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Abstract

Statins as a lipid-lowering drug can selectively inhibit 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase and
decrease cholesterol synthesis effectively. With the improvement of nutritional conditions, the demand for statins is increasing
in global market. Due to the rapid development of modern biotechnologies, the biosynthesis of stains by microbial cell factory
appears great advantages. It has the advantages of simple operation and easy separation of products. This review summarized
the strategies on statins production via microbial cell factory, including both traditional fermentation culture and modern
synthetic biology manufacture. Firstly, the complex fermentation parameters and process control technology on submerged
fermentation (SmF) and solid-state fermentation (SSF) were introduced in detail. Especially, the possibility of recoverable
agricultural wastes/(Biomass) as fermentation substrate on solid-state fermentation to produce statins was emphasized. Besides,
metabolic engineering strategies to construct robust engineering strains and strains evolution were also discussed. The review
highlights the potential and challenge of microbial cell factory to yield the statins. Thus, it will facilitate the production of
statins in more green production mode.
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Abstract

Statins as a lipid-lowering drug can selectively inhibit 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA)
reductase and decrease cholesterol synthesis effectively. With the improvement of nutritional conditions, the
demand for statins is increasing in global market. Due to the rapid development of modern biotechnologies,
the biosynthesis of stains by microbial cell factory appears great advantages. It has the advantages of simple
operation and easy separation of products. This review summarized the strategies on statins production
via microbial cell factory, including both traditional fermentation culture and modern synthetic biology
manufacture. Firstly, the complex fermentation parameters and process control technology on submerged
fermentation (SmF) and solid-state fermentation (SSF) were introduced in detail. Especially, the possibility
of recoverable agricultural wastes/(Biomass) as fermentation substrate on solid-state fermentation to produce
statins was emphasized. Besides, metabolic engineering strategies to construct robust engineering strains
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and strains evolution were also discussed. The review highlights the potential and challenge of microbial cell
factory to yield the statins. Thus, it will facilitate the production of statins in more green production mode.

KEYWORDS : Statins; strategies; microorganism; fermentation; engineering strains

Introduction

Hypercholesterolemia is one of the leading causes of death from cardiovascular disease in humans. Only
one-third of the total body cholesterol is diet derived, two-thirds is synthesized directly from intracellular
precursors 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) (Alberts, Chen et al. 1980, Breedlove and
Hedrick 1999). Statins drugs can selectively inhibit HMG-CoA reductase thus reducing lipids synthesis
significantly as well as giving play to multiple biological effects such as inhibiting atherosclerosis, thrombosis
and alleviating rejection reaction, treating osteoporosis, anti-tumor, etc. (Figure 1) (Cummings and Bauer
2000, A. Massy and Guijarro 2001, Barrios-González and Miranda 2010, Osmak 2012). Statins block an
early step, the conversion of HMG-CoA to mevalonate, which reducing cholesterol synthesis precursors, thus
directly affecting the synthesis of cholesterol (such as the reduce of LDL and the increase of HDL) (A. Massy
and Guijarro 2001, Adhyaru and Jacobson 2018). And the reduction of farnesyl pyrophosphate (farnesyl-PP)
and geranylgeranyl pyrophosphate (geranylgeranyl-PP) interferes with protein isoprene (the binding of lipid
isoprene to proteins), thereby affecting the normal function of small glutamyl transpeptidases (GTPases)
(such as Ras, Rho, Rac and Rab) in the osteoclasts, which may lead to osteoporosis, senile dementia and so
on(Rikitake and Liao 2005, Binnington, Nguyen et al. 2015, Petek, Villa-Lopez et al. 2018, Healy, Berus et
al. 2020). From January 1, 2002, to December 31, 2018, an average of 21.35 million statins were purchased
annually, with an average total annual cost of $24.5 billion in the US (Lin, Baumann et al. 2021).

