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Abstract

In this paper, we consider the following fractional Schrödinger equation ε 2 s ( - [?] ) s u + V ( x ) u = P ( x ) f ( u ) + Q ( x )

| u | 2 s * - 2 u in R N , where ε>0 is a parameter, s[?](0 ,1), 2 s * = 2 N N - 2 s , N>2 s, ( - [?] ) s is the fractional Lapalacian

and f is a superlinear and subcritical nonlinearity. Under a local condition imposed on the potential function, combining the

penalization method and the concentration-compactness principle, we prove the existence of a positive solution for the above

equations.
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1 Introduction

We consider the following fractional Schrödinger equation{
ε2s(−∆)su+ V (x)u = P (x)f(u) +Q(x)|u|2∗s−2u, x ∈ RN ,

u ∈ Hs(RN), u(x) > 0 x ∈ RN ,
(Pε)

where ε > 0 is a small parameter, s ∈ (0, 1), 2∗s := 2N
N−2s

is the fractional critical

exponent, the function f is a superlinear and subcritical nonlinearity. Here the factional

Sobolev space Hs(RN) is defined by

Hs(RN) =

{
u ∈ L2(RN) :

∫
R2N

(u(x)− u(y))2

|x− y|N+2s
dxdy <∞

}
,

equipped with the norm

‖u‖Hs(RN ) =

(∫
RN
|u(x)|2dx+

∫
R2N

(u(x)− u(y))2

|x− y|N+2s
dxdy

)1/2

.
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west University(SWU-XDPY22015) and National Natural Science Foundation of China (No. 11601438)
†Corresponding author. Tel.:+86 23 68253135; fax: +86 23 68253135. E-mail address:

ly0904@swu.edu.cn(Y. Lv).
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(−∆)s stands for the usual fractional Laplacian, (−∆)s of a smooth function u : RN →
R is defined by

F((−∆)s(u))(ξ) = |ξ|2sF(u)(ξ), ξ ∈ RN ,

where F denotes the Fourier transform, that is,

F(w)(ξ) =
1

(2π)N/2

∫
RN
e−iξ·xw(x)dx,

for function w in the Schwartz class. Also, (−∆)su can be equivalently represented as

(−∆)su = −CN,s
2

∫
RN

(u(x+ y) + u(x− y)− 2u(x))

|y|N+2s
dy, ∀x ∈ RN ,

where CN,s > 0 is the normalizing constant, defined by

CN,s =

(∫
RN

1− cos ξ1

|ξ|N+2s
dξ

)−1

, ξ = (ξ1, ξ2, · · ·, ξN).

We have from [9] that∫
RN
|(−∆)

s
2u(x)|2dx =

CN,s
2

∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy.

And by taking derivative of the above equality, for any u, v ∈ C∞0 (RN) we obtain∫
R2N

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy = CN,s

∫
RN

(−∆)
s
2u(x)(−∆)

s
2v(x)dx. (1.1)

Moreover, for any u, v ∈ C∞0 (RN) we have

(−∆)
s
2 (uv) = u(−∆)

s
2v + v(−∆)

s
2u− 2I s

2
(u, v), (1.2)

where I s
2

is defined in the principal value sense, as follows

I s
2
(u, v)(x) = P.V.

∫
RN

(u(x)− u(y))(v(x)− v(y))

|x− y|N+s
dy.

Problem (Pε) describes the so called standing waves of the nonlinear, time-dependent

fractional Schrödinger equation of the form

iε
∂ψ

∂t
= ε2s(−∆)sψ + V (x)ψ − f(x, ψ). (1.3)

Solutions of (1.3) for sufficiently small ε > 0 are called semiclassical states. Recently

great attention has been devoted to the study of semiclassical states, see for example

[1–4, 7, 12, 13, 15, 18, 19] and the references therein and most of them assume that

the potential satisfies the following global condition

(V ) V ∈ C(RN ,R) and 0 < inf
x∈RN

V (x) < lim inf
|x|→+∞

V (x) = V∞ < +∞,
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which is first introduced by Rabinowtz in [17] in the study of a nonlinear Schrödinger

equation with the nonlinear subcritical growth. There are some results for problem

(Pε) when V (x) satisfies the following local condition

(V1) V ∈ C(RN ,R) and there is constant V0 > 0 such that V0 := inf
x∈RN

V (x);

(V2) there is a bounded open set Ω ⊂ RN such that V0 < min
∂Ω

V , and M := {x ∈ Ω :

V (x) = V0} 6= ∅.

Some authors have studied the existence and concentration phenomena for potentials

verifying local condition (V1) and (V2), see for example [2–4, 7, 13, 15] and the references

therein. As far as we know, all of them concentrate on the problems with autonomous

nonlinearities. Particularly, in [13] the authors consider the following equation

ε2s(−∆)su+ V (x)u = f(u) + u2∗s−1 x ∈ RN (1.4)

under the conditions (V1) and (V2) and obtain the existence and concentration of mul-

tiple solutions, which concentrate on the minima of V (x) as ε → 0. Our aim is to

study the existence and concentration of positive solutions for problem (Pε) by com-

bining a local assumption on V , and show that the penalization method introduced

by del Pino and Felmer in [8] can be also applied to a general class of problems with

nonautonomous nonlinearities.

Below we give some assumptions. Since we are interested in positive solutions, we

assume that f ∈ C1(R,R) vanishes in (−∞, 0) and satisfies the following conditions.

(f1) f(t) = o(t) as t→ 0+.

(f2) There exist constants q, σ ∈ (2, 2∗s), sufficiently large C0 > 0 such that f(t) ≥
C0t

q−1 for all t ≥ 0, and lim
t→∞

f(t)
tσ−1 = 0.

(f3) There exists a constant θ ∈ (2, 2∗s) such that for all t > 0, 0 < θF (t) :=

θ
∫ t

0
f(τ)dτ ≤ tf(t).

(f4) The function f(t)
t

is increasing on interval (0,∞).

The potential V (x) satisfies (V1), P (x) and Q(x) are assumed to satisfy the following

conditions.

(P ) P ∈ L∞(RN) is continuous and there is a constant α > 0 such that P (x) ≥ α for

all x ∈ RN .

