]) across payout conditions (σerror = 2.04 [1.78, 2.32]) 
relative to the loss condition (σerror = 1.17 [0.81, 1.60]). As outlined in the methods section, this was 
theorised to be a result of averaging a different number of trials. 
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Table 2 Posterior estimates for TF5/SF1 (RewP) rescaled to amplitude (microvolts). 

 Condition Mean  Contrast vs. Loss   Payout Contrasts 
Payout 50% 2.5% 97.5%  50% 2.5% 97.5%   Contrast 50% 2.5% 97.5% 
0 (Loss) 3.78 2.76 4.82  - - -   50 − 30 0.66 −0.32 1.58 

30 (LDW) 7.31 6.13 8.47  3.53 2.83 4.21   150 − 130 −0.04 −1.08 0.94 
50 (LDW) 7.98 6.73 9.11  4.19 3.41 5.01   130 − 30 1.01 0.06 1.96 

130 (Small Win) 8.31 6.94 9.68  4.53 3.70 5.39   150 − 50 0.30 −0.81 1.36 
150 (Small Win) 8.27 6.97 9.55  4.49 3.62 5.34   450 − 50 1.68 0.57 2.90 
450 (Large Win) 9.67 8.18 11.08  5.88 4.86 6.95   450 − 150 1.39 0.30 2.52 

[Table Note] Model estimates for factor TF5/SF1, identified as the RewP component. These intervals represent modelling 

uncertainty around the estimation of the mean of each condition (left). Contrasts indicate differences between these mean values 

(centre and right). Contrast estimates indicate a more positive RewP for all events relative to losses (centre panel), and for large 

gains relative to all other payout events (bottom right). Estimates provided indicate the posterior median (50%) and 95% highest 

density posterior interval (HDPI). 

Discussion 
The present study was motivated by a reinforcement learning or reward-processing theory of both the 
reward positivity (Holroyd & Coles, 2002; Proudfit, 2015) and the contribution of LDWs to persistent 
gambling (Linnet, 2014; Murch & Clark, 2016; Myles et al., 2019). Based on these background theories 
we hypothesised that if LDWs, despite being net losses, are in fact rewarding then they should evoke 
a RewP ERP relative to clear losses, in a manner comparable to small wins. To test this hypothesis, we 
presented participants with different gambling outcomes (losses, LDWs, small wins, and large wins) in 
a simplified gambling task designed to mimic essential elements of a slot-machine display. We 
observed clear evidence that LDWs elicit a more positive RewP relative to clear losses. We also 
observed that the magnitude of this difference was substantially larger than any difference between 
LDWs and genuine small wins. Conditional on this motivating theory, these findings are consistent 
with the concern that LDWs may provide a source of reward while gambling despite being financial 
losses. These findings are inconsistent with the proposition that LDWs are perceived in a manner that 
is indistinguishable from clear losses. 

As outlined in the introduction, the finding that the RewP is sensitive to a binary assessment of outcome 
valence is very robust, and has been replicated numerous times in a wide array of reward-processing 
tasks, as well with meta-analysis and in larger samples (Proudfit, 2015; Sambrook & Goslin, 2015; 
Williams et al., 2021). A number of studies have reported that the RewP appears to be sensitive only to 
positively valanced outcomes, and displays little to no distinction between neutral and negative 
outcomes (Hajcak et al., 2006; Holroyd et al., 2006; Kujawa et al., 2013; Varona-Moya et al., 2015). If so, 
these findings suggest that LDWs are experienced as a positive outcome, on average, despite being a 
net loss. 

