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We consider a non-linear wave equation with an internal fractional damping, a poly-
nomial source and an infinite memory. Using the semi-group theory, we get the
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1 INTRODUCTION

We investigate the following problem:

(P )

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ytt − Δy +

+∞

∫
0

g(�)Δy(t − �) d� + )�,�t y(t) = |y|p−2y, in Ω × (0,∞),

y = 0, on )Ω × (0,∞),

y(x, 0) = y0(x), yt(x, 0) = y1(x), in Ω.

where p > 2, Ω is a bounded domain in ℝn with a smooth boundary )Ω and g is a function which will be specified later. The
notation )�,�t stands for the modified Caputo’s fractional derivative (see1,2) defined by:

)�,�t u(t) ∶= 1
Γ(1 − �)

t

∫
0

(t − s)−�e−�(t−s)us(s) ds, 0 < � < 1, � ≥ 0.

Partial differential equations with fractional derivatives arise in biology, physics, electronics and vibrations, etc. In the last
years, the control of PDEs with fractional derivatives has been studied in3,4,5,6.
It is well known that in the absence of an internal fractional damping, the polynomial source causes finite time blow up of

solutions with negative initial energy (see7,8,9,10). Whereas, in the presence of non-linear damping, Georgiev and Todorova11,5

proved under the assumption p ≤ m, that the solution is global. However, for the opposite case, solutions may blows up in a
finite time.
In the presence of fractional damping, The linear wave equation with the Riemann–Liouville fractional derivatives has been

considered by Matignon et al. in12. The authors proved well-posedness and asymptotic stability. Later on, Kirane and Tatar13,
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2. PRELIMINARIES

proved an exponential growth result. By using a new argument, Tatar14, extended Kirane and TatarâĂŹs result to a larger class10

of initial data. The same author15, proved a finite time blow up result. Recently, by writing the wave equation with a dynamic
boundary dissipation of fractional derivative type as an augmented system, Aounallah et al.16,17 proved the existence and decay
properties of the sought solutions. For infinite memory problems, Appleby et al.18, established an exponential decay of a linear
integro-differential equation. Later on, Guesmia19 investigated a class of hyperbolic problems and established a more general
decay result. In20, by describing the fractional damping by means of a suitable diffusion equation, the problem (P) was put into15

an augmented model which can be easily tackled. To the best of our knowledge, a non-linear wave equation with an internal
fractional damping and infinite memory has not been studied yet. In addition, the finite time blow-up of the solution for this
problems has not been addressed. The paper is organized as follows: In Sec. 2, we present some assumptions and tools needed
to demonstrate the main results. In Sec. 3, we use the semi-group theory22,23 to prove the existence of a local weak solution. In
Sec. 4, we use a judicious Lyapunov functional to prove the finite time blow-up of a certain solution.20

2 PRELIMINARIES

In this section, we provide some material needed for the proof of our results. We need the following assumptions:
(G1) g ∶ ℝ+ → ℝ+ is a C1 function such that

g(0) > 0, g0 =

∞

∫
0

g(�) d� = 1 − � > 0;

(G2) there exists a positive constant � such that:

g′(t) ≤ −�g(t), t ≥ 0.

We state without proof the following claims:

Lemma 1. The following inequality holds:

∫
Ω

⎡

⎢

⎢

⎣

+∞

∫
0

g(�)∇w(�) d�
⎤

⎥

⎥

⎦

2

dx ≤ (1 − �)

+∞

∫
0

g(�)‖∇w(�)‖22 d�.

Lemma 2. 20 Let
b ∶=

sin(��
�

and let � be the function:
�(�) ∶= |�|

(2�−1)
2 , � ∈ ℝ, 0 < � < 1.

