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Abstract

The two-dimensional paraxial equation of optics and the twodimensional time-dependent Schr odinger equation, derived as

approximations of the three-dimensional Helmholtz equation and the three-dimensional time-independent Schr odinger equation

respectively, are identical. Here the free propagation in space and time of Hermite-Gauss wavepackets (optics) or Harmonic

Oscillator eigenfunctions (quantum mechanics) is examined in detail. The Gouy phase is shown to be a dynamic phase,

appearing as the integral of the adiabatic eigenfrequency or eigenenergy. The wave packets propagate adiabatically in that

at each space or time point they are solutions of the instantaneous harmonic problem. In both cases, it is shown that the

form of the wave function is unchanged along the loci of the normals to wave fronts. This invariance along such trajectories is

connected to the propagation of the invariant amplitude of the corresponding free wave number (optics) or momentum (quantum

mechanics) wavepackets. It is shown that the van Vleck classical density of trajectories function appears in the wave function

amplitude over the complete trajectory. A transformation to the co-moving frame along a trajectory gives a constant wave

function multiplied by a simple energy or frequency phase factor. The Gouy phase becomes the proper time in this frame.
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1. Introduction

In optics texts, the propagation of Gaussian beams in one space direction is a standard

problem [1, 2, 3]. Similarly it is a standard problem of wave function propagation in

time in quantum mechanics (QM) and treated in very many text books, good examples

are Cohen-Tannoudji et.al. in Ref. [4] or the book of Holland Ref. [5]. Nonetheless, in

the following some novel features of this problem are illuminated.

Usually only a simple Gaussian function is considered, for example, in optics, as

the output of a laser or, in QM as the harmonic oscillator ground state. Here the

extension to the propagation of laser beams of general Hermite-Gauss form is treated.

The terminology Hermite-Gauss is from optics, in QM these functions appear as the

infinite number of energy eigenfunctions of the harmonic oscillator (HO).

It is often pointed out that there is a similarity of the paraxial equation (PE) of

optics to the two-dimensional time-dependent Schrödinger equation (TDSE) of QM,

although the propagation of the PE is in one space direction z, whereas the propagation

in the TDSE is in the time coordinate. However, as shown in Ref. [6], the PE and

TDSE are identical in that the approximation steps to derive the PE from the three-

dimensional Helmholtz equation are exactly those leading from the three-dimensional

time-independent Schrödinger equation to the two-dimensional TDSE.

Unfortunately, in the solution of the PE and TDSE describing the propagation

of initial HG wave functions, the commonly-used nomenclature and mathematical

notations differ between optics and QM. This clouds the insight into the equivalence of

the two problems. One aim of this paper is to unite the concepts used in the two fields

by providing simple formulae to transcribe between optics and QM notations.

The main aim, however, is to throw new light on the free propagation in space

of Hermite-Gauss beams described by the PE, or equivalently, with the propagation in

time of the TDSE of QM. In particular the emergence of the invariant wave function in

wave number or momentum space along trajectories defined by the normals to the wave

fronts is emphasised. The Gouy phase, well known in optics [1, 2, 3], is re-interpreted

and shown to play a crucial role, especially in the transformation to a frame co-moving

along the trajectory.

2. Equivalence of the PE and TDSE

The precise equivalence of the derivation of the 2-dimensional PE from the 3-dimensional

Helmholtz equation and the derivation of the 2-dimensional TDSE from the 3-

dimensional Schrödinger equation is given in Ref. [6].

The PE for classical light of wave number k propagating through a vacuum is of

the form (
∂2Ψ

∂x2
+
∂2Ψ

∂y2

)
+ 2ik

∂Ψ

∂z
= 0, (1)

where Ψ(x, y, z) is a scalar field variable for light of wave number k. In the paraxial
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approximation it is usually admissible to replace k by kz, its component in the z direction

of light propagation.

In two space dimensions (x, y) with force-free particle motion and hence a constant

velocity vz in the z direction, the TDSE for a particle of mass m is

− ~2

2m

(
∂2Ψ

∂x2
+
∂2Ψ

∂y2

)
− i~ ∂Ψ

∂t
= 0, (2)

where t = z/vz. Dividing this equation by − ~2
2m

gives(
∂2Ψ

∂x2
+
∂2Ψ

∂y2

)
+ 2i

m

~
∂Ψ

∂t
= 0, (3)

The PE for light propagation is obtained from this equation by the standard replacement

m/~→ kz/c and putting z = ct to obtain (1).

Alternatively, beginning with (1) one could define an effective mass of the optical

field of energy E as m ≡ E/c2 = p/c = ~kz/c. Then substitution for kz in (1) leads to

the TDSE of (2). Hence, there is complete equivalence of PE and TDSE.

The mathematical equivalence of PE and TDSE is to be contrasted by their

very different regions of physical application. For light, a characteristic distance of

beam focussing is called the Rayleigh range zR and is typically of the order of 100

millimetre. As defined below, the corresponding distance in QM is typically of the order

of nanometres.

In the solution of the PE and TDSE for an initial HG wave, an important phase

function arises, identical in the two equations and known as the Gouy phase. Here

the origin and physical meaning of this phase is explained as arising from a quantised

energy or frequency, and its equivalence in the QM and optics cases is demonstrated. It

emerges as a manifestation of the property that the exact solution of the wave equation

propagates adiabatically as space or time evolves. This adiabatic behaviour, showing

that the wave packet adjusts as an HO eigenfunction, with corresponding adiabatic

phase, at each step in the propagation is perhaps understandable in QM, where the

velocity vz can be varied. It is more remarkable in the optics case where the velocity

can be c, the velocity of light.