Another prominent account of the RewP has proposed that it provides an index of a positive reward 
prediction error (RPE), rather than a simple binary assessment the subjective valence of an outcome 
(Holroyd & Coles, 2002; Sambrook & Goslin, 2015, 2016). An RPE refers to the difference between a 
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predicted reward and the value of an actual outcome. A positive RPE occurs when an outcome was 
better than expected. RPEs are a fundamental variable used to adjust future predictions in 
reinforcement learning models which describe a computational process by which environmental 
contingencies that lead to desirable outcomes are learned and used to motivate behavioural patterns 
that increase the future receipt of these outcomes (Rescorla & Wagner, 1972; Sutton & Barto, 2018). As 
outlined in the introduction, key aspects of this computational process are believed to be implemented 
in brain reward regions. This is supported in part by numerous observations that midbrain dopamine 
neurons display phasic firing patterns that co-occur with reward presentation and conditioned stimuli 
that predict the future presentation of reward, as well as firing rates that correspond to the relative size 
of a RPE, or the predicted reward value (Montague et al., 1996; Niv, 2009). These dopaminergic neurons 
have afferent projections to the ventral striatum, as well as anterior cingulate and medial pre-frontal 
regions of the cortex; areas positively correlated with the RewP in dual-modality EEG fMRI studies 
(Becker et al., 2014; Carlson et al., 2011). Additionally, RewP studies employing behavioural 
reinforcement learning tasks have reported findings broadly consistent with a reinforcement learning 
model of the RewP (Hoy et al., 2021; Sambrook & Goslin, 2016). If a positive RewP provides an index 
of positive RPEs, these findings suggest that LDWs may be interpreted as being better than an expected 
outcome (recall that the objective expected value for each bet on this task was −9 credits) and may 
therefore have a motivating influence on behaviour, despite being a net loss of either −60 or −40 credits. 

In reporting these results we have made comparisons between LDWs and small gains, observing that 
the difference between these two types of events was much smaller than the difference observed 
between losses and LDWs. In interpreting these results, it is critical to highlight that the average 
amplitude of the RewP likely does not scale in a simple linear fashion with the cognitive representation 
of reward magnitude, given that both the relationship between subjective utility and objective currency 
values (Kahneman & Tversky, 1979), or between firing rates of dopamine neurons and metric 
measurements of the volume of appetitive rewards (Eshel et al., 2016; Schultz et al., 2015), typically take 
on non-linear sigmoidal functions. Moreover, non-linear response functions provide a means to 
implement unbounded continuous space within physiological constraints (Abbott & Dayan, 2001). We 
therefore caution that a simple linear interpretation of the observed similarities between LDWs and 
small gains, relative to losses, may not adequately reflect the cognitive representation of the scale of 
differences in reward magnitude, or the motivational potency of these outcomes. 

The behavioural results observed in the present study are also consistent with the concerns expressed 
in the introduction that LDWs may mitigate the otherwise aversive influence of losing money on 
decision making, or result in more favourable appraisals of a gamble, relative to clear losses. In the 
current study, we observed that participants were more likely to make a switch between the two betting 
options following a loss than they were following an LDW. A similar, albeit stronger, pattern was 
observed following clear wins. This result is broadly consistent with behavioural and self-report 
findings that participants prefer to gamble on multiline slots that present LDWs relative to machines 
that do not (Graydon et al., 2018), as well observations based on user account data by Leino et al. (2016) 
that consumers were more likely to terminate a gambling session following a loss, relative to an LDW. 
The model used to fit the behavioural data in the present study was relatively simple, considering only 
the influence of the previous trial on subsequent decisions. It also has limited inferential value in the 
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sense that a loss of −40 or −60 credits ought to be appraised more favourably (or less unfavourably) 
than a loss of −90 credits. Future studies could consider the influence of LDWs on trial-by-trial decision 
making in more depth by employing computational models of reinforcement learning. Such models 
(for example, Haines et al., 2018) could provide insight into to whether LDWs influence behaviour in a 
manner that is consistent with learning an expected value or win frequency that is incommensurate 
with objective value of the LDW. These models could be further enriched by considering correlations 
between model parameters, RPEs, and single trial EEG data, as recently reported by Hoy et al., (2021). 

While this is, to our knowledge, the first study to examine the RewP in a slot-gambling modality, 
Peterburs et al. (2013) conducted an ERP study using a card gambling task that included LDW-like 
events. In this study, an initial stake of either 0 or 50 credits was randomly subtracted from a 
participant’s available funds prior to making a choice between two cards. Following this choice 
participants were presented with an outcome of either −60, −20, −10, +20, +30, +60, +70, or +100 credits. 
A key feature of this design was that payouts of 20 or 30 credits would represent a net loss when the 
stake was 50 credits, but a clear win when the stake was 0. Although the stake by payout interaction 
effect was not statistically significant, the authors reported follow-up tests and a qualitative 
interpretation of the ERP waveform that suggested that RewP amplitudes following these payouts were 
comparable to losses when a bet was placed, but comparable to gains when the bet was free. This set 
of observations is consistent with the proposal that LDW-like events in this card gambling were 
subjectively experienced as losses, contrary to the findings reported in the present study. 

