Blow-up of solutions of a non-linear wave equation with fractional damping and infinite memory

Mokhtar Kirane ${ }^{1}$ and Aounallah Radhouane ${ }^{2}$
${ }^{1}$ Khalifa University
${ }^{2}$ Universite Djillali Liabes de Sidi Bel Abbes

June 1, 2023

Abstract

We consider a non-linear wave equation with an internal fractional damping, a polynomial source and an infinite memory. Using the semi-group theory, we get the existence of a local weak solution. Moreover, we show under some conditions, local solutions may blow up a in finite time; this is achieved by constructing a suitable Lyapunov functional.

Hosted file

MAIN*_2.tex available at https://authorea.com/users/624463/articles/646788-blow-up-of-solutions-of-a-non-linear-wave-equation-with-fractional-damping-and-infinite-memory

ARTICLE TYPE

Blow-up of solutions of a non-linear wave equation with fractional damping and infinite memory

Mokhtar Kirane ${ }^{\star 1}$ | Aounallah Radhouane ${ }^{2}$

${ }^{1}$ Department of Mathematics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
Email: mokhtar.kirane@ku.ac.ae
${ }^{2}$ Laboratory Analysis and Control of PDEs, Djillali Liabes University, P.O.BOX 89, Sidi Bel Abbes 22000, Algeria
Email: radhouaneaounallah@gmail.com

Correspondence

${ }^{\star}$ Mokhtar Kirane, Email:
mokhtar.kirane@ku.ac.ae

Abstract

We consider a non-linear wave equation with an internal fractional damping, a polynomial source and an infinite memory. Using the semi-group theory, we get the existence of a local weak solution. Moreover, we show under some conditions, local solutions may blow up a in finite time; this is achieved by constructing a suitable Lyapunov functional.

KEYWORDS:

Fractional damping, Relaxation function, blow up
MSC : 35L70

1 | INTRODUCTION

We investigate the following problem:

$$
(P) \begin{cases}y_{t t}-\Delta y+\int_{0}^{+\infty} g(\tau) \Delta y(t-\tau) d \tau+\partial_{t}^{\alpha, \beta} y(t)=|y|^{p-2} y, & \text { in } \Omega \times(0, \infty) \\ y=0, & \text { on } \partial \Omega \times(0, \infty) \\ y(x, 0)=y_{0}(x), \quad y_{t}(x, 0)=y_{1}(x), & \text { in } \Omega\end{cases}
$$

where $p>2, \Omega$ is a bounded domain in \mathbb{R}^{n} with a smooth boundary $\partial \Omega$ and g is a function which will be specified later. The notation $\partial_{t}^{\alpha, \beta}$ stands for the modified Caputo's fractional derivative (see ${ }^{1,2}$) defined by:

$$
\partial_{t}^{\alpha, \beta} u(t):=\frac{1}{\Gamma(1-\alpha)} \int_{0}^{t}(t-s)^{-\alpha} e^{-\beta(t-s)} u_{s}(s) d s, \quad 0<\alpha<1, \beta \geq 0
$$

Partial differential equations with fractional derivatives arise in biology, physics, electronics and vibrations, etc. In the last years, the control of PDEs with fractional derivatives has been studied in ${ }^{3,4,5,6}$.

It is well known that in the absence of an internal fractional damping, the polynomial source causes finite time blow up of 5 solutions with negative initial energy ($\mathrm{see}^{7,8,9,10}$). Whereas, in the presence of non-linear damping, Georgiev and Todorova ${ }^{11}$, proved under the assumption $p \leq m$, that the solution is global. However, for the opposite case, solutions may blows up in a finite time.

In the presence of fractional damping, The linear wave equation with the Riemann-Liouville fractional derivatives has been considered by Matignon et al. in ${ }^{12}$. The authors proved well-posedness and asymptotic stability. Later on, Kirane and Tatar ${ }^{13}$,

10 proved an exponential growth result. By using a new argument, Tatar ${ }^{14}$, extended Kirane and TatarâĂŹs result to a larger class of initial data. The same author ${ }^{15}$, proved a finite time blow up result. Recently, by writing the wave equation with a dynamic boundary dissipation of fractional derivative type as an augmented system, Aounallah et al. ${ }^{16,17}$ proved the existence and decay properties of the sought solutions. For infinite memory problems, Appleby et al. ${ }^{18}$, established an exponential decay of a linear integro-differential equation. Later on, Guesmia ${ }^{19}$ investigated a class of hyperbolic problems and established a more general decay result. In^{20}, by describing the fractional damping by means of a suitable diffusion equation, the problem (P) was put into an augmented model which can be easily tackled. To the best of our knowledge, a non-linear wave equation with an internal fractional damping and infinite memory has not been studied yet. In addition, the finite time blow-up of the solution for this problems has not been addressed. The paper is organized as follows: In Sec. 2, we present some assumptions and tools needed to demonstrate the main results. In Sec. 3, we use the semi-group theory ${ }^{22,23}$ to prove the existence of a local weak solution. In

2 | PRELIMINARIES

In this section, we provide some material needed for the proof of our results. We need the following assumptions:
(G1) $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is a C^{1} function such that

$$
g(0)>0, \quad g_{0}=\int_{0}^{\infty} g(\tau) d \tau=1-\lambda>0
$$

(G2) there exists a positive constant θ such that:

$$
g^{\prime}(t) \leq-\theta g(t), \quad t \geq 0
$$

We state without proof the following claims:
Lemma 1. The following inequality holds:

$$
\int_{\Omega}\left[\int_{0}^{+\infty} g(\tau) \nabla w(\tau) d \tau\right]^{2} d x \leq(1-\lambda) \int_{0}^{+\infty} g(\tau)\|\nabla w(\tau)\|_{2}^{2} d \tau
$$