(Q) Q ∈ L∞(RN) is continuous and there is a constant β > 0 such that Q(x) ≥ β for

all x ∈ RN .

(Ω) There is a bounded, nonempty domain Ω ⊂ RN such that

3



(Ω1) there is xmin ∈ Ω such that V (xmin) = V0 < min
∂Ω

V , P (xmin) = P0 = sup
RN

P

and Q(xmin) = Q0 = sup
RN

Q,

or

(Ω2) there is xmax ∈ Ω such that P (xmax) = P0 > max
∂Ω

P , Q(xmax) = Q0 > max
∂Ω

Q

and V (xmax) = V0.

The main result of this paper is stated as follows:

Theorem 1.1. Assume that (V1), (P ), (Q), (Ω) and (f1)–(f4) hold. Then there exists

ε0 > 0 for any ε ∈ (0, ε0), problem (Pε) has a positive solution uε. Furthermore, if

ηε ∈ RN denotes its global maximum point, then

uε(x) ≤ CεN+2s

εN+2s + |x− ηε|N+2s
.

Remark 1.2. To our best knowledge, the existence and qualitative properties of so-

lutions for problem (Pε) have been extensively studied when V (x) satisfies the global

condition (V ). There are few results for problem (Pε) when V (x) satisfies a local con-

dition as above, even in the P = Q = 1 case. Under a local condition imposed on V ,

it is necessary to create a penalization function. If P 6= 1, Q 6= 1, the construction of

penalization function is more complicated. Especially after adding the critical nonlin-

earities, the problem is more difficult, so far, no one has studied this aspect. Motivated

by the penalization approach used in [8], we will investigate the existence of positive

solution for problem (Pε) by supposing that V satisfies a local assumption as above.

Hence, our results can be seen as an improvement and supplement to [2–4, 7, 13, 15].

Remark 1.3. Compared with the previous works, the main difficulty lies in the nonau-

tonomous nonlinearity with the critical Sobolev growth and the potential V with a local

assumption, which makes it more complicated to recover the compactness. So we focus

on the essential difficulty of the problem under the assumption that f ∈ C1(RN ,R).

We note that if f ∈ C(RN ,R), Theorem 1.1 also holds true by using the method of [20]

under the condition of this paper. The related specific proof can be found in [13, 21].

To establish the existence of positive solution, we will use the penalization method

introduced by Del Pino and Felmer [8]. First, we need to fix some notations.

Let K,L > 0, P0

K
+ Q0

L
< min{1

2
, θ−2

θ
}, and a > 0 such that f(a) = V0

K
a and

a2∗s−1 = V0
L
a, where θ and V0 are introduced in (f3) and (V1) respectively. We set

f̃(t) =

{
f(t), if t ≤ a
V0
K
t, if t > a

, g̃(t) =

{
t2
∗
s−1, if t ≤ a

V0
L
t, if t > a

,

and

g(x, t) = χΩ(x)(P (x)f(t) +Q(x)t2
∗
s−1) + (1− χΩ(x))(P (x)f̃(t) +Q(x)g̃(t)) (1.5)

where χΩ is the charateristic function of the set Ω. Form (f1)− (f4), it is easy to check

that g satisfies the following properties,
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(g1) limt→0+
g(x,t)
t

= 0 uniformly in x ∈ RN .

(g2) g(x, t) ≤ P0f(t) +Q0t
2∗s−1 for all x ∈ RN , t > 0.

(g3) There is θ ∈ (2, 2∗s) such that

0 ≤ θG(x, t) := θ

∫ t

0

g(x, s)ds < g(x, t)t for ∀x ∈ Ω and ∀ t > 0

and

0 ≤ 2G(x, t) < g(x, t)t ≤
(
P0

K
+
Q0

L

)
V (x)t2 for ∀ x ∈ RN\Ω, and ∀ t > 0.

(g4) For each x ∈ Ω, the function t → g(x,t)
t

is increasing in interval (0,∞) and for

each x ∈ RN\Ω, the function t→ g(x,t)
t

is increasing in (0, a).

Now we study the modified problem{
ε2s(−∆)su+ V (x)u = g(x, u), x ∈ RN

u ∈ Hs(RN), u(x) > 0, x ∈ RN
. (P ∗ε )

Note that the positive solution of (P ∗ε ) with u(x) ≤ a for each x ∈ RN\Ω is also the

positive solution of (Pε).

In view of the presence of potential V (x), we introduce the following fractional

Sobolev space

Hε :=

{
u ∈ Hs(RN) :

∫
RN
V (x)u2dx <∞

}
,

endowed with the norm

‖u‖2
ε =

∫
RN

(ε2s|(−∆)
s
2u|2 + V (x)u2)dx.

Consider the energy functional Jε : Hε → R associated to (P ∗ε ) given by

Jε(u) =
ε2s

2

∫
RN
|(−∆)

s
2u|2dx+

1

2

∫
RN
V (x)u2dx−

∫
RN
G(x, u)dx,

and its Nehari manifold is defined by

Nε := {u ∈ Hε\{0} : 〈J ′ε(u), u〉 = 0}.

2 Proof of the main result

We only discuss the case that V, P,Q satisfy (Ω1), and when V, P,Q satisfy (Ω2)

the proof of the conclusion is similar to that of the case (Ω1).
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2.1 The autonomous problem (PV0)

We start by considering the autonomous problem associated to (Pε), namely,

(−∆)su+ V0u = P0f(u) +Q0|u|2
∗
s−2u. (PV0)

The solutions of problem (PV0) are precisely the positive critical points of the functional

defined by

J0(u) =
1

2

∫
RN

(|(−∆)
s
2u|2 + V0u

2)dx−
∫
RN
P0F (u)dx− Q0

2∗s

∫
RN
|u|2∗sdx,

and its Nehari manifold is defined by

N0 := {u ∈ H0\{0} : 〈J ′0(u), u〉 = 0}.

where H0 :=
{
u ∈ Hs(RN) :

∫
RN V0u

2dx <∞
}

,

The functional J0 satisfies the mountain pass geometry, the proof is standard,

and hence, it is omitted. By using a version of the mountain pass theorem with-

out (PS) condition [22], it follows that there exists a sequence {un} ⊂ H0 such

that J0(un) → c0 and J ′0(un) → 0, and c0 := infγ∈Γ0 maxt∈[0,1] J0(γ(t)) > 0, where

Γ0 := {γ ∈ C([0, 1], H0) : γ(0) = 0 and J0(γ(1)) < 0}. Similarly to the arguments in

[17], by (f4), the equivalent characterization of c0 is given by

c0 = inf
u∈H0\{0}

sup
t≥0

J0(tu) = inf
u∈N0

J0(u).