In the QM of massive particles, beginning with Bohm [7], attempts have been

made to introduce deterministic particle trajectories even in regions of the size of a

wavelength. Such trajectories obey classical mechanics (CM) and therefore bring a new

philosophical aspect into the QM of the Schrödinger equation [5, 8, 9, 10]. Recently, there

have been suggestions to introduce similar trajectory concepts into the wave picture of

the Helmholtz equation of optics [11, 12], also at distances less than the Rayleigh range,

where normally wave fronts are shown. Here, if one accepts that such trajectories

are merely the loci of the normals to wave fronts, their importance as conduits for

the transport of the wave functions in k space is demonstrated. In particular, it is

shown that the space wave function, evaluated at points along the trajectories, is form

invariant. This is explained as due to the invariant form, under free propagation, of
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the corresponding wave number (optics) or momentum (quantum mechanics) function.

In addition it is shown that, in a frame co-moving with the trajectory, the space wave

function assumes this simple, invariant form where only the Gouy phase changes. By

contrast, in the fixed laboratory frame the well-known analytic form of the space wave

function is strongly time-dependent and ultimately spreads over all space.

3. Freely-moving Hermite-Gaussian wave packets.

Since the x and y solutions are identical due to the separability of the PE and TDSE

equations, it suffices to consider only the solutions in the x coordinate. Well-known

solutions of the space propagation are summarised and the Gouy phase interpreted as

an adiabatic energy or frequency phase.

3.1. Quantum mechanics

In quantum mechanics it is recognised that the HG functions are the eigenfunctions

of the HO with eigenenergy equal to (n + 1/2)~ω where the classical frequency of the

oscillator of mass m is given by ω = ~/(mσ2). The eigenstates of the oscillator, of the

HG form are

Ψn(x, 0) =
1

(πσ2)1/4

(
1

2nn!

)1/2

Hn

(x
σ

)
exp

(
− x2

2σ2

)
, (4)

where Hn is a Hermite polynomial and the Gauss function is of width σ. This is the

form of the wave packet at arbitrary initial time t = 0.

The HG wave packet in momentum space at time t = 0 is obtained as the Fourier

transform (FT) of (4) and reads

Ψ̃n(px, 0) = (2π~)−1/2
∫

Ψ(x, 0) e−ipxx/~ dx

= i−n
(
σ2

~2π

)1/4(
1

2nn!

)1/2

Hn

(σpx
~

)
e−σ

2p2x/(2~2)
(5)

with width given by ~/σ. For later comparison with the optics case, one can put

px/~ = kx in the argument of the above wavefunction, where kx is the wave number. The

corresponding probability distributions |Ψn(x, 0)|2 and |Ψ̃n(px, 0)|2 are both normalised

to unity.

In accordance with conservation of momentum, the momentum wave packet, upon

propagation to finite times, is unchanged in shape, acquiring simply an energy-time

phase factor,

Ψ̃n(px, t) = Ψ̃n(px, 0) exp

(
− i
~
p2x
2m

t

)
. (6)
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Using (5) this wave function is written in the form

Ψ̃n(px, t) = i−n
(
σ2

~2π

)1/4(
1

2nn!

)1/2

Hn

(σpx
~

)
× exp

(
−σ

2 p2x(1 + iτ)

2~2

)
,

(7)

where the characteristic time scale T ≡ mσ2/~ is introduced and τ ≡ t/T is defined.

Note that the physical parameters m and ~ appear in the fixed time T but τ is

dimensionless. This important constant time T was identified by Heisenberg [13] at

the dawn of quantum mechanics. It will be shown to determine the crossover between

quantum and classical behaviour.

Propagation of the coordinate space wave packet to finite times is readily evaluated

from the inverse Fourier transform of (7) which gives

Ψn(x, t) = (2π~)−1/2
∫

Ψ̃n(px, t) e
ipxx/h dpx

=
1

[πσ2(1 + iτ)2]
1
4

(
1− iτ
1 + iτ

)n/2(
1

2nn!

)1/2

×Hn

(
x

σ(1 + τ 2)1/2

)
exp

[
− x2

2σ2(1 + iτ)

]
,

(8)

a normalised HG function but now with a time-dependent complex width σ(1 + iτ)1/2.

The complex normalisation factor incorporates what is known in optics as the Gouy

phase. This can be simplified using

1

(1 + iτ)1/2
=

1

(1 + τ 2)1/4
exp

[
− i

2
arctan τ

]
(9)

and [
(1− iτ)

(1 + iτ)

]n/2
= exp [−i n arctan τ ] (10)

Then one can write the wave packet (8) in the form

Ψn(x, t) =
1

[πσ2(1 + τ 2)]
1
4

exp

[
−i(n+

1

2
) arctan τ

]
×
(

1

2nn!

)1/2

Hn

(
x

σ(1 + τ 2)1/2

)
× exp

[
− x2

2σ2(1 + τ 2)

]
exp

[
i

x2 τ

2σ2(1 + τ 2)

]
.

(11)

This result shows, as well-known for the ground state, that the HG function expands

in time according to the factor σ(1 + τ 2)1/2. Apart from the phase factor involving x,

the last factor on the r.h.s. of (11), there is the purely time-dependent Gouy phase

exp
[
−i(n+ 1

2
) arctan τ

]
.
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To a quantum practitioner the appearance of the factor (n+ 1
2
) in the Gouy phase

immediately “rings a bell”. As explained above, the energy (n + 1
2
)~ω is precisely the

eigenenergy of the instantaneous HG harmonic oscillator wave function. Indeed, since

the oscillator frequency at time zero is ω0 ≡ 1/T = ~/(mσ2), then the time-dependent

frequency

ω(t) ≡ 1

T (1 + τ 2)
(12)

is defined and the corresponding time-dependent eigenenergy En(t) ≡ (n + 1
2
)~ω(t).