Statins can be produced through microbial synthesis and chemical synthesis. There are totally four statins
which can be produced by microorganism cells, lovastatin (Alberts, Chen et al. 1980), compactin (Endo,
Kuroda et al. 1976), pravastatin, simvastatin. Meanwhile, lovastatin and simvastatin are first-generation
statins. Lovastatin fromAspergillus and compactin from Penicillium are two pure natural statins till now.
Simvastatin can be synthesized by the precursor monacolin J, a hydrolysate of lovastatin. Pravastatin can be
obtained by stereoselective hydroxylation in the fermentation of microorganism using compactin as precursor.
Fluvastatin, atorvastatin, rosuvastatin and pitavastatin are fully synthetic statins (Jahnke 2007). Pravastatin
and fluvastatin belong to the second-generation of statins. Atorvastatin, rosuvastatin and pitavastatin are
the third-generation statins. Their chemical structures are quite different from natural statins (Table 1) and
couldn’t be produced by microbiology technology so far (Zhou, Curtis et al. 2019). Although there are many
types of statins on the market, the first generation of statins produced by microbial cells still maintain a
good trend in the world market. Although there is a strong commercial demand for statins, their production
is usually at low levels in native producers from rare natural sources. The small quantities and poor purities
limit the scale-up of stains production through chemical synthesis (Tartaggia, Fogal et al. 2016). Today,
statins are mainly produced through microbial submerged fermentation (SmF) and solid-state fermentation
(SSF) (Pawlak and Bizukojc 2013, Gonciarz, Kowalska et al. 2016). However, fermentation using nativeA.
terreus usually poses some problems such as a long culture period, difficult manipulation, and multiple
byproducts. Synthetic biology has many advantages compared to chemical synthesis, such as carbon neutral,
sustainable, low cost, etc. With the development of synthetic biology, reconstruction of biosynthetic pathways
in chassis organisms has been proved to be a possible solution to these problems(Ro, Paradise et al. 2006,
Galanie, Thodey et al. 2015). Therefore, a growing number of researchers are looking into using microbial
cell factories to yield statins (Ro, Paradise et al. 2006).

Here, we reviewed the strategies of microbial cell fermentation to produce statins in recent 20 years, mainly
include submerged fermentation (SmF) and solid-state fermentation (SSF). As a vital strategy to impro-
ve statins synthesis at the cellular level, we have also reviewed findings that provide guidance on strains
construction by metabolic engineering strategies and evolution. We also illustrated the great potential and
challenges of producing statins through microbial cell factories.
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Microbial cell fermentation to produce statins

Now, statins are produced mainly through microbial cell fermentation, mainly divided into submerged fer-
mentation (SmF) and solid-state fermentation (SSF). According to the reports, three most aspects including
medium, dissolved oxygen and other effects, respectively, affecting the submerged fermentation (SmF). The
medium and other effects are two most aspects that affecting solid-state fermentation (SSF) (Figure 2).

2.1 Statins produced in SmF

Submerged fermentation (SmF) technology has the advantages of short cycle, low cost and high yield, and
the purification of products is easier. Medium components especially carbon, nitrogen sources and inorganic
salt are most influential aspects for statins production. The dissolved oxygen in the medium also has a great
influence on the synthesis of statins. There are also many other effects such as Antibiotics, surfactants, the age
of selected spores and fed-batch fermentation, affecting the production of statins. Submerged fermentation
for statins biosynthesis was summarized in Table 2.

2.1.1 Medium

Carbon sources and nitrogen sources

Carbon and nitrogen sources are essential for microbial growth. It has a great influence on the synthesis of
lovastatin. A. terreus is the native strain that produces lovastatin. Therefore, most people focus on optimizing
carbon and nitrogen sources using A. terreus ATCC 20542. Ansari et al.(Ansari, Jalili et al. 2018) showed
that 64 g/L syrup carbohydrates, 15 g/L yeast extract can lead to the lovastatin titer of 105.6 mg/L using
A. terreus ATCC 20542. Batch cultures were performed in a 2.5-L working volume bioreactor and led to the
lovastatin titer of 241.1 mg/L during 12 days A. terreus ATCC 20542. Rollini et al.(Rollini and Manzoni
2006) showed soybean peptone generally allowed the best lovastatin yields to be achieved (250–280 mg/L) by
A. terreusATCC 20542, particularly in the presence of soybean and peanut flours. Vegetable oil as sole carbon
source and supplemental carbon source has effects on the fermentation of lovastatin by A. terreus . Sripalakit
et al.(Sripalakit and Saraphanchotiwitthaya 2020) showed that all selected vegetable oils increased yields by
at least two-fold. Especially, when 1% w/v coconut oil was added, the highest yield was 87.18 g/L using
A. terreus ATCC 20542, approximately 11-fold compared to the oil-free control group. Hajjaj et al.(Hajjaj,
Niederberger et al. 2001) found that a threefold-higher specific productivity was found with the defined
medium on glucose and glutamate, compared to growth on complex medium with glucose, peptonized milk,
and yeast extract using A. terreus Thom ATCC 74135. Oliveira et al.(Oliveira, Paulo et al. 2021) showed
that 60 g/L soluble starch, 15 g/L soybean flour led to producing 100.86 mg/L lovastatin using A. terreus
URM 5579. Kaur et al.(Kaur, Kaur et al. 2010) optimized the culture-medium parameters of A. terreus
GD13. They found it can lead to the maximal lovastatin titer of 1342 mg/L when the initial C:N ratio in the
culture medium was 37:1, which was 7-fold compared to the titer obtained under unoptimized conditions.
Submerged fermentation of agricultural waste for fermentation substrate to produce statins can not only
protect the environment, but also recycle resources. Srinivasan et al. (Srinivasan, Thangavelu et al. 2022)
usedA. terreus KPR 12 to ferment the sago processing wastewater, getting 429.98 mg/L lovastatin. Medium
optimization for other strains has also been reported. Atli et al. (Atli, Yamaç et al. 2013) found 30 g/L
glucose, 10 g/L yeast extract can lead to 114.82 mg/L lovastatin using P. ostreatus OBCC 1031.