Then the relationship between the ”input” U and the ”output” O of the system
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

)t�(�, t) + (�2 + �)�(�, t) − U (x, t)�(�) = 0, � ∈ ℝ, t > 0, � ≥ 0,

�(�, 0) = 0,

O(t) ∶= b

+∞

∫
−∞

�(�, t)�(�) d�

(1)

is given by
O ∶= I1−�,�U,

where

I�,�u(t) ∶= 1
Γ(�)

t

∫
0

(t − s)�−1e−�(t−s)u(s) ds.

2



2. PRELIMINARIES

Lemma 3. 21 For all � ∈ D� = {� ∈ ℂ ∶ ℜe� + � > 0} ∪ {� ∈ ℂ ∶ ℑm� ≠ 0},

A� ∶=

+∞

∫
−∞

�2(�)
� + � + �2

d� = �
sin (��)

(� + �)�−1.

Now, similarly to24,25, we introduce the following new variable:

�t(x, �) = y(x, t) − y(x, t − �), (2)

where �t is the relative history of y that satisfies

�tt(x, �) − yt(x, t) + �
t
�(x, �) = 0, x ∈ Ω, t, � > 0. (3)

Then, by using Lemma 2 and (2), system (P) takes the form :

(P ′)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ytt − �Δy(t) −

+∞

∫
0

g(�)Δ�t(x, �) d�

+b

+∞

∫
−∞

�(�, t)�(�) d� = |y|p−2y, x ∈ Ω, t > 0,

)t�(�, t) + (�2 + �)�(�, t) − yt(x, t)�(�) = 0, � ∈ ℝ, t > 0, � ≥ 0,

�tt(x, �) + �
t
�(x, �) = yt(x, t), x ∈ Ω, t, � > 0,

y = �t(x, �) = 0, x ∈ )Ω, t, � > 0,

y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ Ω,

�t(x, 0) = 0, �0(x, �) = y0(x) − y0(x,−�), x ∈ Ω, t, � > 0,

�(�, 0) = 0, x ∈ Ω, � ∈ ℝ.
Lemma 4. The energy

E(t) ∶ = 1
2
⇑⇑⇑⇑⇑yt(t)

⇑⇑⇑⇑⇑
2
2 +

b
2 ∫
Ω

+∞

∫
−∞

|�(�, t)|2 d�dx + �
2
⇑⇑⇑⇑∇y(t)⇑⇑⇑⇑22

− 1
p
⇑⇑⇑⇑y(t)⇑⇑⇑⇑pp +

1
2

+∞

∫
0

g(�)⇑⇑⇑⇑⇑∇�t(�)
⇑⇑⇑⇑⇑
2
2 d�

(4)

satisfies

dE(t)
dt

= 1
2

+∞

∫
0

g′(�)⇑⇑⇑⇑⇑∇�t(�)
⇑⇑⇑⇑⇑
2
2 d�

− b∫
Ω

+∞

∫
−∞

(�2 + �)|�(�, t)|2 d�dx ≤ 0.

(5)

3



2. PRELIMINARIES

Proof. Multiplying the first equation in (P’) by yt, integrating over Ω and using integration by parts, we get

d
dt

{

1
2
⇑⇑⇑⇑⇑yt(t)

⇑⇑⇑⇑⇑
2
2 +

�
2
⇑⇑⇑⇑∇y(t)⇑⇑⇑⇑22 −

1
p
⇑⇑⇑⇑y(t)⇑⇑⇑⇑pp

}

+ b∫
Ω

yt

+∞

∫
−∞

�(�)�(x, �, t) d�dx

− ∫
Ω

yt

+∞

∫
0

g(�)Δ�t(�) d�dx = 0.