Lemma 2. ${ }^{20}$ Let

$$
b:=\frac{\sin (\alpha \pi}{\pi}
$$

and let η be the function:

$$
\eta(\xi):=|\xi|^{\frac{(2 \alpha-1)}{2}}, \quad \xi \in \mathbb{R}, \quad 0<\alpha<1
$$

Then the relationship between the "input" U and the "output" O of the system

$$
\left\{\begin{array}{l}
\partial_{t} \phi(\xi, t)+\left(\xi^{2}+\beta\right) \phi(\xi, t)-U(x, t) \eta(\xi)=0, \xi \in \mathbb{R}, t>0, \beta \geq 0 \tag{1}\\
\phi(\xi, 0)=0 \\
O(t):=b \int_{-\infty}^{+\infty} \phi(\xi, t) \eta(\xi) d \xi
\end{array}\right.
$$

is given by

$$
O:=I^{1-\alpha, \beta} U
$$

where

$$
I^{\alpha, \beta} u(t):=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} e^{-\beta(t-s)} u(s) d s
$$

Lemma 3. ${ }^{21}$ For all $\lambda \in D_{\beta}=\{\lambda \in \mathbb{C}: \mathfrak{R} e \lambda+\beta>0\} \cup\{\lambda \in \mathbb{C}: \mathfrak{J} m \lambda \neq 0\}$,

$$
A_{\lambda}:=\int_{-\infty}^{+\infty} \frac{\eta^{2}(\xi)}{\lambda+\beta+\xi^{2}} d \xi=\frac{\pi}{\sin (\alpha \pi)}(\lambda+\beta)^{\alpha-1} .
$$

Now, similarly to ${ }^{24,25}$, we introduce the following new variable:

$$
\begin{equation*}
\mu^{t}(x, \tau)=y(x, t)-y(x, t-\tau), \tag{2}
\end{equation*}
$$

where μ^{t} is the relative history of y that satisfies

$$
\begin{equation*}
\mu_{t}^{t}(x, \tau)-y_{t}(x, t)+\mu_{\tau}^{t}(x, \tau)=0, \quad x \in \Omega, \mathrm{t}, \tau>0 . \tag{3}
\end{equation*}
$$

Then, by using Lemma 2 and (2), system (P) takes the form :

$$
\left(P^{\prime}\right) \begin{cases}y_{t t}-\lambda \Delta y(t)-\int_{0}^{+\infty} g(\tau) \Delta \mu^{t}(x, \tau) d \tau \\ +b \int_{-\infty}^{+\infty} \phi(\xi, t) \eta(\xi) d \xi=|y|^{p-2} y, & x \in \Omega, \mathfrak{t}>0, \\ \partial_{t} \phi(\xi, t)+\left(\xi^{2}+\beta\right) \phi(\xi, t)-y_{t}(x, t) \eta(\xi)=0, & \xi \in \mathbb{R}, \mathrm{t}>0, \beta \geq 0, \\ \mu_{t}^{t}(x, \tau)+\mu_{\tau}^{t}(x, \tau)=y_{t}(x, t), & x \in \Omega, \mathfrak{t}, \tau>0, \\ y=\mu^{t}(x, \tau)=0, & x \in \partial \Omega, \mathrm{t}, \tau>0, \\ y(x, 0)=y_{0}(x), \quad y_{t}(x, 0)=y_{1}(x), & x \in \Omega, \\ \mu^{t}(x, 0)=0, \quad \mu^{0}(x, \tau)=y_{0}(x)-y_{0}(x,-\tau), & x \in \Omega, \mathfrak{t}, \tau>0, \\ \phi(\xi, 0)=0, & x \in \Omega, \xi \in \mathbb{R} .\end{cases}
$$

Lemma 4. The energy

$$
\begin{align*}
E(t): & =\frac{1}{2}\left\|y_{t}(t)\right\|_{2}^{2}+\frac{b}{2} \int_{\Omega} \int_{-\infty}^{+\infty}|\phi(\xi, t)|^{2} d \xi d x+\frac{\lambda}{2}\|\nabla y(t)\|_{2}^{2} \tag{4}\\
& -\frac{1}{p}\|y(t)\|_{p}^{p}+\frac{1}{2} \int_{0}^{+\infty} g(\tau)\left\|\nabla \mu^{t}(\tau)\right\|_{2}^{2} d \tau
\end{align*}
$$

satisfies

$$
\begin{align*}
\frac{d E(t)}{d t} & =\frac{1}{2} \int_{0}^{+\infty} g^{\prime}(\tau)\left\|\nabla \mu^{t}(\tau)\right\|_{2}^{2} d \tau \\
& -b \int_{\Omega} \int_{-\infty}^{+\infty}\left(\xi^{2}+\beta\right)|\phi(\xi, t)|^{2} d \xi d x \leq 0 . \tag{5}
\end{align*}
$$

Proof. Multiplying the first equation in (P^{\prime}) by y_{t}, integrating over Ω and using integration by parts, we get

$$
\begin{align*}
& \frac{d}{d t}\left\{\frac{1}{2}\left\|y_{t}(t)\right\|_{2}^{2}+\frac{\lambda}{2}\|\nabla y(t)\|_{2}^{2}-\frac{1}{p}\|y(t)\|_{p}^{p}\right\} \\
& +b \int_{\Omega} y_{t} \int_{-\infty}^{+\infty} \eta(\xi) \phi(x, \xi, t) d \xi d x \tag{6}\\
& -\int_{\Omega} y_{t} \int_{0}^{+\infty} g(\tau) \Delta \mu^{t}(\tau) d \tau d x=0
\end{align*}
$$