From the integral representation of the arctan function, one has

exp

[
−i(n+

1

2
) arctan τ

]
= exp

[
− i
~

∫ t

(n+
1

2
)~ω(t′) dt′

]
= exp

[
− i
~

∫ t

En(t′) dt′
]
.

(13)

This generalises the result given in Ref. [6] for the ground state. It gives a new

interpretation of the Gouy phase as the “adiabatic” energy phase arising from the

continuous propagation of the harmonic oscillator HG wave function. At each fixed time

t, the wavefunction becomes an eigenfunction of the harmonic oscillator with effective

potential 1
2
mω2(t)x2. Irrespective of the z-direction velocity vz which decides the time

scale t, the exact confined oscillator wave function evolves adiabatically. Now it is shown

that the same is true for the classical HG wave packet of optics.

3.2. Paraxial optics

From the identity of the paraxial equation and the TDSE, all that is necessary to derive

the propagation of a classical wave is to make the substitution m/~ → kz/c in the

quantum equations. However, since it is customary in optics to use the z direction,

rather than time, as the propagation coordinate then the substitution t = z/c is made.

Furthermore, it is usual to replace the constant
√

2σ of the quantum gaussian by the

notation W0 which is the width or “beam waist” at z = 0. With these changes, (11)

becomes

Ψn(x, t) =
1

[πW 2
0 (1 + τ 2)/2]

1
4

exp

[
−i(n+

1

2
) arctan τ

]
×
(

1

2nn!

)1/2

Hn

( √
2x

W0(1 + τ 2)1/2

)

× exp

[
− x2

W 2
0 (1 + τ 2)

]
exp

[
i

x2 τ

W 2
0 (1 + τ 2)

]
,

(14)

where now τ ≡ z/zR is a dimensionless “distance” and zR is the Rayleigh length, which

corresponds to the fixed time T in the quantum case via the correspondence zR/c→ T .

As T gives the demarcation of QM and CM characteristics, so zR gives the demarcation

between light wave and light beam descriptions.



The Propagation of Hermite-Gauss wavepackets in Optics and Quantum Mechanics 7

The size of the beam waist is related to the Rayleigh length as zR = kzW
2
0 /2. With

the definitions W (z) ≡ W0(1 + τ 2) and the phase front curvature R(z) ≡ zR(1 + τ 2)/τ

the wave function can be expressed in the compact form

Ψn(x, t) =
1

[πW 2
z /2]

1
4

exp

[
−i(n+

1

2
) arctan τ

](
1

2nn!

)1/2

×Hn

(√
2x

Wz

)
exp

[
− x2

W 2
z

]
exp

[
i
kzx

2

2R(z)

]
.

(15)

This is the standard form of HG beams in optics, usually given in two transverse

dimensions (x, y), see ch.3 of Saleh and Teich [1] for example.

Exactly as in quantum mechanics, it is shown that the Gouy phase has its origin

in the “quantisation” of the transverse wave to fit into the confinement of the finite

space occupied by the wave at each fixed z value. An examination of the harmonic

oscillator equation giving the eigenenergies for Ψn(x, t) in the quantum case shows that

the n = 0 ground state corresponds in the classical case to the replacement of the

quantum frequency ω = 1/T by the mode frequency ω = c/zR i.e again T → zR/c. For

finite distances z, as in (12) of the quantum case, an instantaneous frequency

ω(z) ≡ 1

(zR/c)(1 + τ 2)
=

c

zR

(
1 + ( z

zR
)2
) (16)

is defined.

The frequencies of all higher HG states n are given by (n + 1/2)ω(z). Then,

as in (13), the Gouy phase is explained as the accumulated adiabatic phase of the

instantaneous eigenfrequencies

exp

[
−i(n+

1

2
) arctan τ

]
= exp

[
−i(n+

1

2
) arctan

(
z

zR

)]
= exp

[
− i
c

∫ z

(n+
1

2
)ω(z′) dz′

]
.

(17)

This result is identical to the quantum case and shows again that the Gouy phase has

its origin in the confinement of the harmonic transverse wave in a finite area at each

fixed z value. This proof supports the same idea contained in the work of Feng and

Winful [14], who showed that the finite average value of the effective transverse wave

number k2x/kz also leads to the correct Gouy phase. This paper contains an interesting

discussion of the history of different interpretations of this phase. The proof given here

demonstrates more directly the connection to the quantum energy phase through the

appearance of the factor (n+ 1/2)ω.

The Gouy phase in the form of (13) is known as a dynamic phase in quantum

mechanics. In wave packets generated by laser ionisation [15], it has been identified

with the Maslov phases of semi-classical dynamics. It is certainly to be distinguished
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from a geometric phase, to which in the past the Gouy phase has been attributed [16, 17]

.

Again the exact propagating wave function (15) with the adiabatic phase (17) and

instantaneous oscillator frequency (16) indicates that the wave function propagates fully

adiabatically in z. This establishment of the full transverse distribution at each fixed

z, out to macroscopic distances, is perhaps remarkable considering that the velocity of

propagation c is the maximum allowed physically.