(6)

We use (3) to transform the last term of (6) as follows:

− ∫
Ω

yt

+∞

∫
0

g(�)Δ�t(�) d�dx

= −

+∞

∫
0

g(�)∫
Ω

(

�tt + �
t
�

)

Δ�t(�) dxd�

= −

+∞

∫
0

g(�)∫
Ω

�ttΔ�
t(�) dxd�

−

+∞

∫
0

g(�)∫
Ω

�t�Δ�
t(�) dxd�,

and integrating by parts, we get

−∫
Ω

yt

+∞

∫
0

g(�)Δ�t(�) d�dx = d
dt

⎡

⎢

⎢

⎣

1
2

+∞

∫
0

g(�)‖∇�t(�)‖22 d�
⎤

⎥

⎥

⎦

− 1
2

+∞

∫
0

g′(�)‖∇�t(�)‖22 d�.

(7)

By substituting (7) in (6), we have

d
dt

⎧

⎪

⎨

⎪

⎩

1
2
⇑⇑⇑⇑⇑yt(t)

⇑⇑⇑⇑⇑
2
2 +

�
2
⇑⇑⇑⇑∇y(t)⇑⇑⇑⇑22 −

1
p
⇑⇑⇑⇑y(t)⇑⇑⇑⇑pp +

1
2

+∞

∫
0

g(�)⇑⇑⇑⇑⇑∇�t(�)
⇑⇑⇑⇑⇑
2
2 d�

⎫

⎪

⎬

⎪

⎭

− 1
2

+∞

∫
0

g′(�)⇑⇑⇑⇑⇑∇�t(�)
⇑⇑⇑⇑⇑
2
2 d� + b∫

Ω

yt

+∞

∫
−∞

�(�)�(�, t) d�dx = 0.

(8)

Now multiplying the second equation in (P’) by b� and integrating over Ω ×ℝ, we obtain:

d
dt

⎧

⎪

⎨

⎪

⎩

b
2 ∫
Ω

+∞

∫
−∞

|�(�, t)|2 d�dx

⎫

⎪

⎬

⎪

⎭

+ b∫
Ω

+∞

∫
−∞

(�2 + �)|�(�, t)|2 d�dx

− b∫
Ω

yt

+∞

∫
−∞

�(�)�(�, t) d�dx = 0.

(9)

4



3. WELL-POSEDNESS

By combining (4), (8) and (9), we obtain (5). The lemma is proved.

3 WELL-POSEDNESS25

In this section, we establish the local existence result for problem (PâĂŹ). First, we define the vector function

U = (y, yt, �, �t)T

and a new dependent variable
u = yt.

Consequently, problem (PâĂŹ) can be rewritten as follows:

(P ′′)

⎧

⎪

⎨

⎪

⎩

Ut(t) + AU (t) = J (U (t)) ,

U (0) = U0,

where the operator A ∶ D(A)→  is defined by

AU =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−u

−�Δy −

+∞

∫
0

g(�)Δ�t(x, �)d� + b

+∞

∫
−∞

�(x, �, t)�(�) d�

(�2 + �)� − u(x)�(�)

�t�(�) − u

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

J (U ) = (0, |y|p−2y, 0, 0)T , (10)
and  is the energy space given by

 = H1
0 (Ω) × L

2(Ω) × L2(Ω,ℝ) × L2g(ℝ+,H
1
0 (Ω))

such that

L2g(ℝ+,H
1
0 (Ω)) =

⎧

⎪

⎨

⎪

⎩

w ∶ ℝ+ → H1
0 (Ω),

+∞

∫
0

g(�)⇑⇑⇑⇑∇w(�)⇑⇑⇑⇑22 d� <∞

⎫

⎪

⎬

⎪

⎭

;

the space L2g(ℝ+,H
1
0 (Ω)) is endowed with the inner product:

⟨w1, w2⟩L2g(ℝ+,H2
0 (Ω))

=

+∞

∫
0

g(�)∫
Ω

∇w1(�)∇w2(�) dxd�.

For any U = (y, u, �, �t)T ∈  and Ū = (ȳ, ū, �̄, �̄t)T ∈ , we define the inner product

⟨

U, Ū
⟩

 =∫
Ω

[�∇y.∇ȳ + uū] dx + b∫
Ω

+∞

∫
−∞

��̄ d�dx

+

+∞

∫
0

g(�)∫
Ω

∇�t(�)∇�̄t(�) dxd�.