Carbon sources, nitrogen sources also have a great influence on the synthesis of compactin. Chakravarti et
al.(Chakravarti and Sahai 2002) optimized the medium for compactin production by P. citrinum NCIM 768,
lead to the maximum titer increased to 490 mg/L. Ahmad et al.(Ahmad, Panda et al. 2010) showed that
glycerol, peptone, yeast extract improved the titer of compactin to 589.3 mg/L usingP.citrinum MTCC 1256.
Syed et al.(Syed and Rajasimman 2015) optimized medium on the production of compactin by A. terreus ,
lead to the titer of compactin increased to 701 mg/L. Jekkel et al.(Kónya, Jekkel et al. 1998) showed that
7.0% glucose, 1.0% yeast extract led to the titer of compactin to 390-410 mg/mL using P. citrinum MTCC
1256.

Inorganic salts

3
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Inorganic salts are not only nutrients for microbial growth, but also can participate in the building blocks of
microbial cells and enzymes. Therefore, inorganic salts have a certain effect on the biosynthesis of lovastatin.
Rahim et al.(Abd Rahim, Lim et al. 2019) showed that the yield of lovastatin increased by 282% to 25.52
mg/L when the medium have KH2PO4, MgSO4·7H2O, NaCl and ZnSO4·7H2O using A. terreus ATCC
20542. Jia et al.(Jia, Zhang et al. 2009) showed that Fe2+, Ca2+, Zn2+, Mg2+ and Mn2+ can promote
lovastatin synthesis and cell growth. In the presence of 2mM and 5mM Zn2+, the highest titer was 49.2±1.4
mg gDCW-1, a 14.4-fold increased using A. terreusATCC 20542. Sayyad et al.(Sayyad, Panda et al. 2007)
optimized M. purpureus MTCC 369 to produce lovastatin. In the medium containing 3.86 g/L NH4Cl, 1.73
g/L KH2PO4, 0.86 g/L MgSO4·7H2O and 0.19 g/L MnSO4·H2O, the maximum titer of lovastatin increased
to 351 mg/L.

2.1.2 Dissolved Oxygen (DO)

The dissolved oxygen in Submerged fermentation medium has great influence on the synthesis of statins.
Gonciarz et al.(Gonciarz and Bizukojc 2014) added 10µm of talc particles in the medium to decreases fungal
pellet size to increase the oxygen saturation of the broth, which lead to lovastatin titer increased by 3.5-fold
to exceed then 120 mg/L. The optimal continuous feed batch increased to 250 mg/L(Gonciarz, Kowalska et
al. 2016). Lai group(Lai, Tsai et al. 2005) found that the 5-L fermenter increased lovastatin titer by 38%
when the dissolved oxygen (DO) was controlled at 20%. When the medium temperature was reduced from
28 to 23 , the titer of lovastatin was further increased by 25%, reaching 572 mg/L. Ansari et. al(Ansari, Jalili
et al. 2019) showed that the highest titer of lovastatin (443 mg/L) were obtained at air bubbles diameter of
0.18 cm. The main reason is that the diameter of the bubble directly affects the concentration of dissolved
oxygen.

In fact, reactive oxygen species (ROS) produced during fermentation have an effect on lovastatin biosynthesis
The addition of N-Acetyl-L-cysteine (NAC), which reduces reactive oxygen species, can reduce lovastatin pro-
duction. On the contrary, the addition of H2O2, which promotes reactive oxygen species (ROS) production,
leads to lovastatin biosynthesis(Miranda, Gómez-Quiroz et al. 2014).