We use (3) to transform the last term of (6) as follows:

$$
\begin{aligned}
& -\int_{\Omega} y_{t} \int_{0}^{+\infty} g(\tau) \Delta \mu^{t}(\tau) d \tau d x \\
& =-\int_{0}^{+\infty} g(\tau) \int_{\Omega}\left(\mu_{t}^{t}+\mu_{\tau}^{t}\right) \Delta \mu^{t}(\tau) d x d \tau \\
& =-\int_{0}^{+\infty} g(\tau) \int_{\Omega} \mu_{t}^{t} \Delta \mu^{t}(\tau) d x d \tau \\
& -\int_{0}^{+\infty} g(\tau) \int_{\Omega} \mu_{\tau}^{t} \Delta \mu^{t}(\tau) d x d \tau
\end{aligned}
$$

and integrating by parts, we get

$$
\begin{align*}
-\int_{\Omega} y_{t} \int_{0}^{+\infty} g(\tau) \Delta \mu^{t}(\tau) d \tau d x & =\frac{d}{d t}\left[\frac{1}{2} \int_{0}^{+\infty} g(\tau)\left\|\nabla \mu^{t}(\tau)\right\|_{2}^{2} d \tau\right] \tag{7}\\
& -\frac{1}{2} \int_{0}^{+\infty} g^{\prime}(\tau)\left\|\nabla \mu^{t}(\tau)\right\|_{2}^{2} d \tau
\end{align*}
$$

By substituting (7) in (6), we have

$$
\begin{align*}
& \frac{d}{d t}\left\{\frac{1}{2}\left\|y_{t}(t)\right\|_{2}^{2}+\frac{\lambda}{2}\|\nabla y(t)\|_{2}^{2}-\frac{1}{p}\|y(t)\|_{p}^{p}+\frac{1}{2} \int_{0}^{+\infty} g(\tau)\left\|\nabla \mu^{t}(\tau)\right\|_{2}^{2} d \tau\right\} \tag{8}\\
& -\frac{1}{2} \int_{0}^{+\infty} g^{\prime}(\tau)\left\|\nabla \mu^{t}(\tau)\right\|_{2}^{2} d \tau+b \int_{\Omega} y_{t} \int_{-\infty}^{+\infty} \eta(\xi) \phi(\xi, t) d \xi d x=0
\end{align*}
$$

Now multiplying the second equation in (P^{\prime}) by $b \phi$ and integrating over $\Omega \times \mathbb{R}$, we obtain:

$$
\begin{align*}
& \frac{d}{d t}\left\{\frac{b}{2} \int_{\Omega} \int_{-\infty}^{+\infty}|\phi(\xi, t)|^{2} d \xi d x\right\} \\
& +b \int_{\Omega} \int_{-\infty}^{+\infty}\left(\xi^{2}+\beta\right)|\phi(\xi, t)|^{2} d \xi d x \tag{9}\\
& -b \int_{\Omega} y_{t} \int_{-\infty}^{+\infty} \eta(\xi) \phi(\xi, t) d \xi d x=0
\end{align*}
$$

By combining (4), (8) and (9), we obtain (5). The lemma is proved.

${ }_{25} 3$ | WELL-POSEDNESS

In this section, we establish the local existence result for problem (PâĂŹ). First, we define the vector function

$$
U=\left(y, y_{t}, \phi, \mu^{t}\right)^{T}
$$

and a new dependent variable

$$
u=y_{t} .
$$

Consequently, problem (PâĂŹ) can be rewritten as follows:

$$
\left(P^{\prime \prime}\right)\left\{\begin{array}{l}
U_{t}(t)+A U(t)=J(U(t)) \\
U(0)=U_{0}
\end{array}\right.
$$

where the operator $A: D(A) \rightarrow \mathcal{H}$ is defined by

$$
A U=\left(\begin{array}{l}
-u \\
-\lambda \Delta y-\int_{0}^{+\infty} g(\tau) \Delta \mu^{t}(x, \tau) d \tau+b \int_{-\infty}^{+\infty} \phi(x, \xi, t) \eta(\xi) d \xi \tag{10}\\
\left(\xi^{2}+\beta\right) \phi-u(x) \eta(\xi) \\
\mu_{\tau}^{t}(\tau)-u \\
J(U)=\left(0,|y|^{p-2} y, 0,0\right)^{T}
\end{array}\right),
$$

and \mathcal{H} is the energy space given by

$$
\mathcal{H}=H_{0}^{1}(\Omega) \times L^{2}(\Omega) \times L^{2}(\Omega, \mathbb{R}) \times L_{g}^{2}\left(\mathbb{R}_{+}, H_{0}^{1}(\Omega)\right)
$$

such that

$$
L_{g}^{2}\left(\mathbb{R}_{+}, H_{0}^{1}(\Omega)\right)=\left\{w: \mathbb{R}_{+} \rightarrow H_{0}^{1}(\Omega), \int_{0}^{+\infty} g(\tau)\|\nabla w(\tau)\|_{2}^{2} d \tau<\infty\right\}
$$

the space $L_{g}^{2}\left(\mathbb{R}_{+}, H_{0}^{1}(\Omega)\right)$ is endowed with the inner product:

$$
\left\langle w_{1}, w_{2}\right\rangle_{L_{g}^{2}\left(\mathbb{R}_{+}, H_{0}^{2}(\Omega)\right)}=\int_{0}^{+\infty} g(\tau) \int_{\Omega} \nabla w_{1}(\tau) \nabla w_{2}(\tau) d x d \tau
$$

For any $U=\left(y, u, \phi, \mu^{t}\right)^{T} \in \mathcal{H}$ and $\bar{U}=\left(\bar{y}, \bar{u}, \bar{\phi}, \bar{\mu}^{t}\right)^{T} \in \mathcal{H}$, we define the inner product

$$
\begin{aligned}
\langle U, \bar{U}\rangle_{\mathcal{H}}= & \int_{\Omega}[\lambda \nabla y \cdot \nabla \bar{y}+u \bar{u}] d x+b \int_{\Omega} \int_{-\infty}^{+\infty} \phi \bar{\phi} d \xi d x \\
& +\int_{0}^{+\infty} g(\tau) \int_{\Omega} \nabla \mu^{t}(\tau) \nabla \bar{\mu}^{t}(\tau) d x d \tau
\end{aligned}
$$