4. The far-field asymptotes: light beams and particle trajectories.

It is very well-documented that in the far-field asymptotic limit z � zR the paraxial

wave function corresponds to straight-line beams of light. Also, that the space wave

function assumes the functional form of the wave number function, apart from phase

and normalisation factors (Fraunhofer limit) is found in many text books. Strangely,

the corresponding result in quantum mechanics with asymptote t � T , is much less

known and its implications are not treated in most quantum text books. In particular

the fact that the coordinates x, t are connected by classical mechanics asymptotically

has not been accorded the importance it deserves. Recently, attention has been called

increasingly to the fact that the asymptotic form of the wave function represents the

quantum to classical transition in a very general way [18, 6]. Of course this is the direct

equivalent of the wave optics to ray optics transition.

Again, with suitable notation change, as shown next, the two asymptotic forms in

optics and quantum mechanics are identical.

4.1. The far-field optical wave

Since much better known, it is appropriate to begin with the optics case. The asymptote

to be taken in (14) is z � zR or τ →∞. This gives

Ψn(x, t) ≈ W
1/2
0

(2π)
1
4

[
kz
z

]1/2
exp

[
−i(n+

1

2
)π/2

](
1

2nn!

)1/2

×Hn

(
kzW0√

2z
x

)
exp

[
−k

2
zW

2
0

4z2
x2
]

exp

[
i
kz
2z
x2
]
,

(18)

In this limit the phase fronts are approximately planar and the normals to these

fronts are the straight-line beams defined in terms of the transverse wave number kx
by x = (kx/kz) z. With this substitution, the x-space wave function can be written in

terms of kx and becomes

Ψn(x, t) ≈ W
1/2
0

(2π)
1
4

[
kz
z

]1/2
exp

[
−i(n+

1

2
)π/2

](
1

2nn!

)1/2

×Hn

(
W0kx√

2

)
exp

[
−W

2
0

4
k2x

]
exp

[
i
k2x
2kz

z

]
,

(19)
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which is recognised as the propagating wave number function, proportional to the FT

of the initial HG wave function. Of course this is just the well-known Fraunhofer result,

valid for any wave packet, that the far-field function is proportional to the FT of the

initial wave function. In the wave function the x and z coordinates are connected giving

light beams propagating along the straight lines x = (kx/kz) z. The corresponding result

in quantum mechanics describes a transition from quantum waves to classical straight

line trajectories with x = pxt/m = ~kxt/m, to connect the x and t coordinates. Again

one sees the identity of this condition with the beam optics. Replacing m/~ with kz/c

and, defining t = z/c in the expression x = ~kxt/m, gives the optical beam “trajectory”

x = (kx/kz) z.

4.2. The far-field quantum wave

In the quantum case, the far-field limit τ � 1 or t � T is taken in the exact wave

function (11) and then x is replaced by the classical condition x = pt/m. That the

asymptotic space wave function is proportional to the initial momentum wave function

for free propagation has been derived over the years in scattering theory [19, 20], where it

is now known as the “imaging theorem” [21]. The result appears also in many treatments

of Bohm trajectories [5, 8, 9, 10]. More recently it has been shown [18] that it is valid

for any wave packet and also for extraction by electromagnetic fields. It contains the

essence of the quantum to classical transition.

One can use the stationary phase evaluation of (11) or alternatively one can take

the optics result (18) and substitute z = ct,
√

2σ for W0 and put kz/c = m/~. In either

case the result again is that the asymptotic space quantum wave function in proportional

to the initial momentum wave function. From the t� T asymptote of (11) one has

Ψn(x, t) ≈ σ1/2

π
1
4

[m
~t

]1/2
exp

[
−i(n+

1

2
)π/2

](
1

2nn!

)1/2

×Hn

(mσx
~t

)
exp

[
−1

2

(mσ
~t

)2
x2
]

exp
[
i
mσ

2~t
x2
]
.

(20)

With the classical replacement mx/t = px and, recognising that the asymptotic Gouy

phase exp
[
−i(n+ 1

2
)π/2

]
= i−(n+1/2), the asymptotic space wave function becomes

Ψn(x, t) ≈ σ1/2

π
1
4

[ m
i~t

]1/2
i−n
(

1

2nn!

)1/2

×Hn

(σpx
~

)
exp

[
−1

2

(
σ2p2x
~2

)]
exp

[
i

~
p2x
2m

t

]
.

(21)

Hence, the asymptotic space wave function is proportional to the invariant momentum

wave function of Eq. (7). Defining the quantum wave number as kx = px/~ and

replacing, as usual m/~ with kz/c, this result corresponds exactly to (19) of the optics

case.

Thus there is complete agreement in the transition from wave to beam optics and

the transition from quantum to classical mechanics in the wave function.
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Figure 1. The propagation of an HG wave packet showing the beam waist trajectory

in the z direction (abscissa) and the asymptotic straight line beams. The ordinate is

the x direction. The curved wave fronts are shown at successive z values. For light the

length scales are typically in µm.

One further point is important for what follows in section 6. The time-dependent

normalisation factor [m/t]1/2, occurring in (21), is recognised in QM as a purely classical

quantity. The square of this function, since px = mx/t, is simply dpx/dx, the density

of classical trajectories. Then [m/t]1/2 = (dpx/dx)1/2 is called the van Vleck factor

[22] and is much used in semi-classical QM [23]. The term [m/(~t)]1/2 of (21) can be

written as [dkx/dx]1/2. The identical factor occurs in the optics case of (19) in the form

[kz/z] = [dkx/dx] for the asymptotic light beam. Again this factor can be viewed as

giving the density of ray trajectories or equivalently, the local light beam density.