Redox potential of fermenters can also affect lovastatin synthesis(Pawlak and Bizukojc 2013). In the process
with the highest redox potential levels maximum lovastatin concentration was equal to 83.8 mg/L, while at
the lowest redox level it did not reach 67 mg/L.

2.1.3 Other effects

Antibiotics

Jia et al.(Jia, Zhang et al. 2010) added different polyketide antibiotics to the medium by A. terreus ATCC
20542, which leaded to improve lovastatin titer by 20-25%, such as tylosin, erythromycin, tetracycline,
daunorubicin. Especially, lovastatin titer reached 952.7±24.3 mg/L at the initial stage of lovastatin synthesis
with the addition of 50 mg/L tylosin, increased by 42% and 22.2%, respectively.

Surfactants

Chakravarti et al.(Chakravarti and Sahai 2002) cultured the mutant strain of P. citrinum NCIM 768 in
chemically-defined medium, producing 145 mg/L compactin. The titer of compactin was increased to 175
mg/L by adding surfactant tween 80 into the medium. Choi group(Choi, Cho et al. 2004) showed that
compactin titer was 1200 mg/L after 10 days of fermentation with 1.5 g/L triton X-100, increased by 2-fold.

Age of selected spores

The age of selected spores not only has a great influence on the growth state, but also affects the expression
level of cells. Porcel et al.(Porcel, López et al. 2006) found a higher titer for lovastatin production by using
older spores. The titer of lovastatin increased by 52% to 186.5±20.1 mg/L when the age of inoculated spores
increased from 9 days to 16 days.

Fed-batch
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Pecyna et al.(Pecyna and Bizukojc 2011) showed that the application of glycerol feed, when lactose is the
initial substrate, leads to the appreciable lovastatin concentration in the broth (122.4 mg/L), nevertheless
the abundant (+)-geodin level is at the same time obtained (255.5 mg/L). The cultures with glycerol as the
initial substrate and fed with lactose produce less lovastatin and (+)-geodin. The application 3of the various
combined glycerol and/or lactose feeds allows for improving lovastatin production up to 161.8 mg/L. Porcel
et al.(Porcel, López et al. 2008) showed that semi-continuous operation enhanced productivity of lovastatin
by 315% compared with a conventional batch operation.

2.2 Statins produced in SSF

Solid-state fermentation (SSF) has the advantages of simple operation, low energy consumption, easy control
of fermentation process, relatively low requirement for sterility, and not easy to occur large area pollution. The
main media of solid-state fermentation (SSF) are agricultural raw materials, including corn, rice, sorghum,
barley and so on. Biomass is a kind of renewable and clean energy. The rational, efficient development
and utilization of biomass is also a hot spot for Solid-state fermentation (SSF) to produce statins. In fact,
the carrier used in the fermentation process and the surface wind speed can also affect the fermentation
of microorganisms to produce statins. Solid-state fermentation for statins biosynthesis was summarized in
Table 3.

2.2.1 Medium

Different medium has great influence on lovastatin production by microbial solid-state fermentation. Valera
et al.(Valera, Gomes et al. 2005) found that wheat bran was to be the most suitable substrate to yield
16.65 mg/g lovastatin in aerated stirred beds after 6 days of fermentation byA. flavipes BICC 5174. Atlı et
al. (Atlı, Yamaç et al. 2015) showed that a maximum lovastatin titer of 139.47 mg/g was achieved by the
fermentation of 5 g of barley, 1–2 mm particle diam, at 28 °C. Subhagar et al.(Subhagar, Aravindan et al.
2009) showed barley, long grain rice and sago starch were the suitable substrates producing. The maximum
titer of lovastatin are 193.7 mg/g, 190.2 mg/g and 180.9 mg/g,respectively. Suraiya et al.(Suraiya, Kim et
al. 2018) showed that glucose had the greatest influence on the production of lovastatin. Under the optimal
fermentation parameters, the average titer of lovastatin reached 13.98 mg/gds using M. purpureus KCCM
60168. Pansuriya et al.(Pansuriya and Singhal 2010) also did this work. The titer of lovastatin was to 3.723
mg/g by A. terreus UV 1718 using solid-state fermentation when optimizing the fermentation parameters.