The domain of A is given by

5



3. WELL-POSEDNESS

D(A) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

U = (y, u, �, �t)T ∈ ; y ∈ H2(Ω); u ∈ H1
0 (Ω);

(�2 + �)� − u�(�) ∈ L2(Ω,ℝ);

|�|� ∈ L2(Ω,ℝ);�t� ∈ L
2
g

(

ℝ+,H
1
0 (Ω)

)

,

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

Now, we can present the following existence result

Theorem 1. Suppose that
⎧

⎪

⎨

⎪

⎩

P > 2, if n = 1, 2.

2 < p < 2n
n − 2

, if n ≥ 3.
(11)

Assume further that
U0 ∈ , (12)

then the problem (PâĂŹ) has a unique local solution

U ∈ C ([0, T ),) . (13)

Proof. The proof is based on22. First, we demonstrate that A is a monotone maximal operator on . We start by showing that
the operator A is monotone. For, for any U ∈ D(A), using (PâĂİ), we have

⟨AU,U⟩ =b∫
Ω

+∞

∫
−∞

(�2 + �)|�|2 d�dx

− 1
2

+∞

∫
0

g′(�)⇑⇑⇑⇑⇑∇�t(�)
⇑⇑⇑⇑⇑
2
2 d� ≥ 0.

(14)

So, A is a monotone operator. Next, we will show that the operator (I + A) is onto. For, given F = (f1, f2, f3, f4)T ∈ , we
dwill show that there exists U ∈ D(A) such that

(I + A)U = F ;
that is,

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

y − u = f1 ∈ H1
0 (Ω),

u − �Δy −

+∞

∫
0

g(�)Δ�t(�) d� + b

+∞

∫
−∞

�(�)�(�) d� = f2 ∈ L2(Ω),

� + (�2 + �)� − u�(�) = f3(�) ∈ L2(Ω,ℝ),

�t + �t� − u = f4(�) ∈ L
2
g(ℝ+;H1

0 (Ω)).

(15)

Using the third equation in (15), we obtain
� =

f3 + u�(�)
�2 + � + 1

. (16)

On the other hand, the fourth equation in (15) has a unique solution

�t =
⎛

⎜

⎜

⎝

�

∫
0

ez(f4(z) + y − f1) dz
⎞

⎟

⎟

⎠

e−� . (17)

Inserting u = y − f1, (16) and (17) in the second equation in (15), we obtain

�y − �̄Δy = G, (18)

6



3. WELL-POSEDNESS

where

� = 1 + b

+∞

∫
−∞

�2(�)
�2 + � + 1

d� > 0,

�̄ = � +

+∞

∫
0

g(�)e−�
⎛

⎜

⎜

⎝

�

∫
0

ez dz
⎞

⎟

⎟

⎠

ds

= 1 −

+∞

∫
0

g(�)e−� d� > 0,

G = f2 + �f1 − b

+∞

∫
−∞

�(�)f3(�)
�2 + � + 1

d�

+

+∞

∫
0

g(�)e−�
⎛

⎜

⎜

⎝

�

∫
0

ezΔ(f4(z) − f1) dz
⎞

⎟

⎟

⎠

d�.

To solve (18), we consider the following variational formulation:

B(y,w) = L(w), ∀w ∈ H1
0 (Ω), (19)

where B is the bi-linear form defined by

B(y,w) = � ∫
Ω

ywdx + �̄∫
Ω

∇y.∇wdx, (20)

and L is the linear functional given by
L(w) = ∫

Ω

Gwdx. (21)

It is easy to verify that L is bounded and B is coercive and bounded. So, the Lax–Milgram theorem guarantees that for all
w ∈ H1

0 (Ω), the linear elliptic equation (18) has a unique solution y ∈ H
1
0 (Ω).