The following lemma gives the estimate of the critical value c0.

Lemma 2.1. Suppose that (f1)− (f4) hold, then

0 < c0 <
s

NQ
N−2s

2s
0

S
N
2s
∗ ,

where S∗ is the best Sobolev constant

S∗ = inf
u∈Hs(RN )\{0}

∫
RN |(−∆)

s
2u|2dx

(
∫
RN |u|2

∗
sdx)

2
2∗s

.

Proof. We define

ũε(x) = ψ(x)Uε(x), x ∈ RN ,

where Uε(x) = ε−
N−2s

2 u∗(x
ε
), u∗(x) = ū(x/S

1
2s
∗ )

|ū|2∗s
, where ū(x) = κ(µ2 + |x − x0|2)−

N−2s
2 ,

with κ ∈ R \ {0}, µ > 0, and x0 ∈ RN , and ψ ∈ C∞0 (RN) such that 0 ≤ ψ ≤ 1 in RN ,

ψ(x) ≡ 1 in Br(0), and ψ ≡ 0 in RN\B2r(0). Define vε(x) = ũε(x)
|ũε(x)|2∗s

, from [13], we

have the following estimates:∫
RN
|(−∆)

s
2vε(x)|2dx ≤ S∗ +O(εN−2s), (2.1)
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and ∫
RN
|vε(x)|2dx =


O(ε2s), N > 4s

O(ε2s ln 1
ε
), N = 4s

O(εN−2s), N < 4s

, (2.2)

∫
RN
|vε(x)|qdx ≥ Cε

2N−(N−2s)q
2 . (2.3)

By the definition of vε and (f2), we have

J0(tvε) =
t2

2

∫
RN
|(−∆)

s
2vε|2dx+

t2

2

∫
RN
V0|vε|2dx−

∫
RN
P0F (tvε)dx−

Q0

2∗s
t2
∗
s

≤ t2

2

∫
RN
|(−∆)

s
2vε|2dx+

t2

2

∫
RN
V0|vε|2dx− C0P0t

q

∫
RN
|vε|qdx−

Q0

2∗s
t2
∗
s .

We consider the function

g(t) =
t2

2

∫
RN
|(−∆)

s
2vε|2dx+

t2

2

∫
RN
V0|vε|2dx− C0P0t

q

∫
RN
|vε|qdx−

Q0

2∗s
t2
∗
s . (2.4)

It is clear that g(t) > 0 for t > 0 small enough, and g(t) → −∞ as t → +∞. Hence

there exists tε > 0 such that maxt≥0 g(t) = g(tε), and

0 = g′(tε) = tε

(∫
RN
|(−∆)

s
2vε|2dx+

∫
RN
V0|vε|2dx− qC0P0t

q−2
ε

∫
RN
|vε|qdx−Q0t

2∗s−2
ε

)
.

Therefore,∫
RN
|(−∆)

s
2vε|2dx+

∫
RN
V0|vε|2dx = qC0P0t

q−2
ε

∫
RN
|vε|qdx+Q0t

2∗s−2
ε ,

which implies

0 < tε ≤
1

Q
1

2∗s−2

0

(∫
RN
|(−∆)

s
2vε|2dx+

∫
RN
V0|vε|2dx

) 1
2∗s−2

.

It is easy to verifies that J0 satisfies the mountain-pass geometry conditions, and we

get

0 < δ ≤ J0(tεvε) ≤
t2ε
2

(∫
RN
|(−∆)

s
2vε|2dx+

∫
RN
V0|vε|2dx

)
.

Hence we have a lower bound and a upper bound for tε, independent of ε, let

ḡ(t) =
t2

2

(∫
RN
|(−∆)

s
2vε|2dx+

∫
RN
V0|vε|2dx

)
− Q0

2∗s
t2
∗
s ,

then tε = 1

Q

1
2∗s−2
0

(
∫
RN |(−∆)

s
2vε|2 +V0|vε|2dx)

1
2∗s−2 is the maximum point of ḡ(t). Hence,

by (2.1)-(2.3), and the elementary inequality (a + b)p ≤ ap + p(a + b)p−1b for a, b > 0

and p ≥ 1, we obtain

g(tε) = ḡ(tε)− C0P0t
q
ε

∫
RN
|vε|qdx

7



≤ ḡ

 1

Q
1

2∗s−2

0

(

∫
RN

(|(−∆)
s
2vε|2 + V0|vε|2)dx)

1
2∗s−2

− C0P0t
q
ε

∫
RN
|vε|qdx

≤ s

NQ
N−2s

2s
0

(∫
RN
|(−∆)

s
2vε|2dx+

∫
RN
V0|vε|2dx

)N
2s

− C0C|vε|qq

≤ s

NQ
N−2s

2s
0

(
S∗ +O(εN−2s) +

∫
RN
V0|vε|2dx

)N
2s

− C0C|vε|qq

≤ s

NQ
N−2s

2s
0

S
N
2s
∗ +O(εN−2s) + C|vε|22 − C0C|vε|qq.

Next we distinguish the following cases.

(i) If N > 4s, then N
N−2s

< 2, we have q > N
N−2s

, by (2.2) and (2.3) we get

sup
t>0

g(t) ≤ s

NQ
N−2s

2s
0

S
N
2s
∗ +O(εN−2s) +O(ε2s)−O(ε

2N−(N−2s)q
2 ).

since 2N−(N−2s)q
2

< 2s < N − 2s, we get the conclusion for ε sufficiently small.

(ii) If N = 4s, then 2 < q < 2∗s = 4, by (2.2) and (2.3) we obtain

sup
t>0

g(t) ≤ s

NQ
N−2s

2s
0

S
N
2s
∗ +O(εN−2s) +O(ε2s ln

1

ε
)−O(ε4s−sq)

≤ s

NQ
N−2s

2s
0

S
N
2s
∗ +O(ε2s(1 + ln

1

ε
))−O(ε4s−sq)

<
s

NQ
N−2s

2s
0

S
N
2s
∗ .