5. The near field: trajectories and beams.

In optics, the passage of a HG beam into and out of its focus is usually depicted by

showing the curved wave fronts at each z value, as shown in figure 1. The wave fronts

are perpendicular to the x direction at z = 0. The beam width function is shown as two

bold lines described by the hyperbolae W (z) = ±W0(1 + (z/zR)2), with W0 the beam

waist at z = 0.

Although not done usually in optics books, one can draw any number of such

curves, the loci of wave front normals, intersecting the x axis at different points. The

hyperbolic curves are the projections of the straight beam lines back into the near field

zone. Such Bohmian “trajectories” have been defined in QM where they are ascribed to

particle trajectories. A similar construction in optics has been suggested by Orefice and

co-workers [11, 12], who calculated the curves numerically for all z. In section 5.2, for

HG beams, it is shown that a simple analytical form of such trajectories can be derived.

The beam waist curve is just one such beam trajectory. The “beams” pass through

the near zone and connect smoothly to the asymptotic straight-line beams. In addition

an interesting connection of these beams to the wave function in wave-number space is

given in section 6.

Since the definition of trajectories in the near field stems from QM, it is appropriate

in this section to treat the QM case first.
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5.1. The near-field quantum wave and Bohm trajectories.

The derivation of Bohm trajectories involves defining a velocity from the phase of the

wave function [7, 5]. This classical velocity can then be integrated over time to give

a trajectory x(t) for all time, not just asymptotically. However, their association with

“real” particle trajectories is still disputed. The definition of trajectories starts with the

exact wave function of (11) expressed in the form

Ψn(x, t) = Rn(x, t) e
i
~Sn(x,t). (22)

The action function of this exact wave function is

Sn = ~
x2

(2σ2)

τ

(1 + τ 2)
− (n+

1

2
)~ arctan τ. (23)

The practitioners of Bohmian mechanics now define, in complete analogy to classical

mechanics, a velocity,

ẋ ≡ 1

m

∂Sn
∂x

=
x

T

τ

(1 + τ 2)
(24)

which can be written also as

ẋ =
x

t

τ 2

(1 + τ 2)
. (25)

Note that, since the second term in Sn of (23) does not depend upon x, then the velocity

function is independent of the eigenstate n. Hence, the trajectories are identical for all

HG functions. One recognises that asymptotically, when τ � 1, then ẋ = x/t is the

constant classical speed vx.

From the velocity equation one can integrate over time to give a trajectory

x(t) = x0(1 + τ 2)1/2 = x0

(
1 +

(
t

T

)2
)1/2

, (26)

where x0 ≡ x(0) is the intersection of the trajectory with the x axis at t = 0. In the

large time limit, one has the classical trajectory x(t) ≈ vxt. To satisfy this limit one

then has x0 = ±vxT . Hence, for a fixed final velocity vx, the trajectory has a fixed

position vxT at t = 0. Each trajectory is then characterised solely by its final velocity

vx and the constant T .

That the trajectory is of hyperbolic form is made clear by putting z = vzt to write

(26) as (
x

vx

)2

−
(
z

vz

)2

= T 2 (27)

Using wave number rather than classical velocity, this equation assumes the form(
x

kx

)2

−
(
z

kz

)2

= σ4 (28)

with straight-line asymptote x = (kx/kz) z exactly as in the optics case.
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Figure 2. The hyperbolic trajectories x(t) (QM) or x(z) (optics) representing the

focussing in one dimension (vertical axis) of an HO or HG wave function. The constant

T (QM) or zR (optics) has the value unity. The units are arbitrary.

The hyperbolic trajectories are shown in figure 2. In Bohmian mechanics these

trajectories are viewed as the deterministic trajectories of real particles. Whilst the

asymptotic reality of the trajectory x = vxT is mathematically and experimentally

justified, the extension as a particle path into the near zone is an additional postulate

in QM. However, here, to connect to the optics case, it is only necessary to accept



The Propagation of Hermite-Gauss wavepackets in Optics and Quantum Mechanics 13

the trajectories as the loci of the normals to the phase fronts of the propagating wave

packets.

5.2. The near-field optical wave and Bohm trajectories.

With the understanding that one is referring to the locus of wave front normals, it is

straightforward to transform the QM trajectories into those of the paraxial equation.

The equation (26) is preserved but in terms of z rather than t, i.e.

x(z) = x0(1 + τ 2)1/2 = x0

(
1 +

(
z

zR

)2
)1/2

(29)

and, to satisfy the asymptotic beam trajectory x = (kx/k)z, now with x0 = (kx/kz)zR =

kxW
2
0 /2. Then, fixing the initial point on the x axis for z = 0, fixes the value of kx. For

example, the beam waist trajectory occurs when x0 = W0 to give kx = 2/W0.

Again, the beam trajectories are hyperbolae following the equation(
x

kx

)2

−
(
z

kz

)2

=
W 4

0

4
(30)

which is the same as the QM case (28), with the same straight-line beam asymptote

x = (kx/kz) z.

6. The wave packet form on the trajectory

6.1. The Bohm trajectory quantum wave

Here it is shown that the space wave function along the Bohm trajectory assumes the

form of the momentum wave function at all times, not just asymptotically. To emphasise

that the wave function is to be evaluated along x(t), the notation Ψn(x(t)) is used rather

than Ψn(x, t). Substituting the trajectory coordinate dependence x(t) = x0(1 + τ 2)1/2

from (26) into (11) gives the space wave function at points along the trajectory,

Ψn(x(t)) =
1

[πσ2(1 + τ 2)]
1
4

exp

[
−i(n+

1

2
) arctan τ

]
×
(

1

2nn!