The domain of A is given by

$$
D(A)=\left\{\begin{array}{l}
U=\left(y, u, \phi, \mu^{t}\right)^{T} \in \mathcal{H} ; y \in H^{2}(\Omega) ; u \in H_{0}^{1}(\Omega) ; \\
\left(\xi^{2}+\beta\right) \phi-u \eta(\xi) \in L^{2}(\Omega, \mathbb{R}) ; \\
|\xi| \phi \in L^{2}(\Omega, \mathbb{R}) ; \mu_{\tau}^{t} \in L_{g}^{2}\left(\mathbb{R}_{+}, H_{0}^{1}(\Omega)\right),
\end{array}\right\}
$$

Now, we can present the following existence result
Theorem 1. Suppose that

$$
\begin{cases}P>2, & \text { if } n=1,2 \tag{11}\\ 2<p<\frac{2 n}{n-2}, & \text { if } n \geq 3\end{cases}
$$

Assume further that

$$
\begin{equation*}
U_{0} \in \mathcal{H} \tag{12}
\end{equation*}
$$

then the problem (PâĂŹ) has a unique local solution

$$
\begin{equation*}
U \in C([0, T), \mathcal{H}) \tag{13}
\end{equation*}
$$

Proof. The proof is based on ${ }^{22}$. First, we demonstrate that A is a monotone maximal operator on \mathcal{H}. We start by showing that the operator A is monotone. For, for any $U \in D(A)$, using (PâĂİ), we have

$$
\begin{align*}
\langle A U, U\rangle_{\mathcal{H}}= & b \int_{\Omega} \int_{-\infty}^{+\infty}\left(\xi^{2}+\beta\right)|\phi|^{2} d \xi d x \\
& -\frac{1}{2} \int_{0}^{+\infty} g^{\prime}(\tau)\left\|\nabla \mu^{t}(\tau)\right\|_{2}^{2} d \tau \geq 0 \tag{14}
\end{align*}
$$

So, A is a monotone operator. Next, we will show that the operator $(\mathrm{I}+\mathrm{A})$ is onto. For, given $F=\left(f_{1}, f_{2}, f_{3}, f_{4}\right)^{T} \in \mathcal{H}$, we dwill show that there exists $U \in D(A)$ such that

$$
(I+A) U=F
$$

that is,

$$
\left\{\begin{array}{l}
y-u=f_{1} \in H_{0}^{1}(\Omega) \tag{15}\\
u-\lambda \Delta y-\int_{0}^{+\infty} g(\tau) \Delta \mu^{t}(\tau) d \tau+b \int_{-\infty}^{+\infty} \phi(\xi) \eta(\xi) d \xi=f_{2} \in L^{2}(\Omega) \\
\phi+\left(\xi^{2}+\beta\right) \phi-u \eta(\xi)=f_{3}(\xi) \in L^{2}(\Omega, \mathbb{R}) \\
\mu^{t}+\mu_{\tau}^{t}-u=f_{4}(\tau) \in L_{g}^{2}\left(\mathbb{R}_{+} ; H_{0}^{1}(\Omega)\right)
\end{array}\right.
$$

Using the third equation in (15), we obtain

$$
\begin{equation*}
\phi=\frac{f_{3}+u \eta(\xi)}{\xi^{2}+\beta+1} \tag{16}
\end{equation*}
$$

On the other hand, the fourth equation in (15) has a unique solution

$$
\begin{equation*}
\mu^{t}=\left(\int_{0}^{\tau} e^{z}\left(f_{4}(z)+y-f_{1}\right) d z\right) e^{-\tau} \tag{17}
\end{equation*}
$$

Inserting $u=y-f_{1}$, (16) and (17) in the second equation in (15), we obtain

$$
\begin{equation*}
\sigma y-\bar{\lambda} \Delta y=G \tag{18}
\end{equation*}
$$

where

$$
\begin{aligned}
\sigma & =1+b \int_{-\infty}^{+\infty} \frac{\eta^{2}(\xi)}{\xi^{2}+\beta+1} d \xi>0, \\
\bar{\lambda} & =\lambda+\int_{0}^{+\infty} g(\tau) e^{-\tau}\left(\int_{0}^{\tau} e^{z} d z\right) d s \\
& =1-\int_{0}^{+\infty} g(\tau) e^{-\tau} d \tau>0, \\
G & =f_{2}+\sigma f_{1}-b \int_{-\infty}^{+\infty} \frac{\eta(\xi) f_{3}(\xi)}{\xi^{2}+\beta+1} d \xi \\
& +\int_{0}^{+\infty} g(\tau) e^{-\tau}\left(\int_{0}^{\tau} e^{z} \Delta\left(f_{4}(z)-f_{1}\right) d z\right) d \tau
\end{aligned}
$$

To solve (18), we consider the following variational formulation:

$$
\begin{equation*}
B(y, w)=L(w), \quad \forall w \in H_{0}^{1}(\Omega) \tag{19}
\end{equation*}
$$

where B is the bi-linear form defined by

$$
\begin{equation*}
B(y, w)=\sigma \int_{\Omega} y w d x+\bar{\lambda} \int_{\Omega} \nabla y \cdot \nabla w d x \tag{20}
\end{equation*}
$$

and L is the linear functional given by

$$
\begin{equation*}
L(w)=\int_{\Omega} G w d x \tag{21}
\end{equation*}
$$

It is easy to verify that L is bounded and B is coercive and bounded. So, the Lax-Milgram theorem guarantees that for all $w \in H_{0}^{1}(\Omega)$, the linear elliptic equation (18) has a unique solution $y \in H_{0}^{1}(\Omega)$.
${ }_{30}$ The substitution of y into the first equation in (15) yields $u \in H_{0}^{1}(\Omega)$.
Inserting u in (15) and bearing in mind the third equation in (15), we obtain

$$
\phi \in L^{2}(\Omega, \mathbb{R})
$$

Similarly, we have

$$
\mu^{t} \in L_{g}^{2}\left(\mathbb{R}_{+} ; H_{0}^{1}(\Omega)\right)
$$

Using (18), we get

$$
\begin{equation*}
\sigma \int_{\Omega} y w d x+\bar{\lambda} \int_{\Omega} \nabla y . \nabla w d x=\int_{\Omega} G w d x \tag{22}
\end{equation*}
$$