Since

lim
ε→0+

ε4s−sq

ε2s(1 + ln 1
ε
)

= +∞,

we get the conclusion for ε sufficiently small.

(iii) If 2s < N < 4s and N
N−2s

< q < 2∗s, by (2.2) and (2.3) we have

sup
t>0

g(t) ≤ s

NQ
N−2s

2s
0

S
N
2s
∗ +O(εN−2s)−O(ε

2N−(N−2s)q
2 ).

In view of 2N−(N−2s)q
2

< N − 2s, we get the conclusion for ε sufficiently small.

(iv) If 2s < N < 4s and 2 < q ≤ N
N−2s

, from (2.2) and (2.3) we obtain

sup
t>0

g(t) ≤ s

NQ
N−2s

2s
0

S
N
2s
∗ +O(εN−2s)− C0O(ε

2N−(N−2s)q
2 ),

and for C0 = ε−θ with θ > 4s−(N−2s)q
2

, we also get the conclusion. Hence, c0 <

s

NQ
N−2s

2s
0

S
N
2s
∗ .
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Lemma 2.2. Assume that {un} ⊂ H0 is a (PS)c sequence for J0 with c < s

NQ
N−2s

2s
0

S
N
2s
∗

and such that un ⇀ 0. Then, one of the following alternatives occurs:

(a) un → 0 in H0, or

(b) There exists a sequence {zn} ⊂ RN and constants R, η > 0 such that

lim inf
n→∞

∫
BR(zn)

|un|2dx ≥ η > 0.

Proof. Suppose (b) is not satisfied. Then for any R > 0, we have

lim
n→∞

sup
z∈RN

∫
BR(z)

|un|2dx = 0.

Since {un} is bounded, from [11], it follows that un → 0 in Lp(RN), ∀p ∈ (2, 2∗s). Hence,∫
RN
f(un)undx =

∫
RN
F (un)dx = on(1).

Moreover, from J0(un)→ c > 0 and 〈J ′0(un), un〉 → 0, we have that

1

2

∫
RN

(|(−∆)
s
2un|2 + V0|un|2)dx− Q0

2∗s

∫
RN
|un|2

∗
sdx→ c, (2.5)

and ∫
RN

(|(−∆)
s
2un|2 + V0|un|2)dx = Q0

∫
RN
|un|2

∗
sdx+ on(1). (2.6)

Since {un} is bounded, up to a subsequence, we get∫
RN

(|(−∆)
s
2un|2 + V0|un|2)dx→ l ≥ 0.

If l > 0, by (2.5) and (2.6), we obtain c = s
N
l. On the other hand,

l ≥
∫
RN
|(−∆)

s
2un|2dx ≥ S∗(|un|2

∗
s

2∗s
)2/2∗s ,

taking the limit as n→∞, it follows that l ≥ 1

Q
N−2s

2s
0

S
N
2s
∗ . Hence,

c =
s

N
l ≥ s

NQ
N−2s

2s
0

S
N
2s
∗ ,

which is a contradiction. Therefore, l = 0. It implies that un → 0 in H0.

Lemma 2.3. Suppose that (f1)− (f4) hold, then problem (PV0) has a positive ground

state solution.
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Proof. Assume {un} ⊂ H0 is a (PS)c0 sequence, from the condition of nonlinearity f ,

we can easily check that {un} is bounded in H0. Thus, up to a subsequence, un ⇀ u

weakly in H0. Moreover, u is a critical point of J0. If u 6= 0, it remains to show that

J0(u) = c0. By Fatou’s Lemma, we have that

c0 ≤ J0(u)− 1

θ
〈J ′0(u), u〉

=

(
1

2
− 1

θ

)∫
RN

(|(−∆)
s
2u|2 + V0u

2)dx

+
1

θ

∫
RN
P0(f(u)u− θF (u))dx+

(
1

θ
− 1

2∗s

)∫
RN
Q0|u|2

∗
sdx

≤ lim inf
n→∞

{(
1

2
− 1

θ

)
IR(|(−∆)

s
2un|2 + V0u

2
n)dx

+
1

θ

∫
RN
P0(f(un)un − θF (un))dx+

(
1

θ
− 1

2∗s

)∫
RN
Q0|un|2

∗
sdx

}
= lim inf

n→∞

(
J0(un)− 1

θ
〈J ′0(un)un〉

)
= c0.

Hence, we proved that J0(u) = c0.

Now, we consider the case u = 0. In fact, un 9 0 in H0. If un → 0 in H0, we

have J0(un)→ 0, this is contradicts to c0 > 0. By Lemma 2.2, there exists a sequence

{zn} ⊂ RN and constants R, η > 0 such that

lim inf
n→∞

∫
BR(zn)

|un|2dx ≥ η > 0.

Set wn(x) = un(x+zn), again {wn} is a (PS)c0 sequence of J0. Thus {wn} is bounded in

H0, and there exists w ∈ H0 such that wn ⇀ w in H0 with w 6= 0, then the conclusion

follows as in the first case.

Using −u− as a test function, we have

0 = 〈(J ′0(u),−u−〉 =

∫
RN

(|(−∆)
s
2u−|2 + V0|u−|2)dx.

This implies that u− = 0. Noting that u 6≡ 0, we claim that u > 0 in RN . In fact, if

u(x0) = 0 for some x0 ∈ RN , then (−∆)su(x0) = 0 and by the representation formula

(−∆)su(x) = −CN,s
2

∫
RN

u(x+ y) + u(x− y)− 2u(x)

|y|N+2s
dy,

we obtain that, at x0, ∫
RN

u(x0 + y) + u(x0 − y)

|y|N+2s
dy = 0,

yielding u ≡ 0, which leads a contradiction.The proof is completed.
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2.2 The modified problem (P ∗ε )

In this section, we shall prove the existence of positive solution for the modified

problem (P ∗ε ).