There are a number of considerations that may explain the apparent incongruity between the results 
observed by Peterburs et al. (2013), and those observed in the current study. First, as Peterburs et al. 
(2013) note, LDWs may occur as a result of a combination of factors that were not present in their simple 
card game, which may have insufficiently represented the deceptive presentation of these events in 
commercial slot machines. By contrast, the present study attempted to mimic critical visual features of 
the display of LDWs in a slot machine. Second, the study by Peterburs et al. (2013), and most tasks 
reported in the RewP literature, are designed to have an overall net even or positive expected value. 
For example, the task described by Peterburs et al. (2013) had a net-even (0 credit) expected value 
globally, a positive expected value of +25 credits when the stake was 0 credits, and a negative expected 
value of −25 credits when the stake was 50 credits. The RewP appears to be sensitive to the global 
context of the task (Kujawa et al., 2013) in which case it is deviation from the overall expectation is 
likely to be the important consideration (Sambrook & Goslin, 2016). Experimental designs that involve 
a positive or net-even expected value may provide very valuable insights into human cognition, but 
they have limited face value if we are to understand how the structural characteristics of commercial 
slot machines contribute to their persistent use despite negative consequences. The negative expected 
value of commercial gambling products is critical to the very real financial harm associated with the 
persistent use of these products. Experimental designs must reflect this if findings are to have any 
ecological validity in this context, or policy application to actual gambling products. A casino that 
offered devices with a positive or net even expected value would no doubt be very popular for the 
short period of time that it remained open, but such opportunities are rare outside of temporary 
promotions or inducements to trial new products (Challet-Bouju et al., 2020; Hing et al., 2017). A related 
concern is that participants must also feel as though they are gambling with and for actual cash. In 
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contrast to the study by Peterburs et al. (2013), the current study design had a negative expected value 
and participants were paid in cash for any credits remaining at the task conclusion. 

One limitation of the present study is that our design did not adhere to the Hillyard principle; the 
recommendation that sensory features of the outcome stimuli involved in contrasts must be identical, 
while the design manipulates the task instructions such that the equivalent stimuli come to have a 
different cognitive representation (Luck, 2014). As a result, it remains possible that the contrasts 
observed may have occurred partly due to visual properties of the stimuli, or the cognitive 
representation of the numeric aspects of these stimuli that is unrelated to their reward properties. 
However, the interpretation of the effect being primarily driven by the reward properties of each 
outcome is more consistent with the observed behaviour, and with the neural source thought to 
generate the RewP (Becker et al., 2014; Carlson et al., 2011; Proudfit, 2015). A relative strength of the 
design reported by Peterburs et al. (2013), enabled such a comparison between genuine wins and 
LDWs, because the experimental manipulation of the initial stake at the beginning of each trial meant 
that the same outcome stimulus was compared across conditions. However, the critical comparison to 
make is not between equal payouts while varying the stake. It is between clearly presented losses and 
financially equivalent LDWs. Because this concern rests on the very appearance of the outcome stimuli 
(losses displayed like wins vs. losses displayed like losses), the Hillyard principle cannot be adopted 
with a pure within-subjects design. An alternative would be to employ between subjects or mixed 
design which presented instructions intended to intervene on the interpretation of LDWs. This 
approach was used in a behavioural study reported by Graydon et al (2017). In this study, participants 
were randomly assigned to view a brief educational animation either explaining LDWs or control 
condition explaining an unrelated feature of EGM design. The authors reported that participants 
exposed to the LDW video provided a more accurate estimates of the win rate following the session, 
relative to the control condition. These findings suggest that simply making a participant aware of the 
LDW feature may be sufficient to disrupt it. A similar design could be employed as a follow-up to the 
present study to determine whether knowledge of LDWs attenuated the RewP, a comparison which 
would minimise potential confounds of any non-reward related representation of the stimulus itself. 
The estimates, and data, provided by the present study will facilitate the simulation or power analysis 
necessary for a registered report of this proposed design. 