The elliptic regularity theory, then, implies that $y \in H^{2}(\Omega)$. So, I+A is onto.
Now, we prove that the operator defined in (10) is locally Lipschitzian in \mathcal{H}. For $U, \tilde{U} \in \mathcal{H}$, we get

$$
\begin{aligned}
\|J(U)-J(\bar{U})\|_{\mathcal{H}} & =\left\|\left(0, u|u|^{p-2}-\bar{u}|\bar{u}|^{p-2}, 0\right)\right\|_{\mathcal{H}} \\
& =\left\|u|u|^{p-2}-\bar{u}|\bar{u}|^{p-2}\right\|_{L^{2}(\Omega)} \\
& =\left\||u|^{p}-|\bar{u}|^{p}\right\|_{L^{2}(\Omega)} \\
& =\left\|(u-\bar{u})\left(|u|^{p-1}+u^{p-2} \bar{u}+\ldots+\bar{u}^{p-1}\right)\right\|_{L^{2}(\Omega)} \\
& =C\left\|(u-\bar{u})\left(u^{p-1}+\bar{u}^{p-1}\right)\right\|_{L^{2}(\Omega)} \\
& \leq C\left(\int_{\Omega}\left(|u-\bar{u}|^{2}\right)\left(|u|^{p-1}+|\bar{u}|^{p-1}\right)^{2} d x\right)^{\frac{1}{2}}
\end{aligned}
$$

Using Hölder's inequality, we have

$$
\|J(U)-J(\bar{U})\|_{\mathcal{H}} \leq C\left(\int_{\Omega}|u-\bar{u}|^{2 \gamma} d x\right)^{\frac{1}{2 \gamma}}\left(\int_{\Omega}\left(|u|^{p-1}+|\bar{u}|^{p-1}\right)^{2 \delta} d x\right)^{\frac{1}{2 \delta}}, \frac{1}{\gamma}+\frac{1}{\delta}=1
$$

with $\gamma=\frac{n}{n-2}$ and $\delta=\frac{n}{2}$. So we have

$$
\begin{align*}
\|J(U)-J(\bar{U})\|_{\mathcal{H}} & \leq C\left(\int_{\Omega}\left(|u-\bar{u}|^{\frac{2 n}{n-2} \gamma}\right)\right)^{\frac{n-2}{2 n}}\left(\int_{\Omega}\left(|u|^{p-1}+|\bar{u}|^{p-1}\right)^{n} d x\right)^{\frac{1}{n}} \\
& \leq C\left(\int_{\Omega}\left(|u-\bar{u}|^{\left.\frac{2 n}{n-2} \gamma\right)}\right)^{\frac{n-2}{2 n}}\left(\int_{\Omega}\left(|u|^{n(p-1)}+|\bar{u}|^{n(p-1)}\right) d x\right)^{\frac{1}{n}}\right. \tag{23}\\
& \leq C\|u-\bar{u}\|_{L^{\frac{2 n}{n-2}(\Omega)}}\left[\left(\int_{\Omega}|u|^{n(p-1)} d x\right)^{\frac{1}{n}}+\left(\int_{\Omega}|\bar{u}|^{n(p-1)} d x\right)^{\frac{1}{n}}\right] \\
& \leq C\|u-\bar{u}\|_{L^{\frac{2 n}{n-2}(\Omega)}}\left[\|u\|_{L^{n(p-1)}(\Omega)}^{p-1}+\|\bar{u}\|_{L^{n(p-1}(\Omega)}^{p-1}\right] .
\end{align*}
$$

The Sobolev embedding theorem gives

$$
\begin{equation*}
\|u-\bar{u}\|_{L^{\frac{2 n}{n-2}(\Omega)}} \leq C\|u-\bar{u}\|_{L^{2}(\Omega)} \leq C\|U-\bar{U}\|_{\mathcal{H}} \tag{24}
\end{equation*}
$$

The necessity to estimate $\|u\|_{n(p-1)}$ by the energy norm $\|U\|_{\mathcal{H}}$ requires to consider different ranges of p. Namely, we need $n(p-1) \leq \frac{2 n}{n-2}$ and this coincides with the cut in our assumption $p \leq \frac{n}{n-2}$. Thus, the Sobolev embedding theorem

$$
L_{\frac{n}{n-2}}(\Omega) \subset H^{1}(\Omega)
$$

, it holds

$$
\begin{equation*}
\|u\|_{L^{n(p-1)}(\Omega)}^{p-1} \leq C\|u\|_{H^{1}}^{p-1}(\Omega) \tag{25}
\end{equation*}
$$

Therefore, by combining (24)âĂŞ(25), we obtain

$$
\|U-\bar{U}\|_{\mathcal{H}} \leq C\left(\|u\|_{H^{1}}^{p-1}(\Omega),\|\bar{u}\|_{H^{1}}^{p-1}(\Omega)\right)\|U-\bar{U}\|_{\mathcal{H}} .
$$

So, J is locally Lipschitzian. Therefore, the well-posedness result follows from the theorem of Sigal.

4 | BLOW UP RESULT

In this section, we use a judicious Lyapunov functional to prove that some solutions can experience blow-up in a finite time. To achieve our goal, we need the following lemma.