Similar to section 2.1, by the condition of nonlinearity g, we can easily prove that

the functional Jε verifies the mountain pass geometry. Thus there exists a sequence

{un} ⊂ Hε such that Jε(un)→ cε and J ′ε(un)→ 0, where cε := infγ∈Γε maxt∈[0,1] Jε(γ(t)) >

0, where Γε := {γ ∈ C([0, 1], Hε) : γ(0) = 0 and Jε(γ(1)) < 0}. As in the previous

section 2.1, we have the equivalent characterization of cε

cε = inf
u∈Hε\{0}

sup
t≥0

Jε(tu) = inf
u∈Nε

Jε(u).

The main feature of the modified functional is that it satisfies the local compact-

ness condition, which can be stated in the following results.

Lemma 2.4. Let c > 0 and {un} be a (PS)c sequence for Jε, then {un} is bounded.

Proof. Assume that {un} is a (PS)c sequence for Jε, then Jε(un)→ c, and J ′ε(un)→ 0.

Therefore, we have

c+ on(1) = Jε(un)− 1

θ
〈J ′ε(un), un〉

=

(
1

2
− 1

θ

)∫
RN

(ε2s|(−∆)
s
2un|2 + V (x)u2

n)dx

+
1

θ

∫
RN

[g(x, un)un − θG(x, un)]dx

≥ θ − 2

2θ
‖un‖2

ε +
1

θ

∫
RN\Ω

[g(x, un)un − θG(x, un)]dx

≥ θ − 2

2θ
‖un‖2

ε −
θ − 2

2θ

∫
RN\Ω

(
P0

K
+
Q0

L

)
V (x)u2

ndx

≥ θ − 2

2θ
‖un‖2

ε −
θ − 2

2θ

(
P0

K
+
Q0

L

)
‖un‖2

ε

=

(
1−

(
P0

K
+
Q0

L

))
θ − 2

2θ
‖un‖2

ε.

From θ > 2 and P0

K
+ Q0

L
< min{1

2
, θ−2

θ
}, we have that {un} is bounded.

Lemma 2.5. ([14]) Let {un} be a bounded (PS)c sequence for Jε, then for each ζ > 0,

there is a number R = R(ζ) > 0 such that

lim sup
n→∞

∫
RN\BR(0)

(
ε2s

∫
RN

|un(x)− un(y)|2

|x− y|N+2s
dy + V (x)|un|2

)
dx < ζ.

To establish the local compactness results for Jε, we need an extension of a con-

centration compactness result proposed by Lions.
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Lemma 2.6. ([16]) Let Ω ⊆ RN be an open subset and let {un} be a sequence in Hs(Ω)

weakly converging to u as n→∞ and such that

|(−∆)
s
2un(x)|2dx ∗

⇀ µ, |un(x)|2∗sdx ∗
⇀ ν in M(RN).

Then, either un → u in L
2∗s
loc(RN) or there exists a (at most countable) set of distinct

points {xj}j∈J ⊂ Ω and positive numbers {νj}j∈J such that

ν = |u(x)|2∗sdx+
∑
j∈J

νjδxj . (2.7)

Moreover, if Ω is bounded, then there exists a positive measure µ̃ ∈ M(RN) with spt

µ̃ ⊂ Ω and positive numbers {µj}j∈J such that

µ = |(−∆)
s
2u(x)|2dx+ µ̃+

∑
j∈J

µjδxj , S∗ν
2/2∗s
j ≤ µj (2.8)

Lemma 2.7. The functional Jε satisfies the Palais-Smale condition at any level c <

εN s

NQ
N−2s

2s
0

S
N
2s
∗ .

Proof. Let {un} ⊂ Hε be such that Jε(un) → c < εN s

NQ
N−2s

2s
0

S
N
2s
∗ , and J ′ε(un) → 0.

Then from Lemma 2.4, we have that {un} is bounded in Hε. Since 〈J ′ε(un), un〉 → 0,

we get

‖un‖2
ε =

∫
RN
g(x, un)undx+ on(1). (2.9)

Up to a subsquence, we may assume that
un ⇀ u weakly in Hε,

un → u strongly in LsLoc(RN) for any s ∈ [1.2∗s),

un(x)→ u(x) for a.e. x ∈ RN .

(2.10)

Hence it is standard to check that for any ϕ ∈ C∞0 (RN) ⊂ Hε,∫
RN
ε2s(−∆)

s
2un(−∆)

s
2ϕdx→

∫
RN
ε2s(−∆)

s
2u(−∆)

s
2ϕdx,∫

RN
V (x)unϕdx→

∫
RN
V (x)uϕdx,∫

RN
g(x, un)ϕdx→

∫
RN
g(x, u)ϕdx.

(2.11)

By (2.11), the density of C∞0 (RN) in Hε, and J ′ε(un) → 0, we obtain that the weak

limit u is a critical point of Jε, then

‖u‖2
ε =

∫
RN
g(x, u)udx. (2.12)
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Next, we will prove two claims.

Claim 1 limn→∞
∫
RN g(x, un)undx =

∫
RN g(x, u)udx.

this claim, (2.9) and (2.12) imply that ‖un‖2
ε → ‖u‖2

ε, which yields that un → u

in Hε.

To prove this claim, from Lemma 2.5, we know that: for each ζ > 0, there exists

R = R(ζ) > 0 such that

lim sup
n→∞

∫
RN\BR(0)

(
ε2s

∫
RN

|un(x)− un(y)|2

|x− y|N+2s
dy + V (x)|un|2

)
dx < ζ. (2.13)

By (2.13), (g2), (f1), (f2) and the Sobolev embedding, for n large enough, we get that∫
RN\BR(0)

g(x, un)undx ≤ C1

∫
RN\BR(0)

(u2
n + u2∗s

n )dx

≤ C2(ζ + ζ2∗s/2). (2.14)

On the other hand, choosing R large enough, we may assume that∫
RN\BR(0)

g(x, u)udx ≤ ζ.

Therefore, from the last inequality and (2.14), we have

lim
n→∞

∫
RN\BR(0)

g(x, un)undx =

∫
RN\BR(0)

g(x, u)udx. (2.15)

By the definition of g, we obtain that

g(x, un)un ≤ P0f(un)un +Q0a
2∗s +

(
P0

K
+
Q0

L

)
V0u

2
n ∀x ∈ RN\Ω.