)1/2

Hn

(x0
σ

)
exp

[
− x20

2σ2

]
exp

[
i
x20 τ

2σ2

]
.

(31)

Thus one sees that the modulus squared of this wave function, the probability density, is

constant along the trajectory and retains its initial t = 0 form. Only the normalisation

and phase factors change with time.

Recognising that x0 = vxT and that x0/σ = px σ/~, with px = mvx being the

variable appearing in the unchanging amplitude of the momentum wave function of (6),
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one can write the space wave function evaluated along the trajectory as

Ψn(x(t)) =
1

[πσ2(1 + τ 2)]
1
4

exp

[
−i(n+

1

2
) arctan τ − inπ/2

]
× i−n

(
1

2nn!

)1/2

Hn

(σpx
~

)
exp

[
−σ

2p2x
2~2

]
exp

[
i

~
p2xt

2m

]
.

(32)

Also, along the trajectory, given by px = mx0/T = mx/(T (1 + τ 2)1/2), one has(
dpx
dx

)1/2

=
~1/2

σ
(1 + τ 2)−1/4. (33)

Hence, the space wave function (32), using (5) and (6), can be written in the simple

form

Ψn(x(t)) =

(
dpx
dx

)1/2

Ψ̃n(px, t) exp

[
−i(n+

1

2
) arctan τ − inπ/2

]
, (34)

valid for all points t along the trajectory, where Ψ̃n(px, t) is the momentum wave

function.

Forming the probability density along a tube dx(t) one has the simple result

|Ψn(x(t))|2 =

(
dpx
dx(t)

)
|Ψ̃n(px, 0)|2, (35)

or

|Ψn(x(t))|2dx(t) = |Ψ̃n(px, 0)|2dpx. (36)

This result generalises its asymptotic validity [18], to all t on the trajectory

x(t) = x0(1 + τ 2)1/2. That is, the trajectory provides a conduit along which the

probability of the initial free momentum wave function propagates form unchanged.

6.2. The Bohm trajectory optical wave

The foregoing analysis is applied readily to the optical case.

Along the “trajectory” specified by a given value of x0, i.e. x(z) = x0(1 + τ 2)1/2 =

x0

(
1 +

(
z
zR

)2)1/2

the space wave function corresponding to (31) becomes

Ψn(x(z)) =
1

[πW 2
0 (1 + τ 2)/2]

1
4

exp

[
−i(n+

1

2
) arctan τ − inπ/2

]
× (i)−n

(
1

2nn!

)1/2

Hn

(√
2x0
W0

)
exp

[
− x20
W 2

0

]
exp

[
i
x20 τ

W 2
0

]
.

(37)

For a particular trajectory one has x0 = kxW
2
0 /2, to give,

Ψn(x(z)) =
1

[πw2
0(1 + τ 2)/2]

1
4

exp

[
−i(n+

1

2
) arctan τ − inπ/2

]
× (i)−n

(
1

2nn!

)1/2

Hn

(
W0kx√

2

)
exp

[
−W

2
0 k

2
x

4

]
exp

[
i
k2x
2k
z

]
,

(38)
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which, as expected, is the wave number function whose asymptotic form is (19).

Along any trajectory, given in the optical case by

kx = 2x0/W
2
0 = 2x/(W 2

0 (1+τ 2)1/2), the square root of the trajectory density (van Vleck

factor) is (
dkx
dx

)1/2

=

√
2

W0

(1 + τ 2)−1/4. (39)

Hence, the space wave function (38) can be written in the simple form

Ψn(x(z)) =

(
dkx
dx

)1/2

Ψ̃n(kx, z) exp

[
−i(n+

1

2
) arctan τ − inπ/2

]
, (40)

valid for all z along the trajectory, where Ψ̃n(kx, z) is the wave number function. This

is the optics version of the quantum equation (34).

As in the quantum case of Eq.(36), along a tube of trajectories dx(z) the intensity

follows the conservation rule

|Ψn(x(z))|2dx(z) = |Ψ̃n(kx, 0)|2dkx. (41)

7. Scaling of space coordinates.

7.1. The quantum case: time scaling

The TDSE for free motion (2) in one space dimension is

− ~2

2m

∂2Ψ

∂x2
− i~ ∂Ψ

∂t
= 0. (42)

In [6] it is shown, following Ref. [24] and Ref. [25], that this equation can be transformed

by a time-scaling of space. That is, new space and time coordinates are defined as

q ≡ x

a(t)
t̄ ≡

∫ t dt′

a(t′)2
, (43)

where a(t) is a dimensionless function. In (42) this transformation gives a new wave

function

Φ(q, t̄ ) = a1/2 exp

(
− i
~
m

2
aȧq2

)
Ψ(x, t), (44)

where the dot signifies differentiation w.r.t. the original time t. Although one is

considering free motion, rather remarkably the function Φ(q, t̄ ) satisfies the TDSE of a

harmonic oscillator (HO) with a time-dependent frequency, i.e.(
− ~2

2m

∂2

∂q2
+

1

2
ma3ä q2

)
Φ = i~

∂Φ

∂t̄
. (45)

Since the frequency is not constant, this equation does not appear particularly

useful. However, if one chooses the time dependence of the Bohm trajectory of the HG
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wave functions (26), that is choose a(t) = (1 + τ 2)1/2, where τ = t/T , then one obtains

the TDSE with a time-independent fixed frequency ω0 = 1/T ,(
− ~2

2m

∂2

∂q2
+

1

2
mω2

0 q
2

)
Φ = i~

∂Φ

∂t̄
. (46)

The solutions to (46) are the HO wave functions with eigenvalues

En = (n+ 1/2) ~ω0, i.e.