The substitution of y into the first equation in (15) yields u ∈ H1
0 (Ω).30

Inserting u in (15) and bearing in mind the third equation in (15), we obtain

� ∈ L2(Ω,ℝ).

Similarly, we have
�t ∈ L2g(ℝ+;H1

0 (Ω)).
Using (18), we get

� ∫
Ω

ywdx + �̄∫
Ω

∇y.∇wdx = ∫
Ω

Gwdx. (22)

7



3. WELL-POSEDNESS

The elliptic regularity theory, then, implies that y ∈ H2(Ω). So, I+A is onto.
Now, we prove that the operator defined in (10) is locally Lipschitzian in . For U, Ũ ∈ , we get

⇑⇑⇑⇑⇑⇑J (U ) − J (Ū )
⇑⇑⇑⇑⇑⇑ = ⇑⇑⇑⇑⇑⇑

(

0, u|u|p−2 − ū|ū|p−2, 0
)⇑⇑⇑⇑⇑⇑

= ⇑⇑⇑⇑⇑⇑u|u|
p−2 − ū|ū|p−2⇑⇑⇑⇑⇑⇑L2(Ω)

= ⇑⇑⇑⇑⇑|u|
p − |ū|p⇑⇑⇑⇑⇑L2(Ω)

= ⇑⇑⇑⇑⇑⇑(u − ū)(|u|
p−1 + up−2ū + ... + ūp−1)⇑⇑⇑⇑⇑⇑L2(Ω)

= C ⇑⇑⇑⇑⇑⇑(u − ū)(u
p−1 + ūp−1)⇑⇑⇑⇑⇑⇑L2(Ω)

≤ C
⎛

⎜

⎜

⎝

∫
Ω

(|u − ū|2)(|u|p−1 + |ū|p−1)2 dx
⎞

⎟

⎟

⎠

1
2

.

Using Hölder’s inequality, we have

⇑⇑⇑⇑⇑⇑J (U ) − J (Ū )
⇑⇑⇑⇑⇑⇑ ≤ C

⎛

⎜

⎜

⎝

∫
Ω

|u − ū|2
 dx
⎞

⎟

⎟

⎠

1
2

⎛

⎜

⎜

⎝

∫
Ω

(|u|p−1 + |ū|p−1)2� dx
⎞

⎟

⎟

⎠

1
2�

, 1


+ 1
�
= 1,

with 
 = n
n − 2

and � = n
2
. So we have

⇑⇑⇑⇑⇑⇑J (U ) − J (Ū )
⇑⇑⇑⇑⇑⇑ ≤ C

⎛

⎜

⎜

⎝

∫
Ω

(|u − ū|
2n
n−2


 )
⎞

⎟

⎟

⎠

n−2
2n
⎛

⎜

⎜

⎝

∫
Ω

(|u|p−1 + |ū|p−1)n dx
⎞

⎟

⎟

⎠

1
n

≤ C
⎛

⎜

⎜

⎝

∫
Ω

(|u − ū|
2n
n−2 
)

⎞

⎟

⎟

⎠

n−2
2n
⎛

⎜

⎜

⎝

∫
Ω

(|u|n(p−1) + |ū|n(p−1)) dx
⎞

⎟

⎟

⎠

1
n

≤ C ⇑⇑⇑⇑u − ū⇑⇑⇑⇑L 2n
n−2 (Ω)

⎡

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎝

∫
Ω

|u|n(p−1)dx
⎞

⎟

⎟

⎠

1
n

+
⎛

⎜

⎜

⎝

∫
Ω

|ū|n(p−1) dx
⎞

⎟

⎟

⎠

1
n ⎤

⎥

⎥

⎥

⎦

≤ C ⇑⇑⇑⇑u − ū⇑⇑⇑⇑L 2n
n−2 (Ω)

[

⇑⇑⇑u⇑⇑⇑p−1Ln(p−1)(Ω) +
⇑⇑⇑⇑ū⇑⇑⇑⇑p−1Ln(p−1(Ω)

]

.