Lemma 5. Suppose that $p \geq 2$. Then, there exists a positive constant $C>1$ such that

$$
\begin{equation*}
\|y\|_{p}^{s} \leq C_{2}\left(\|y\|_{p}^{p}+\|\nabla y\|_{2}^{2}\right) \tag{26}
\end{equation*}
$$

${ }_{35}$ for any $y \in H_{0}^{1}(\Omega)$ and $2 \leq s \leq p$.
Proof. If $\|y\|_{p} \geq 1$ then $\|y\|_{p}^{s} \leq\|y\|_{p}^{p}$.
If $\|y\|_{p} \leq 1$ then $\|y\|_{p}^{s} \leq\|y\|_{p}^{2} \leq C_{*}\|\nabla y\|_{2}^{2}$ by the Sobolev embedding theorem.
Let

$$
\begin{equation*}
H(t)=-E(t) \tag{27}
\end{equation*}
$$

Theorem 2. Suppose that $p>4$ satisfies (11). Assume further that (G1)

$$
\begin{equation*}
g_{0}=\int_{0}^{\infty} g(\tau) d \tau<\frac{p-4}{p} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
E(0)<0 . \tag{29}
\end{equation*}
$$

Then, the solution of system (PâĂŹ) blows-up in a finite time.
Proof. Using (5), we have

$$
\begin{equation*}
E(t) \leq E(0)<0 \tag{30}
\end{equation*}
$$

Thus, we get

$$
\begin{align*}
H^{\prime}(t)=-E^{\prime}(t)= & -\frac{1}{2} \int_{0}^{+\infty} g^{\prime}(\tau)\left\|\nabla \mu^{t}(\tau)\right\|_{2}^{2} d \tau \\
& +b \int_{\Omega} \int_{-\infty}^{+\infty}\left(\xi^{2}+\beta\right)|\phi(\xi, t)|^{2} d \xi d x \geq 0 . \tag{31}
\end{align*}
$$

Furthermore, we have

$$
\begin{equation*}
0<H(0) \leq H(t) \leq \frac{1}{p}\|y\|_{p}^{p} \tag{32}
\end{equation*}
$$

Let

$$
\begin{equation*}
A(t)=H^{1-\gamma}(t)+\epsilon \int_{\Omega} u u_{t} d x \tag{33}
\end{equation*}
$$

where $\epsilon>0$ to be specified later and

$$
\begin{equation*}
0<\gamma<\frac{p-2}{2 p} \tag{34}
\end{equation*}
$$

Differentiating (33) and using (PâĂŹ), we obtain

$$
\begin{align*}
A^{\prime}(t)= & (1-\gamma) H^{-\gamma}(t) H^{\prime}(t)+\epsilon\left\|y_{t}\right\|_{2}^{2}-\epsilon \lambda\|\nabla y\|_{2}^{2} \\
& -b \epsilon \int_{\Omega} y \int_{-\infty}^{+\infty} \eta(\xi) \phi(x, \xi, t) d \xi d x+\epsilon\|y\|_{p}^{p} \tag{35}\\
& -\epsilon \int_{\Omega} \nabla y \int_{0}^{\infty} g(\tau) \nabla \mu^{t}(\tau) d \tau d x
\end{align*}
$$

Using Young's inequality and Lemma 1, we find

$$
\begin{align*}
& \int_{\Omega} \nabla y(t) \int_{0}^{+\infty} g(\tau) \nabla \mu^{t}(\tau) d \tau d x \tag{36}\\
& \leq \frac{1}{4} \int_{0}^{+\infty} g(\tau)\left\|\nabla \mu^{t}(\tau)\right\|_{2}^{2} d \tau+(1-\lambda)\|\nabla y(t)\|_{2}^{2}
\end{align*}
$$

Substituting (36) in (35), we get

$$
\begin{align*}
A^{\prime}(t) \geq & (1-\gamma) H^{-\gamma}(t) H^{\prime}(t)+\epsilon\left\|y_{t}\right\|_{2}^{2}-\epsilon\|\nabla y\|_{2}^{2} \\
& -b \epsilon \int_{\Omega} y \int_{-\infty}^{+\infty} \eta(\xi) \phi(x, \xi, t) d \xi d x \tag{37}\\
& +\epsilon\|y\|_{p}^{p}-\frac{\epsilon}{4} \int_{0}^{+\infty} g(\tau)\left\|\nabla \mu^{t}(\tau)\right\|_{2}^{2} d \tau
\end{align*}
$$

Using Young's inequality and (31), we find

$$
\begin{align*}
& b \int_{\Omega} y \int_{-\infty}^{+\infty} \eta(\xi) \phi(x, \xi, t) d \xi d x \\
& \leq \delta C_{1}\|y\|_{2}^{2}+\frac{b}{4 \delta} \int_{\Omega} \int_{-\infty}^{+\infty}\left(\xi^{2}+\beta\right)|\phi(x, \xi, t)|^{2} d \xi d x \tag{38}\\
& \leq \delta C_{1}\|y\|_{2}^{2}+\frac{1}{4 \delta} H^{\prime}(t)
\end{align*}
$$

for $C_{1}:=b \int_{-\infty}^{+\infty} \frac{\eta^{2}(\xi)}{\xi^{2}+\beta} d \xi$ and $\delta>0$, which may depend on t .
Substituting (38) in (37), we have

$$
\begin{align*}
A^{\prime}(t) \geq & \left((1-\gamma) H^{-\gamma}(t)-\frac{\epsilon}{4 \delta}\right) H^{\prime}(t) \\
& +\epsilon\left\|y_{t}\right\|_{2}^{2}-\epsilon\|\nabla y\|_{2}^{2}-\epsilon \delta C_{1}\|y\|_{2}^{2} \tag{39}\\
& +\epsilon\|y\|_{p}^{p}-\frac{\epsilon}{4} \int_{0}^{+\infty} g(\tau)\left\|\nabla \mu^{t}(\tau)\right\|_{2}^{2} d \tau
\end{align*}
$$