Different medium also has great influence on compactin production by microbial solid-state fermentation.
Shaligram et al.(Shaligram, Singh et al. 2008) showed that the optimal production of compactin was 0.771
mg/gds with the addition of various supplements (glycerin, etc.) byP. brevicompactum WA 2315. The titer
of compactin was increased to 0.815 mg/gds when the pH of the supplement solution was 7.5. Shaligram
et al.(Shaligram, Singh et al. 2008) optimized the synthesis of compactin by P. brevicompactum WA 2315.
The final titer of compactin was increased from 0.45 mg/gds to 1.25 mg/gds by adding glycerol during
fermentation. Syed et al.(Syed, Rajendran et al. 2014) showed that the combinations of the substrates with
1.5 g of green peas, 1.5 g of millet and 1.5 g of ragi gave maximum production of 389.34 mg/gds compactin
by A. terreus MTCC 279.

Biomass is a kind of renewable and clean energy. The rational, efficient development and utilization of agricul-
tural waste as the substrate of solid-state fermentation (SSF) to produce statins can not only save production
cost effectively, but also realize the effective utilization of resources. Iewkittayakorn et al.(Iewkittayakorn,
Kuechoo et al. 2020) showed that the titer of lovastatin reached the highest at 0.99 mg/g after 14 days of
fermentation with soybean sludge as substrate by adding addition palm oil. Javed et al.(Javed, Bukhari et al.
2016) studied the production of compactin by solid-state fermentation of with bagasse as substrate by A. ter-
reus GCBL-03. Bagasse was pretreated by potassium hydroxide readily become available to microorganism,
leading to 30.63+-1.24 mg/100mL.

2.2.2 Other effects

Artificial inert support
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Banos et al.(Banos, Tomasini et al. 2009) used high-density polyurethane foam (PUF) as an inert support
to produce lovastatin by SSF. Results showed that the titer of lovastatin in PUF solid-state fermentation is
two-fold higher than that of the known solid-state fermentation system of bagasse. And the titer of lovastatin
on PUF is more than 15-fold higher than that of submerged fermentation.

Superficial air velocity

Kumar et al.(Kumar, Srivastava et al. 2014) studied the effect of superficial air velocity on lovastatin
production from A. terreusPL 10 using wheat bran and wheat straw in a 1200-L packed bed reactor. Results
showed a maximum lovastatin production of 1.86 mg/g when the reactor was operated using 0.19 vvm airflow
rate (23.37 cm/min superficial air velocity).

Co-cuture

In fact, co-culture technique has also been introduced to improve the yield of lovastatin. Panda et al.(Panda,
Javed et al. 2010) co-culturedM. purpureus MTCC 369 and M. ruber MTCC 1880, which lead to maximum
lovastatin production of 2.83 mg/g.

Improving statins production by engineering strains

Traditional fermentation culture production of statins usually poses some problems such as a long culture
period, difficult manipulation, and multiple byproducts. With the rapid development of synthetic biology,
the construction of engineering strains for the production of statins may be a major strategy for present and
future statin production. At the same time, the improvement of metabolic engineering strategies should be
rational pathway design and modification. All strains are modified to meet production requirements. We
summarized the metabolic engineering strategies from the perspectives of heterologous expression of genes,
modification of regulatory proteins, inhibiting by-product synthesis, respectively. In contrast to metabolic
engineering strategies, evolution of strains is another alternative to improve the production. Engineering
strains strategies for statins biosynthesis was summarized in Table 4.

3.1 Heterologous expression of genes

Heterologous expression of genes is a common strategy in synthetic biology. Heterologous expression of
genes strategies to improve statins production are described in the box at the upper left (Figure 3 A-C).S.
cerevisiae is very suitable for heterologous expression of genes. Bond et al.(Bond and Tang 2019) introduced
six heterosynthetic genes into S. cerevisiaeBY4741 and adding the acyl-donor dimethylbutyryl-S-methyl
mercaptopropionate (DMB-SMMP) into the culture medium. Regulating the copy number of lovA and
introducing the gene npgA and in situ chemical lysis of cell wall, lead to 55 mg/L simvastatin. Liu et al.(Liu,
Tu et al. 2018) introduced lovastatin synthesis gene intoP. pastoris GS115. Using dihydromonacolin L as
a metabolic node, the synthetic pathway is divided into upstream and downstream modules. Finally, the
optimal co-culture strategy was selected by bioreactor fermentation, lead to 250.8 mg/L lovastatin (Figure
3(A)).