Our results resemble findings from a broader literature concerning the influence of near miss events 
during slot machine gambling or other tasks. A near miss is another type of salient gambling loss that 
is presented in such a manner so as to appear as though it came close to being a win (Harrigan, 2008). 
The paradigmatic example is when only two of the three jackpot symbols necessary for a large win 
occur along the pay-line during EGM gambling. A number of ERP studies have reported a more 
positive RewP following near-misses relative to losses (Lole et al., 2013, 2015; Luo et al., 2011). Similarly, 
fMRI studies have observed increased metabolic activity following near-miss events relative to clear 
losses in the ventral striatum and anterior insula, regions also recruited in response to clear gains (Clark 
et al., 2009). Along with behavioural and self-report evidence, this has been interpreted as evidence of 
the potential for near misses to motivate continued gambling despite the financial loss. We have made 
a comparable interpretation here; however, we would add that the results observed suggest that the 
relative magnitude of the RewP following LDWs observed in this study substantially outstrips those 
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differences observed between losses and near misses in previous studies, which may be reason for 
additional concern. Relevant here is that the present design always cued a minimum of 1 potential 
matching pay-line prior to any loss (see Figure 2B). This was necessary to avoid any reward anticipation 
effects occurring more frequently prior to LDWs, relative to losses in which no match was possible. 
Considering the literature on near misses suggests they may have some motivational potential; our 
design would have resulted in a more conservative comparison between LDWs and losses that always 
included key features of the presentation of a near miss. 

Our interpretation of the present findings is predicated on reward processing theories of the RewP. In 
our view this theory is the most theoretically sound given current evidence, as well as being the 
consensus view of most scientists working in this field (Cockburn & Holroyd, 2018; Glazer et al., 2018; 
Proudfit, 2015). However, this interpretation is offered alongside the caveat that alternate theories of 
the RewP have been proposed. For example, some researchers have contended that the RewP is an 
index of the subjective salience of an event, rather than being exclusively or predominately sensitive to 
reward, such that aversive stimuli can also elicit a RewP relative to neutral stimuli under certain 
conditions (Hager et al., 2022; Talmi et al., 2013). However, this alternative account of the RewP is 
contrary to other findings concerning aversive stimuli (Heydari & Holroyd, 2016). And PCA studies 
have typically reported the RewP to be primarily driven by positive reward prediction errors, rather 
than an unsigned salience prediction error (Sambrook & Goslin, 2016). 

Aspects of the theory used to motivate the present study make testable predictions about the 
recruitment of reward-related brain regions that could be exposed to further challenge using fMRI, 
which has a more precise spatial resolution than EEG. The task designed for the present study could 
be easily adapted for this purpose. We also argued that second order reinforcement schedules are a 
potential process by which LDWs could reinforce persistent gambling. Previous studies have 
considered the influence of win-paired conditioned stimuli (CS) on risky betting and punishment 
insensitivity (Barrus & Winstanley, 2016; Cherkasova et al., 2018), and numerous animal studies have 
employed such schedules in the study of drug-motivated behaviour (Everitt & Robbins, 2000; Schindler 
et al., 2002). However, to our knowledge the relative efficacy of a reinforcement schedule that includes 
occasional win-associated CS paired with the absence of any payout, or a net-negative payout, in place 
of what would otherwise be a clear loss, has not yet been directly assessed against a schedule in which 
the CS only co-occurs with a payout in a gambling modality. One promising avenue to pursue this 
would be an adaptation of the rat gambling task (Winstanley et al., 2011). This approach would also 
enable more invasive intervention on, or measurement of, brain structures argued to be at play in our 
preliminary conclusion. 

Conclusions and Significance 
This study was motivated by a theory that posited that LDWs are rewarding in a manner comparable 
to small wins, despite being a net loss. Based on this theory, we argued that LDWs should elicit neural 
activity associated with reward processing. To test this, we measured the reward-positivity (RewP) 
event related potential, a widely used EEG measure that is sensitive to positively valanced and 
rewarding outcomes. Consistent with our predictions, we observed that relative to clear losses, LDWs 
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were associated with a more positive RewP. These results support a key premise of a more general 
theory that LDWs, by rewarding financial losses, increase the frequency of positive reinforcers while 
gambling, without substantial change to the financial expectation of a gambling product. This would 
result in a concomitant disruption of extinction effects that may occur during longer strings of losses. 
Based on a reinforcement learning or operant conditioning theory of persistent or harmful gambling, 
this suggests that LDWs may contribute to the likelihood or intensity of habitual gambling behaviour. 
If this theory is sound, it has important implications for the design of slot machines and the regulation 
of the gambling industry. Considered alongside accumulating behavioural evidence that LDWs appear 
to result in mistaken appraisals of gambling events, LDWs represent a reasonable target for regulatory 
strategies to mitigate harmful gambling, or erroneous gambling cognition. One potential solution 
would be to introduce regulatory guidelines to mandate that EGM displays must clearly indicate the 
net return to the consumer. Future studies should consider whether a proportionate intervention of this 
nature is sufficient to alleviate these concerns which may help to guide evidence-based harm-
minimisation policy. 
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