(23)

The Sobolev embedding theorem gives
⇑⇑⇑⇑u − ū⇑⇑⇑⇑L 2n

n−2 (Ω)
≤ C ⇑⇑⇑⇑u − ū⇑⇑⇑⇑L2(Ω) ≤ C

⇑⇑⇑⇑⇑⇑U − Ū⇑⇑⇑⇑⇑⇑ . (24)

The necessity to estimate ⇑⇑⇑u⇑⇑⇑n(p−1) by the energy norm ⇑⇑⇑⇑U⇑⇑⇑⇑ requires to consider different ranges of p. Namely, we need
n(p − 1) ≤ 2n

n − 2
and this coincides with the cut in our assumption p ≤ n

n − 2
. Thus, the Sobolev embedding theorem

L n
n−2
(Ω) ⊂ H1(Ω)

, it holds
⇑⇑⇑u⇑⇑⇑p−1Ln(p−1)(Ω) ≤ C ⇑⇑⇑u⇑⇑⇑p−1H1 (Ω). (25)

Therefore, by combining (24)âĂŞ(25), we obtain
⇑⇑⇑⇑⇑⇑U − Ū⇑⇑⇑⇑⇑⇑ ≤ C(⇑⇑⇑u⇑⇑⇑p−1H1 (Ω),

⇑⇑⇑⇑ū⇑⇑⇑⇑p−1H1 (Ω))
⇑⇑⇑⇑⇑⇑U − Ū⇑⇑⇑⇑⇑⇑ .

So, J is locally Lipschitzian. Therefore, the well-posedness result follows from the theorem of Sigal.
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4 BLOW UP RESULT

In this section, we use a judicious Lyapunov functional to prove that some solutions can experience blow-up in a finite time. To
achieve our goal, we need the following lemma.

Lemma 5. Suppose that p ≥ 2. Then, there exists a positive constant C > 1 such that
⇑⇑⇑⇑y⇑⇑⇑⇑sp ≤ C2

(

⇑⇑⇑⇑y⇑⇑⇑⇑pp +
⇑⇑⇑⇑∇y⇑⇑⇑⇑22

)

(26)

for any y ∈ H1
0 (Ω) and 2 ≤ s ≤ p.35

Proof. If ⇑⇑⇑⇑y⇑⇑⇑⇑p ≥ 1 then
⇑⇑⇑⇑y⇑⇑⇑⇑sp ≤

⇑⇑⇑⇑y⇑⇑⇑⇑pp.
If ⇑⇑⇑⇑y⇑⇑⇑⇑p ≤ 1 then

⇑⇑⇑⇑y⇑⇑⇑⇑sp ≤
⇑⇑⇑⇑y⇑⇑⇑⇑2p ≤ C∗

⇑⇑⇑⇑∇y⇑⇑⇑⇑22 by the Sobolev embedding theorem.

Let
H(t) = −E(t). (27)

Theorem 2. Suppose that p > 4 satisfies (11). Assume further that (G1)

g0 =

∞

∫
0

g(�) d� <
p − 4
p

(28)

and
E(0) < 0. (29)

Then, the solution of system (PâĂŹ) blows-up in a finite time.

Proof. Using (5), we have
E(t) ≤ E(0) < 0. (30)

Thus, we get

H ′(t) = −E′(t) = − 1
2

+∞

∫
0

g′(�)⇑⇑⇑⇑⇑∇�t(�)
⇑⇑⇑⇑⇑
2
2 d�

+ b∫
Ω

+∞

∫
−∞

(�2 + �)|�(�, t)|2 d�dx ≥ 0.