Φn(q, t̄) =
1

(πσ2)1/4

(
1

2nn!

)1/2

Hn

( q
σ

)
exp

(
− q2

2σ2

)
exp

(
− i
~
Ent̄

)
, (47)

For the chosen scaling of time along the parabolic trajectories, the phase factors are

Ent̄/~ = (n + 1
2
)ω0t̄. Remembering that ω0 = 1/T and defining the new dimensionless

time parameter τ̄ ≡ t̄/T , from the definition of t̄ in (43), one has the result that

τ̄ = arctan τ . Hence, the new “time” is simply the Gouy phase itself. The phase factors

become Ent̄/~ = (n+ 1
2
)τ̄ .

Furthermore with the scaling function a(t) = (1 + τ 2)1/2, one has q = x/a = x0 =

vxT . Hence, in the co-moving frame the functions are fixed with value of q given by the

intersection of the trajectory with the t = 0 (or z = 0) axis. The phase factors change

linearly with τ̄ . In analogy to a Lorentz frame transformation, one can view the time

τ̄ expressed in units of the time T , as a ”proper” time in the co-moving frame. This

proper time is simply the Gouy phase.

7.2. The optics paraxial case: space scaling

In the optics case the same procedure is followed, except that the space coordinate z

along the beam is scaled. That is the space is warped by the transformations,

q ≡ x

a(z)
z̄ ≡

∫ z dz′

a(z′)2
, (48)

where a(z) is dimensionless.

Choosing a(z) to describe the ray trajectory a(z) = (1+τ 2)1/2, where τ = z/zR, and

following the same transformation steps as in (42) to (45) one arrives at the analogue

to (46), (
∂2

∂q2
−
(

2

W 2
0

)2

q2

)
Φ = i2kz

∂Φ

∂z̄
. (49)

The solutions to this equation in the co-moving frame again are of the form of

constant HG functions multiplied by the Gouy phase factor, i.e the analogue of (47),

Φn(q, z̄) =
1

(πW 2
0 /2)1/4

(
1

2nn!

)1/2

Hn

(√
2q

W0

)
exp

(
− q2

W 2
0

)
exp

(
−i(n+ 1/2)

z̄

zR

)
,

(50)
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where now the fixed value of q is given by q = x0 = kxW
2
0 /2. Again this gives the

intersection point of the wave front normal trajectory with the x axis.

In exactly the same way as for the quantum case, in the co-moving frame the

wave function is constant. Only the Gouy phase changes linearly in τ̄ ≡ z̄/zR. This

dimensionless parameter τ̄ can be viewed as the ”proper” time c z̄ in units of the constant

time c zR.

7.3. An arbitrary wave packet

A normalisable wave packet at time zero can be expanded in a complete set of HO (HG)

wave functions

χ(x, 0) =
∑
n

an Ψn(x, 0) (51)

where the Ψn(x, 0) are defined in (4). The coefficients an can be calculated if χ(x, 0)

is known. In the laboratory frame, the time development is then given by the time

development of each HO wavefunction Ψn(x, t) given in Eq.(11). These functions expand

in time.

The time development is much simpler when transformed to the co-moving frame

of the Bohm trajectories, along which the functions are constant. If the transformed

wave packet of χ(x, t) is denoted by χ̄(q, t̄ ), then the time development is given by

χ̄(q, t̄ ) =
∑
n

an Φn(q, t̄ ) (52)

where, from (47), q = x0 is fixed and only the energy phase factors change with t̄. Then

the sum becomes simply a Fourier series. For a light wave of general form, the only

change is to replace t̄ with z̄ and use the Φn(q, z̄ ) from (50).

8. Adiabatic and diabatic trajectories

It has been noted already that the exact wave packet propagates adiabatically with

the Gouy phase as an adiabatic energy phase. In QM this is the form of (11) and

(13). In optics it is the form of (15) and (17). This adiabatic behaviour is seen in the

trajectories of figure 3 which show a clear ”avoided crossing” at t = 0. Normally in

QM, it is the eigenenergies as a function of the time parameter which are shown as an

avoided crossing. Here the analogy is extended to the behaviour of the trajectories x(t).

8.1. The QM avoided crossing

In figure 3 is shown a typical pair of such adiabatic trajectories. Also plotted are the

straight-line classical asymptotes x± = ± vxt. These diabatic trajectories cross at t = 0.

The avoidance of crossing is given simply by 2T and results in the switched adiabatic

asymptotic connection x± = ∓ vxt. The change in sign is due to the change of π in the
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Figure 3. Two parabolic adiabatic trajectories for a Hermite-Gauss wave function

(continuous lines, blue). The units are arbitrary. The abscissa is the time t in QM or

the distance z in optics. The ordinate is the distance x(t) in QM or x(z) for optics.

The two straight dashed lines (red) are the diabatic classical trajectories for QM or

the light beam trajectories in optics.

Gouy phase as the avoided crossing is traversed. The diabatic (asymptotic) wave has a

fixed Gouy phase for all time.