Since the setBR(0)∩(RN\Ω) is bounded, we can use the above estimates, (g1), (g2),(2.11)

and Lebesgue’s theorem to conclude that

lim
n→∞

∫
BR(0)∩(RN\Ω)

g(x, un)undx =

∫
BR(0)∩(RN\Ω)

g(x, u)udx. (2.16)

Claim 2 un → u in L2∗s(Ω). If Claim 2 holds, by (g2), (f1), (f2), (2.11) and Lebesgue’s

theorem, we can obtain that

lim
n→∞

∫
BR(0)∩Ω

g(x, un)undx =

∫
BR(0)∩Ω

g(x, u)udx.

Hence, Claim 1 follows from the above expression, (2.15) and (2.16).

It remains to prove Claim 2. By Phrokorovs theorem (see Bogachev [6], Theorem

8.6.2) we may suppose that there are positive measures µ, ν such that

|(−∆)
s
2un(x)|2dx ∗

⇀ µ, |un(x)|2∗sdx ∗
⇀ ν. (2.17)
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Hence, by Lemma 2.6 we have an at most countable index set of distinct points {xj}j∈J ,
{µj}j∈J ,{νj}j∈J ⊂ (0,∞), and positive measures µ̃ with support contained in Ω such

that

µ = |(−∆)
s
2u(x)|2dx+ µ̃+

∑
j∈J

µjδxj , ν = |u(x)|2∗sdx+
∑
j∈J

νjδxj and S∗ν
2/2∗s
j ≤ µj,

(2.18)

for all j ∈ J , where δxj is the Dirac mass at xj ∈ RN .

It suffices to show that {xj}j∈J ∩ Ω = ∅. If not, suppose that xj ∈ Ω for some

j ∈ J . For ρ > 0, define the function ψρ(x) := ψρ(
x−xj
ρ

) where ψ ∈ C∞0 (RN , [0, 1]) is

such that ψ ≡ 1 on B 1
2
(0), ψ ≡ 0 on RN\B1(0). We assume that ρ is chosen in such

way that the support of ψρ is contained in Ω.

Since {unψρ} is bounded, 〈J ′ε(un), unψρ〉 = on(1), we have∫
RN
ε2s(−∆)

s
2un(−∆)

s
2unψρdx ≤

∫
RN
P0f(un)unψρdx+

∫
RN
Q0|un|2

∗
sψρdx+ on(1).

(2.19)

Using the fact that ψρ has compact support and f has subcritical growth, we have

lim
ρ→0

lim
n→∞

∫
RN
P0f(un)unψρdx = lim

ρ→0

∫
RN
P0f(u)uψρdx = 0.

And, by (1.1) and (1.2), we can write∫
RN
ε2s(−∆)

s
2un(−∆)

s
2unψρdx

=

∫
RN
ε2sun(x)(−∆)

s
2un(x)(−∆)

s
2ψρ(x)dx+

∫
RN
ε2s|(−∆)

s
2un(x)|2ψρ(x)dx

− 2

∫
RN
ε2s(−∆)

s
2un(x)

∫
RN

(un(x)− un(y))(un(x)ψρ(x)− un(y)ψρ(y))

|x− y|N+s
dxdy.

(2.20)

Now, we show that

lim
ρ→0

lim
n→∞

∣∣∣∣∫
RN
un(x)(−∆)

s
2un(x)(−∆)

s
2ψρ(x)dx

∣∣∣∣ = 0 (2.21)

and

lim
ρ→0

lim
n→∞

∣∣∣∣∫
RN

(−∆)
s
2un(x)

∫
RN

(un(x)− un(y))(un(x)ψρ(x)− un(y)ψρ(y))

|x− y|N+s
dxdy

∣∣∣∣ = 0.

(2.22)

If (2.21) and (2.22) hold, we can use (2.17), (2.18), and take limits as n → ∞ and

ρ→ 0 in (2.20) to obtain that Q0νj ≥ ε2sµj. The proof of (2.21) and (2.22) is standard

which can found in [5, Lemma 2.8 and Lemma 2.9], and we omit it. Then from the
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last statement in (2.18), we get νj ≥ εN 1

Q
N
2s
0

S
N
2s
∗ , and hence we can use (g3), (f2), (f3),

(P ), (Q) and (Ω1) to obtain

c = Jε(un)− 1

2
〈J ′ε(un), un〉+ on(1) (2.23)

=

∫
RN\Ω

(
1

2
g(x, un)un −G(x, un)

)
dx

+

∫
Ω

P (x)

(
1

2
f(un)un − F (un

)
dx+

s

N

∫
Ω

Q(x)u2∗s
n dx+ on(1)

≥ α

∫
Ω

(
1

2
− 1

θ

)
f(un)undx+

s

N

∫
Ω

(Q(x)−Q0)u2∗s
n dx+

s

N

∫
Ω

Q0u
2∗s
n dx+ on(1)

≥ α

(
1

2
− 1

θ

)
C0

∫
Ω

uqndx−
s

N

∫
Ω

(Q0 −Q(x))u2∗s
n dx+

s

N

∫
Ω

Q0u
2∗s
n dx+ on(1)

≥ s

N

∫
Ω

Q0u
2∗s
n dx+ on(1). (2.24)

Since Q ∈ L∞(RN), Q0 = sup
RN

Q and {un} is bounded, then the last inequality holds

for sufficiently large C0. In [13], although it is not stated in the condition (f2) that the

C0 used is also sufficiently large. Taking the limit and from (2.18) one has

c ≥ s

N
Q0

∑
{j∈J :xj∈Ω}

ψρ(xj)νj =
s

N
Q0

∑
{j∈J :xj∈Ω}

νj ≥ εN
s

NQ
N−2s

2s
0

S
N
2s
∗ . (2.25)

which yields a contradiction. Hence, Claim 2 holds true and the lemma is proved.

Lemma 2.8. The functional Jε possesses a positive critical point uε ∈ Hε such that

Jε(uε) = cε for ε small.

Proof. Let x0 ∈ Ω be such that V (x0) = V0. By Lemma 2.3, we know that problem

(PV0) has a positive ground state solution. Let w ∈ H0 be a least energy solution of

problem (PV0), then,

c0 := J0(w) = inf
u∈H0\{0}

sup
t≥0

J0(tu) = inf
u∈N0

J0(u).