(31)

Furthermore, we have
0 < H(0) ≤ H(t) ≤ 1

p
‖y‖pp. (32)

Let
A(t) = H1−
 (t) + � ∫

Ω

uut dx, (33)

where � > 0 to be specified later and
0 < 
 <

p − 2
2p

. (34)

Differentiating (33) and using (PâĂŹ), we obtain
A′(t) =(1 − 
)H−
 (t)H ′(t) + �‖yt‖22 − ��‖∇y‖

2
2

− b� ∫
Ω

y

+∞

∫
−∞

�(�)�(x, �, t) d�dx + �‖y‖pp

− � ∫
Ω

∇y

∞

∫
0

g(�)∇�t(�)d� dx.

(35)

9
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Using Young’s inequality and Lemma 1, we find

∫
Ω

∇y(t)

+∞

∫
0

g(�)∇�t(�) d�dx

≤ 1
4

+∞

∫
0

g(�)⇑⇑⇑⇑⇑∇�t(�)
⇑⇑⇑⇑⇑
2
2 d� + (1 − �)

⇑⇑⇑⇑∇y(t)⇑⇑⇑⇑22 .

(36)

Substituting (36) in (35), we get
A′(t) ≥(1 − 
)H−
 (t)H ′(t) + �‖yt‖22 − �‖∇y‖

2
2

− b� ∫
Ω

y

+∞

∫
−∞

�(�)�(x, �, t) d�dx

+ �‖y‖pp −
�
4

+∞

∫
0

g(�)⇑⇑⇑⇑⇑∇�t(�)
⇑⇑⇑⇑⇑
2
2 d�.

(37)

Using Young’s inequality and (31), we find

b∫
Ω

y

+∞

∫
−∞

�(�)�(x, �, t) d�dx

≤ �C1‖y‖
2
2 +

b
4� ∫

Ω

+∞

∫
−∞

(�2 + �)|�(x, �, t)|2 d�dx

≤ �C1‖y‖
2
2 +

1
4�
H ′(t),

(38)

for C1 ∶= b
+∞

∫
−∞

�2(�)
�2 + �

d� and � > 0, which may depend on t.

Substituting (38) in (37), we have

A′(t) ≥
(

(1 − 
)H−
 (t) − �
4�

)

H ′(t)

+ �‖yt‖22 − �‖∇y‖
2
2 − ��C1‖y‖

2
2

+ �‖y‖pp −
�
4

+∞

∫
0

g(�)⇑⇑⇑⇑⇑∇�t(�)
⇑⇑⇑⇑⇑
2
2 d�.

(39)

Next, we choose an appropriate � as follows:
1
4�

= kH−
 (t), (40)
where k is some positive constant to be determined later. Substituting (40) into (39), we get

A′(t) ≥ [(1 − 
) − �k]H−
 (t)H ′(t) + �‖yt‖22

− �‖∇y‖22 −
�C1
4k

H 
 (t)‖y‖22

+ �‖y‖pp −
�
4

+∞

∫
0

g(�)⇑⇑⇑⇑⇑∇�t(�)
⇑⇑⇑⇑⇑
2
2 d�.

(41)

Using (32), we have
H 
 (t) ≤ 1

p

‖y‖p
p . (42)

Thus, we have
C1H


 (t)‖y‖22 ≤ C2‖y‖
p
+2
p , (43)
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for some C2 > 0. Combining (41) and (43), we obtain

A′(t) ≥ [(1 − 
) − �k]H−
 (t)H ′(t) + �
(p
4
+ 1

)

‖yt‖
2
2

+ �
2
‖y‖pp + �

[

�p
4
− 1

]

‖∇y‖22

+
�bp
4 ∫

Ω

+∞

∫
−∞

|�(x, �, t)|2 d�dx

+ �
(

p
2
H(t) −

C2
4k
(t)‖y‖p
+22

)

+ �
(

p − 1
4

)

+∞

∫
0

g(�)⇑⇑⇑⇑⇑∇�t(�)
⇑⇑⇑⇑⇑
2
2 d�.