Let us consider any pair of the trajectories shown in figure 3, beginning, for large

negative time, as x−(t) = vxt and x+(t) = −vxt. The Bohmian adiabatic trajectories

swap their classical character through the avoided crossing to become x−(t) = −vxt and

x+(t) = vxt for large positive time. In the classical diabatic basis, the time development

is given by xcl±(t) = ±vxt for all times t, or(
xcl+(t)

xcl−(t)

)
=

(
t 0

0 −t

)(
vx
vx

)
(53)

As is shown explicitly in Ref. [6] the change from classical to quantum propagation is

characterised by time becoming complex i.e. t→ t− iT . This is manifest as a coupling
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between the classical trajectories due to the finite time iT , mirrored in the change of

the Gouy phase. This gives a new coupling matrix, i.e.(
x+(t)

x−(t)

)
=

(
t −iT
iT −t

)(
vx
vx

)
(54)

To make the vectors both of dimensions length, this equation can be written(
x+(t)

x−(t)

)
=

(
τ −i
i −τ

)(
x0
x0

)
(55)

where τ = t/T and x0 = vxT = pxσ
2/~ = kxσ

2.

Diagonalisation of the matrix gives the eigenvalues ±(1+τ 2)1/2 and the trajectories(
x+(t)

x−(t)

)
=

(
(1 + τ 2)1/2 0

0 −(1 + τ 2)1/2

)(
x0
x0

)
(56)

These trajectories, the normals to the wave fronts, are precisely the Bohmian trajectories

of (26). Hence, the quantum Bohmian trajectories are derived from the ±vxt classical

trajectories by the repulsion due to the finite time T . This avoidance of the

crossing results in an adiabatic swapping of the asymptotic velocity from ±vx to ∓vx.
Extrapolation of the classical trajectories to t = 0 implies a singularity. The avoidance

of a point singularity of the crossing classical trajectories is due to the finite extent σ

of the quantum wave and the corresponding quantisation leading to a finite zero-point

energy of the HO wave functions.

8.2. The optics avoided crossing

The only change for the optics case is that the diabatic light beam connection is given

by (
xray+ (t)

xray− (t)

)
=

(
z 0

0 −z

)(
kx/kz
kx/kz

)
(57)

which are the straight-line ray asymptotes. The adiabatic connection of the normals to

the wave fronts is again (56)(
x+(t)

x−(t)

)
=

(
(1 + τ 2)1/2 0

0 −(1 + τ 2)1/2

)(
x0
x0

)
(58)

but where now, instead of the quantum τ = t/T , one has τ = z/zR, see (29). The

avoidance of trajectory crossing has the value 2zR at z = 0. In optics this is called the

spot size. Instead of the quantum x0 = kxσ
2 one has x0 = (kx/kz)zR = kxW

2
0 /2. Again,

the trajectories of the wave front normals change their character adiabatically through

the avoided crossings of figure 3. The avoidance of a point focus singularity of the light

rays is due to the finite extent W0 of the optical wave giving a focus of finite size.
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9. Conclusions

Although treated in many standard texts of optics and QM, this study of free wavepacket

propagation unifies the presentation of the results in the two fields. Furthermore, the

results given here are in some important aspects new. The new perspectives are:

1) The identity of the two-dimensional paraxial equation and the two-dimensional

Schroedinger equation describing the propagation of a Hermite-Gauss beam has been

shown in some detail.

2) The Gouy phase arises from the quantisation of the wave form in an effective

harmonic potential. The phase is the integral over time of the instantaneous oscillator

frequency. In the classical limit of QM or the ray picture of optics, the phase is a constant

and corresponds to a delta function singularity of the wave function of vanishing extent.

3) The locus of the wave front normals defines a ”trajectory” both in QM, where it

is known as the Bohm trajectory, and in optics. This trajectory has a simple hyperbolic

form which is the same for all HG waves.

4) A transition to a frame moving with the trajectory gives a constant HG function,

with a phase changing linearly with a “proper time” which is the Gouy phase itself.

5) The adiabatic propagation of the HG wave packet is mirrored in the adiabatic

propagation of the wave front trajectories. The singularity at t = 0 in the diabatic

classical particle trajectories, or at z = 0 for light beams, is avoided due to the finite

extent of the HG wave, see figure 3. This is analysed as a typical ”avoided crossing”

phenomenon.

6) The momentum (QM) or wave number (optics) function propagates unchanged

except for a phase factor. The space wave function spreads in time (QM) or in z-

direction (optics). It has been shown that, along the continuous hyperbolic trajectories,

the space wave function is simply proportional to the fixed wave number or momentum

wave function.

These points give more credence to the assignment of physical meaning to the

“trajectories”, the loci of constant probability (QM) or light intensity (optics). In

QM, many researchers interpret them as deterministic particle trajectories, in view of

their smooth transformation to the asymptotic classical trajectories which are confirmed

experimentally. The usefulness of the same trajectories in optics is suggested. However,

clearly, in any experiment detecting particles, the paths of maximum probability are

where particles are detected optimally. Such paths of constant probability do trace out

the Bohm trajectories. In a similar way, the paths of constant high light intensity are the

trajectories along which photons are detected optimally. Since typical Rayleigh ranges

for light are much larger than the corresponding range for QM, it is possible to measure

light in the near field below the Rayleigh range. Indeed, it has been claimed [26] that the

photon Bohm trajectories have been observed. In the near field, they can be associated

with the structures known as “Talbot carpets”, as has been shown in Ref. [27].
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[4] C. Cohen-Tannoudji, B. Diu and F. Laloë Quantenmechanik (de Gruyter, Berlin, New York, 1997).

[5] Peter R. Holland The Quantum Theory of Motion (Cambridge University Press, Cambridge,U.K.

1993).

[6] J.S. Briggs, Nat Sci. 2:e20210089 (2022).

[7] D. Bohm Phys. Rev. 85, 166 (1952), 85 180 (1952).
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Berlin 2013), D. Dürr Bohmsche Mechanik als Grundlage der Quantenmechanik (Springer, Berlin

2001).
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