Next, we choose an appropriate δ as follows:

$$
\begin{equation*}
\frac{1}{4 \delta}=k H^{-\gamma}(t) \tag{40}
\end{equation*}
$$

where k is some positive constant to be determined later. Substituting (40) into (39), we get

$$
\begin{align*}
A^{\prime}(t) \geq & {[(1-\gamma)-\epsilon k] H^{-\gamma}(t) H^{\prime}(t)+\epsilon\left\|y_{t}\right\|_{2}^{2} } \\
& -\epsilon\|\nabla y\|_{2}^{2}-\frac{\epsilon C_{1}}{4 k} H^{\gamma}(t)\|y\|_{2}^{2} \tag{41}\\
& +\epsilon\|y\|_{p}^{p}-\frac{\epsilon}{4} \int_{0}^{+\infty} g(\tau)\left\|\nabla \mu^{t}(\tau)\right\|_{2}^{2} d \tau
\end{align*}
$$

Using (32), we have

$$
\begin{equation*}
\boldsymbol{H}^{\gamma}(t) \leq \frac{1}{p^{\gamma}}\|y\|_{p}^{p \gamma} \tag{42}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
C_{1} H^{\gamma}(t)\|y\|_{2}^{2} \leq C_{2}\|y\|_{p}^{p \gamma+2} \tag{43}
\end{equation*}
$$

for some $C_{2}>0$. Combining (41) and (43), we obtain

$$
\begin{align*}
A^{\prime}(t) \geq & {[(1-\gamma)-\epsilon k] H^{-\gamma}(t) H^{\prime}(t)+\epsilon\left(\frac{p}{4}+1\right)\left\|y_{t}\right\|_{2}^{2} } \\
& +\frac{\epsilon}{2}\|y\|_{p}^{p}+\epsilon\left[\frac{\lambda p}{4}-1\right]\|\nabla y\|_{2}^{2} \\
& +\frac{\epsilon b p}{4} \int_{\Omega} \int_{-\infty}^{+\infty}|\phi(x, \xi, t)|^{2} d \xi d x \tag{44}\\
& +\epsilon\left(\frac{p}{2} H(t)-\frac{C_{2}}{4 k}(t)\|y\|_{2}^{p \gamma+2}\right) \\
& +\epsilon\left(\frac{p-1}{4}\right) \int_{0}^{+\infty} g(\tau)\left\|\nabla \mu^{t}(\tau)\right\|_{2}^{2} d \tau .
\end{align*}
$$

By Lemma 5 and (34), for $s=p \gamma+2 \leq p$, we find

$$
\begin{align*}
A^{\prime}(t) \geq & ((1-\gamma)-\epsilon k) H^{-\gamma}(t) H^{\prime}(t)+\epsilon\left(\frac{p}{4}+1\right)\left\|y_{t}\right\|_{2}^{2} \\
& +\frac{\epsilon}{2}\left(1-\frac{C_{3}}{2 k}\right)\|y\|_{p}^{p}+\frac{\epsilon}{4}\left[(\lambda p-4)-\frac{C_{3}}{k}\right]\|\nabla y\|_{2}^{2} \\
& +\frac{\epsilon b p}{4} \int_{\Omega} \int_{-\infty}^{+\infty}|\phi(x, \xi, t)|^{2} d \xi d x+\frac{p \epsilon}{2} H(t) \tag{45}\\
& +\epsilon\left(\frac{p-1}{4}\right) \int_{0}^{+\infty} g(\tau)\left\|\nabla \mu^{t}(\tau)\right\|_{2}^{2} d \tau
\end{align*}
$$

where $C_{3}=C C_{2}$. Using (28) and (G1), we get $p \lambda-4>0$.
At this point, we choose k large enough such that

$$
1-\frac{C_{3}}{2 k}>0, \quad p \lambda-4-\frac{C_{3}}{k}>0
$$

When k is fixed, we pick ϵ small enough such that

$$
(1-\gamma)-\epsilon k>0, \quad H(0)+\epsilon \int_{\Omega} y_{0} y_{1} d x>0
$$

Therefore, there exists a positive constant C_{4} such that

$$
\begin{equation*}
A^{\prime}(t) \geq C_{4}\left(H(t)+\left\|y_{t}\right\|_{2}^{2}+\|y\|_{p}^{p}+\|\nabla y\|_{2}^{2}\right) \tag{46}
\end{equation*}
$$

Furthermore, we get

$$
\begin{equation*}
A(t) \geq A(0)>0, t>0 \tag{47}
\end{equation*}
$$

By HölderâĂŹs inequality and the embedding inequalities, we have

$$
\int_{\Omega} y y_{t} d x \leq\|y\|_{2}\left\|y_{t}\right\|_{2} \leq d\|y\|_{p}\left\|y_{t}\right\|_{2}
$$

where $d>0$ is the best embedding constant. Using Young's inequality, we find

$$
\begin{equation*}
\left|\int_{\Omega} y y_{t} d x\right|^{\frac{1}{1-\gamma}} \leq d_{1}\left(\left\|y_{t}\right\|_{2}^{\frac{\theta^{\prime}}{1-\gamma}}+\|y\|_{p}^{\frac{\theta}{1-\gamma}}\right) \tag{48}
\end{equation*}
$$

where d_{1} is a constant and $\frac{1}{\theta}+\frac{1}{\theta^{\prime}}=1$. Using Lemma 5, for $\theta^{\prime}=2(1-\gamma)$, we obtain

$$
\frac{\theta}{1-\gamma}=\frac{2}{1-2 \gamma} \leq p
$$

Thus, for $s=\frac{2}{1-2 \gamma}$, we obtain

$$
\begin{equation*}
\left|\int_{\Omega} y y_{t} d x\right|^{\frac{1}{1-\gamma}} \leq d_{2}\left(\left\|y_{t}\right\|_{2}^{2}+\|y\|_{p}^{p}+\|\nabla y\|_{2}^{2}\right), \tag{49}
\end{equation*}
$$