(44)

By Lemma 5 and (34), for s = p
 + 2 ≤ p, we find

A′(t) ≥ ((1 − 
) − �k)H−
 (t)H ′(t) + �
(p
4
+ 1

)

‖yt‖
2
2

+ �
2

(

1 −
C3
2k

)

‖y‖pp +
�
4

[

(�p − 4) −
C3
k

]

‖∇y‖22

+
�bp
4 ∫

Ω

+∞

∫
−∞

|�(x, �, t)|2 d�dx +
p�
2
H(t)

+ �
(

p − 1
4

)

+∞

∫
0

g(�)⇑⇑⇑⇑⇑∇�t(�)
⇑⇑⇑⇑⇑
2
2 d�,

(45)

where C3 = C C2. Using (28) and (G1), we get p� − 4 > 0.
At this point, we choose k large enough such that

1 −
C3
2k

> 0, p� − 4 −
C3
k
> 0.

When k is fixed, we pick � small enough such that

(1 − 
) − �k > 0, H(0) + � ∫
Ω

y0y1 dx > 0.

Therefore, there exists a positive constant C4 such that

A′(t) ≥ C4
(

H(t) + ‖yt‖
2
2 + ‖y‖pp + ‖∇y‖22

)

. (46)

Furthermore, we get
A(t) ≥ A(0) > 0, t > 0. (47)

By HölderâĂŹs inequality and the embedding inequalities, we have

∫
Ω

yyt dx ≤ ⇑⇑⇑⇑y⇑⇑⇑⇑2
⇑⇑⇑⇑⇑yt

⇑⇑⇑⇑⇑2 ≤ d ⇑⇑⇑⇑y⇑⇑⇑⇑p
⇑⇑⇑⇑⇑yt

⇑⇑⇑⇑⇑2 ,

where d > 0 is the best embedding constant. Using Young’s inequality, we find

|

|

|

|

|

|

|

∫
Ω

yyt dx

|

|

|

|

|

|

|

1
1−


≤ d1

(

⇑⇑⇑⇑⇑yt
⇑⇑⇑⇑⇑

�′

1−


2 + ⇑⇑⇑⇑y⇑⇑⇑⇑
�
1−

p

)

, (48)

where d1 is a constant and
1
�
+ 1
�′
= 1. Using Lemma 5, for �′ = 2(1 − 
), we obtain

�
1 − 


= 2
1 − 2


≤ p.
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Thus, for s = 2
1 − 2


, we obtain

|

|

|

|

|

|

|

∫
Ω

yyt dx

|

|

|

|

|

|

|

1
1−


≤ d2
(

‖yt‖
2
2 + ‖y‖pp + ‖∇y‖22

)

, (49)

where d2 > 0 is a constant. Consequently, by (49), we have

A
1
1−
 (t) ≤

⎛

⎜

⎜

⎝

H1−
 (t) + ∫
Ω

yyt dx
⎞

⎟

⎟

⎠

1
1−


≤ d3

⎛

⎜

⎜

⎜

⎝

H(t) +
⎛

⎜

⎜

⎝

∫
Ω

yyt dx
⎞

⎟

⎟

⎠

1
1−
 ⎞

⎟

⎟

⎟

⎠

≤ d3
(

H(t) + ⇑⇑⇑⇑⇑yt
⇑⇑⇑⇑⇑
2
2 +

⇑⇑⇑⇑∇y⇑⇑⇑⇑22 +
⇑⇑⇑⇑y⇑⇑⇑⇑pp

)

, t ≥ 0,

(50)

where d3 is a positive constant. Combining (46) and (50), we obtain

A′(t) ≥ d4A
1
1−
 (t), t ≥ 0, (51)

where d4 is a positive constant. Integrating (51) over (0, t), we get

A(t) ≥ 1

A

−

1 − 
 (t) −


d4t
1 − 


. (52)

So, A(t) blows up in a finite time
T ≤ T ∗ =

1 − 


d4
A


1−
 (0)

.
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