Set w̃(x) := w
(
x−x0
ε

)
. Then cε ≤ supt>0 Jε(tw̃) = Jε(t0w̃) for some t0 > 0. We have

Jε(t0w̃) = εN
[
t20
2

∫
RN

(|(−∆)
s
2w|2 + V (x0 + εx)w2)dx−

∫
RN
G(x0 + εx, t0w)dx

]
= εN

[
J0(t0w) +

t20
2

∫
RN

(V (x0 + εx)− V0)w2dx+

∫
RN
P0F (t0w)dx

+
Q0

2∗s

∫
RN
|t0w|2

∗
sdx−

∫
RN
G(x0 + εx, t0w)dx

]
.
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From the Lebesgue’s theorem we have
∫
RN (V (x0 +εx)−V0)w2dx→ 0 as ε→ 0+. From

(f1), (f2) and (g2) we have G(x, t0w) ≤ C1|w|2 + C2|w|2
∗
s . Again, by the Lebesgue’s

theorem the following convergence holds∫
RN
G(x0 + εx, t0w)dx→

∫
RN
P0F (t0w) +

Q0

2∗s

∫
RN
|t0w|2

∗
sdx,

as ε→ 0+. Hence

cε ≤ Jε(t0w̃) = εN(J0(t0w) + o(1)) ≤ εN(c0 + o(1)). (2.26)

By Lemma 2.1, we get cε < εN s

NQ
N−2s

2s
0

S
N
2s
∗ for ε small enough. Since Jε satisfies the

mountain-pass geometry conditions. Thus there exists a sequence {un} ⊂ H0 such

that Jε(un)→ cε and J ′ε(un)→ 0. From Lemma 2.7, we obtain Jε satisfies the Palais-

Smale condition at level cε. Then, the functional Jε possesses a nontrivial critical point

uε ∈ Hε such that Jε(uε) = cε, similar to the proof of Lemma 2.3, we get uε ∈ Hε is a

positive critical point such that Jε(uε) = cε.

2.3 Proof of theorem 1.1

Next we shall prove our main result. The idea is to show that the solution obtained

in Lemma 2.8 satisfy the estimate uε ≤ a, ∀x ∈ Ω for ε small enough. This fact implies

that the solution is indeed solution of the original problem (Pε).

Lemma 2.9. There is C > 0 such that∫
RN

(ε2s|(−∆)
s
2uε|2 + V (x)|uε|2)dx ≤ CεN .

Proof. Indeed, we have 〈J ′ε(uε), uε〉 = 0, that is,∫
RN

(ε2s|(−∆)
s
2uε|2 + V (x)|uε|2)dx =

∫
RN
g(x, uε)uεdx.

By (2.26) and (g3), we have

1

2

∫
RN

(ε2s|(−∆)
s
2uε|2 + V (x)|uε|2)dx

= Jε(uε) +

∫
RN
G(x, uε)dx

≤ εN(c0 + o(1)) +
1

θ

∫
Ω

g(x, uε)uεdx+
1

2

(
P0

K
+
Q0

L

)∫
RN
V (x)|uε|2dx

≤ C1ε
N +

(
1

θ
+

1

2

(
P0

K
+
Q0

L

))∫
RN

(ε2s|(−∆)
s
2uε|2 + V (x)|uε|2)dx.
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Therefore, we have(
1

2
− 1

θ
− 1

2

(
P0

K
+
Q0

L

))∫
RN

(ε2s|(−∆)
s
2uε|2 + V (x)|uε|2)dx ≤ CεN .

Moreover 1
2
−1
θ
−1

2

(
P0

K
+ Q0

L

)
= 1

2

(
θ−2
θ
−
(
P0

K
+ Q0

L

))
> 0 and the proof is completed.

Lemma 2.10. If εn → 0+ and {xn} ⊂ Ω̄ are such that uεn(xn) ≥ γ > 0, then

lim
n→∞

V (xn) = V0.

Proof. Assume by contradiction, passing to a subsequence, that xn → x̄ ∈ Ω̄ and

V (x̄) > V0. Let vn(x) := uεn(xn + εnx). Obviously, vn ∈ Hε satisfy the following

equation

(−∆)svn + V (xn + εnx)vn = g(xn + εnx, vn) in RN . (2.27)

The associated energy functional is given by

Jn(u) =
1

2

∫
RN

(|(−∆)
s
2u|2 + V (εnx+ xn)u2)dx−

∫
RN
G(εnx+ xn, u)dx.

From Lemma 2.9, we have that {vn} is bounded in Hε and therefore vn ⇀ v in Hε

for some v ∈ Hε. From (f1)–(f3), it is easy to get that J0(tvn) > 0 for t > 0 small

enough and J0(tvn)→ −∞ as t→∞. Thus, there exists tn > 0 such that J0(tnvn) =

max
t≥0

J0(tvn). Set ṽn := tnvn, therefore, c0 ≤ J0(ṽn). Since {vn} satisfy equation (2.27),

we have Jn(vn) = maxt≥0 Jn(tvn), thus

c0 ≤ J0(ṽn) =
1

2

∫
RN

(|(−∆)
s
2 ṽn|2 + V0ṽ

2
n)dx−

∫
RN
P0F (ṽn)dx− Q0

2∗s

∫
RN
|ṽn|2

∗
sdx

≤ 1

2

∫
RN

(|(−∆)
s
2 ṽn|2 + V (εnx+ xn)ṽ2

n)dx−
∫
RN
P (εnx+ xn)F (ṽn)dx

− 1

2∗s

∫
RN
Q(εnx+ xn)|ṽn|2

∗
sdx

≤ t2n
2

∫
RN

(|(−∆)
s
2vn|2 + V (εnx+ xn)v2

n)dx−
∫
RN
G(εnx+ xn, tnvn)dx

= Jn(tnvn) ≤ Jn(vn) = ε−Nn Jεn(uεn) ≤ c0 + o(1),

which implies limn→∞ J0(ṽn) = c0, where the last inequality is from (2.26). Moreover,

{ṽn} is bounded and ṽn ⇀ ṽ. We claim that {ṽn} satisfies the following limits

J0(ṽn)→ c0 and J ′0(ṽn)→ 0.