where $d_{2}>0$ is a constant. Consequently, by (49), we have

$$
\begin{align*}
A^{\frac{1}{1-\gamma}}(t) & \leq\left(H^{1-\gamma}(t)+\int_{\Omega} y y_{t} d x\right)^{\frac{1}{1-\gamma}} \\
& \leq d_{3}\left(H(t)+\left(\int_{\Omega} y y_{t} d x\right)^{\frac{1}{1-\gamma}}\right) \tag{50}\\
& \leq d_{3}\left(H(t)+\left\|y_{t}\right\|_{2}^{2}+\|\nabla y\|_{2}^{2}+\|y\|_{p}^{p}\right), \quad t \geq 0,
\end{align*}
$$

where d_{3} is a positive constant. Combining (46) and (50), we obtain

$$
\begin{equation*}
A^{\prime}(t) \geq d_{4} A^{\frac{1}{1-\gamma}}(t), \quad t \geq 0 \tag{51}
\end{equation*}
$$

where d_{4} is a positive constant. Integrating (51) over ($0, \mathrm{t}$), we get

$$
\begin{equation*}
A(t) \geq \frac{1}{A^{\frac{-\gamma}{1-\gamma}}(t)-\frac{\gamma d_{4} t}{1-\gamma}} . \tag{52}
\end{equation*}
$$

So, $A(t)$ blows up in a finite time

$$
T \leq T^{*}=\frac{1-\gamma}{d_{4} \gamma A^{\frac{\gamma}{1-\gamma}}(0)} .
$$

CONFLICT OF INTEREST

The authors declare no potential conflict of interests.

ACKNOWLEDGEMENTS

References

1. E. Blanc, G. Chiavassa and B. Lombard Biot-JKD model: Simulation of ID transient poro-elastic waves with fractional derivative, J. Comput. Phys. 237 (2013) 1-20.
2. J. U. Choi, R. C. Maccamy, Fractional order Volterra equations with applications to elasticity, J. Math. Anal. Appl. 139 (1989) 448-464.
3. D. Valerio, J.A.T. Machado and V. Kiryakova, Some pioneers of the applications of fractional calculus. Fract. Calc. Appl. Anal., 17 (2014), 552-578.
4. C.M.Dafermos, Asymptotic stability in visco-elasticity, Arch. Rational Mech. Anal.37(1970) 297-308.
5. J.A.T. Machado and A.M. Lopes, Analysis of natural and artificial phenomena using signal processing and fractional calculus, Fract. Calc. Appl. Anal. 18 (2015), 459-478.
6. R.L. Magin, Fractional calculus in bio-engineering, Begell House: Redding, CT, USA, 2006.
7. H.A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equation, SIAM J. Math. Anal.5(1974) 138-146.
8. V. Georgiev, G. Todorova, Existence of solutions of the wave equation with nonlinear damping and source terms, J. Differ. Equ.109(1994) 295-308.

65 12. D. Matignon,J. Audounet, G. Montseny, Energy decay for wave equations with damping of fractional order, Proc. of the 4th International Conference on Mathematical and Numerical Aspects of Wave Propagation Phenomena (Golden, Colorado, June 1998). 638-640, INRIASIAM.
13. M. Kirane and N.-e Tatar, Exponential growth for fractionally damped wave equation, Z. Anal. Anwend. 22 (2003) 167-178.
14. N.-e Tatar, A wave equation with fractional damping, Z. Anal. Anwend. 22 (2003) 1-10.
\% 15. N.-e.Tatar, A blow up result for a fractionally damped wave equation, NoDEA Nonlinear Differential Equations Appl. 12 (2)(2005) 215-226.
16. R. Aounallah, S. Boulaaras, A. Zarai, and B. Cherif, General decay and blow up of solution for a nonlinear wave equation with a fractional boundary damping, Mathematical Methods in the Applied Sciences. 43 (12) (2020) 7175-7193.
17. R. Aounallah, A. Benaissa, and A. Zarai, Blow-up and asymptotic behavior for a wave equation with a time delay condition of fractional type. Rend. Circ. Mat. Palermo, II. Ser (2020). https://doi.org/10.1007/s12215-020-00545-y
18. J. A. D. Appleby, M. Fabrizio, B. Lazzari and D. W. Reynolds, On exponential asymptotic stability in linear visco-elasticity. Math. Models Methods Appl. 1616 (2006) 1677-1694.
19. A. Guesmia, Asymptotic stability of abstract dissipative systems with infinite memory. J. Math. Appl. 382 (2011), 748-760.
20. B. Mbodje, Wave energy decay under fractional derivative controls, IMA J. Math. Control Inf. 23 (2006) 237-257.
so 21. A. Benaissa, H. Benkhedda, Global existence and energy decay of solutions to a wave equation with a dynamic boundary dissipation of fractional derivative type, Z. Anal. Anwend. 37(2018) 315-339.
22. A. Haraux, Nonlinear evolution equations, global behavior of solutions, Lecture Notes in Mathematics 841, Springer-Verlag; 1981.
23. V. Komornik, Exact controllability and stabilization. The multiplier method. Paris: Masson John Wiley; 1994.
24. J. E. Muñoz Rivera and H. D. Fernández Sare, Stability of Timoshenko systems with past history, J. Math. Anal. Appl. 339(1),(2008) 482-502 .
25. P. X. Pamplona, J. E. Muñoz Rivera, and R. Quintanilla, On the decay of solutions for porous-elastic systems with history, J. Math. Anal. Appl. 379(2011) 682-705 .

How to cite this article: M. Kirane, A. Radhouane, Blow-up of solutions of a non-linear wave equation with fractional damping and infinite memory, Math Methods Appl Sci, submitted.