In fact, using Ekeland’s variational Principle in [10], there exists a sequence {νn} ⊂ N0

satisfying νn = ṽn + on(1), J0(νn) → c0 and J ′0(νn) − λnΦ′(νn) = on(1), where λn is a

real number and Φ(νn) = 〈J ′0(νn), νn〉. Thus, by the definition of Φ(νn) and {νn} ⊂ N0,

we have that

〈Φ′(νn), νn〉 =

∫
RN
P0(f(νn)νn − f ′(νn)|νn|2)dx− (2∗s − 2)

∫
RN
Q0|νn|2

∗
sdx
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≤
∫
RN
P0(f(νn)νn − f ′(νn)|νn|2)dx. (2.28)

Since {νn} is bounded and νn 6→ 0, Lemma 2.2 guarantees the existence of a sequence

{yn} ⊂ RN such that ν̃n = νn(·+yn) is a bounded sequence in H0 and ν̃n ⇀ ν̃ for some

ν̃ 6= 0. Hence, there exists a subset Λ ⊂ RN having positive measure, such that ν̃ > 0

a.e. in Λ. Assume by contradiction that lim supn→∞〈Φ′(νn), νn〉 = 0. Then, taking into

account (2.28), (f4) and Fatou’s Lemma, we get 0 >
∫

Λ
(f(ν̃)ν̃ − f ′(ν̃)|ν̃|2) ≥ 0 which

gives a contradiction. Hence lim supn→∞〈Φ′(νn), νn〉 < 0, implying that λn = on(1),

thus J0(νn) → c0, J ′0(νn) → 0. Without loss of generalization, we may assume that

J0(ṽn)→ c0, J ′0(ṽn)→ 0. Thus, J ′0(ṽ) = 0, by Fatou’s Lemma we get

c0 ≤ J0(ṽ) = J0(ṽ)− 1

θ
〈J ′0(ṽ), ṽ〉

=

(
1

2
− 1

θ

)(∫
RN

(|(−∆)
s
2 ṽ|2 + V0ṽ

2)dx

)
+ P0

∫
RN

(
1

θ
f(ṽ)ṽ − F (ṽ)

)
dx+

(
1

θ
− 1

2∗s

)∫
RN
Q0|ṽ|2

∗
sdx

≤ lim inf
n→∞

(
1

2
− 1

θ

)(∫
RN

(|(−∆)
s
2 ṽn|2 + V0ṽ

2
n)dx

)
+ P0

∫
RN

(
1

θ
f(ṽn)ṽ − F (ṽn)

)
dx+

(
1

θ
− 1

2∗s

)∫
RN
Q0|ṽn|2

∗
sdx

= lim inf
n→∞

(
J0(ṽn)− 1

θ
〈J ′0(ṽn), ṽn〉

)
≤ c0.

Then, lim
n→∞

∫
RN (|(−∆)

s
2 ṽn|2 + V0ṽ

2
n)dx =

∫
RN (|(−∆)

s
2 ṽ|2 + V0ṽ

2)dx. Hence, ṽn → ṽ in

Hs(RN).

Taking into account that V (x̄) > V0, P (x̄) ≤ P0, Q(x̄) ≤ Q0, ṽn → ṽ and Fatou’s

Lemma, we obtain

c0 = J0(ṽ) < lim inf
n→∞

{
1

2

∫
RN

(|(−∆)
s
2 ṽn|2 + V (εnx+ xn)ṽ2

n)dx

−
∫
RN
P (εnx+ xn)F (ṽn)dx− 1

2∗s

∫
RN
Q(εnx+ xn)|ṽn|2

∗
sdx

}
≤ lim inf

n→∞

{
t2n
2

∫
RN

(|(−∆)
s
2vn|2 + V (εnx+ xn)v2

n)dx

−
∫
RN
G(εnx+ xn, tnvn)dx

}
= lim inf

n→∞
Jn(tnvn) ≤ lim inf

n→∞
Jn(vn) = lim inf

n→∞
ε−Nn Jεn(uεn) ≤ c0 + o(1),

which yields a contradiction. Thus the proof is completed.

Lemma 2.11. There holds lim
ε→0+

mε = 0, where mε := max
∂Ω

uε.
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Proof. Assume by contradiction that mε 9 0. Let xε ∈ ∂Ω ⊂ Ω̄ be such that uε(xε) =

mε. Therefore, up to a subsequence we have uεn(xεn) ≥ γ > 0 and xεn → x0 ∈ ∂Ω, by

Lemma 2.10 we have

min
∂Ω

V ≤ lim
n→∞

V (xεn) = V (x0) = V0 < min
∂Ω

V,

which gets a contradiction.

Proof of theorem 1.1. Let uε be a positive critical point for Jε. From Lemma

2.11, there exists ε0 such that for any ε ∈ (0, ε0), mε < a. Therefore uε(x) < a for

x ∈ ∂Ω. Thus, in view of the maximum principle, we obtain

uε(x) ≤ a for x ∈ Ω.

Taking (uε − a)+ = max{uε − a, 0} as a test function for Jε, we have

0 = J ′ε(uε)((uε − a)+) =

∫
RN\Ω

ε2s|(−∆)
s
2 (uε − a)+|2dx

+

∫
RN\Ω

c(x)(uε − a)2
+ + c(x)a(uε − a)+dx (2.29)

where c(x) = V (x) − g(x,uε)
uε

. Moreover, for x ∈ RN\Ω, we get g(x,uε)
uε
≤
(
P0

K
+ Q0

L

)
V0.

Hence, c(x) > 0 for x ∈ RN\Ω. So every term in the last identity of (2.29) is 0.

Therefore, (uε − a)+ = 0 and uε(x) ≤ a for x ∈ RN\Ω. Thus, g(x, uε) = P (x)f(uε) +

Q(x)|uε|2
∗
s−2uε and uε is a solution of (Pε). Similar arguments as [13], we can obtained

that if ηε ∈ RN denotes the global maximum point of uε, then

uε(x) ≤ CεN+2s

εN+2s + |x− ηε|N+2s
.
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