Currently, industrial production of simvastatin acid (SVA) is a multistep process starting from the natural
product lovastatin. Monacolin J can be obtained by alkaline hydrolysis of lovastatin. Chemical method for
transformation of monacolin J to simvastatin was generally divided into three steps, including hydroxyl group
protection, reesterification, and deprotection. The processes from lovastatin to simvastatin are complicated,
laborious, and environmentally unfriendly(Askin, Verhoeven et al. 1991, Xie, Watanabe et al. 2006, Huang,
Liang et al. 2017). Monacolin J biosynthetic gene cluster were integrated into the genome of A. niger
CBS513.88(Zeng, Zheng et al. 2022) which processes strong promoters and suitable integration sites, lead to
92.90 mg/L monacolin J. Optimizing culture conditions and adding precursors, improved the titer to 142.61
mg/L. Liang et al.(Liang, Huang et al. 2018) achieved single-step in vivo production of monacolin J by using
lovastatin hydrolase (PcEST) in A. terreus HZ01 (Figure 3(B)). After modification of PcEST, cell activity
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was increased by 18-dold, which greatly promoted hydrolysis of lovastatin to monacolin J, which also laid a
foundation for industrial production of simvastatin.

Compactin synthetic gene cluster has not been fully characterized. The function of specific genes of compactin
synthetic is unclear. However, there are still some reports of compactin production in engineered strains.
Abe et al.(Abe, Suzuki et al. 2002) improved the synthesis of compactin by adding some gene clusters related
to compactin synthesis in P. piltrinum No.41520. Baba et al.(Baba, Abe et al. 2009) improved the titer of
compactin by adding complete gene clusters in P. piltrinum No.41520, lead to the titer of compactin increase
by 50%. These results indicate that increasing gene copy numbers can promote high titer of compactin.

Pravastatin is mostly produced by microbial fermentation using compactin or compactin sodium as substrate.
Screening strains with high conversion rate is the key to obtain high yield of pravastatin. Lin et al.(Lin,
Tang et al. 2011) isolated a strain and further identified as P. carboxydivorans PAH4. In the medium
of 1 mg/ml compactin sodium, the conversion rate of pravastatin reached 68%. The results of this study
suggested P. carboxydivorans PAH4 could be considered a candidate for the production of pravastatin on
an industrial scale. Ahmad et al.(Ahmad, Mujeeb et al. 2013) tested the bioconversion of compactin to
pravastatin by three A. species, named A. livida MTCC 1382, A. macra MTCC 2559, and A. madurae
MTCC 1220. Bioconversion by A. macra MTCC 2559 was highest (87 %) in the yeast extract-amended
medium. Park et al.(Park, Lee et al. 2003) isolated Streptomyces sp. Y-110 from soil. In batch culture, the
maximum titer was 340 mg/L. By adding compactin to the medium intermittently, the titer was increased
to 1000 mg/L. McLean et al.(McLean, Hans et al. 2015) introduced the compactin pathway into the beta-
lactam-negative P. chrysogenum DS50662, a new cytochrome P450 (P450 or CYP) was isolated to catalyze
the final compactin hydroxylation. They evolved the CYP enzyme to reverse stereoselectivity, lead to more
than 6 g/L pravastatin at a pilot production scale (Figure 3(C)).

3.2 Modification of regulatory proteins

Modifying the regulatory element proteins strategies to improve statins production are described in the box at
the upper right (Figure 3 D, E). Liu et al.(Liu, Bai et al. 2018) overexpressed the statins pump protein TapA
(a membrane protein that enables lovastatin to flow out of cells) in P. pastoris GS115, resulted in 419.0+-
9.5 mg/L lovastatin, 46% higher than overexpression of lovastatin gene and 520% higher than single-copy
strain, respectively (Figure 3(D)). They similarly modulated Trap proteins in P. pastoris GS115, successfully
increasing monacolin J production(Bai, Liu et al. 2020). Itoh et al.(Itoh, Miura et al. 2018) knocked out
the sterol regulatory element binding protein (SREBP) system, increased the lovastatin production by A.
terreusATCC 20542. Thus, knockout of the SREBP system should be considered significant for increasing the
productivities of polyketides, such as HMG-CoA reductase inhibitors, by filamentous fungi. Lu et al.(Huang,
Tang et al. 2019) overexpressed the lovastatin transcriptional regulatorlove , increased the synthetic yield
of monacolin J by 52.5% (Figure 3(E)).

3.3 Inhibiting by-product synthesis

The by-product (+)-Geodin is produced when lovastatin is synthesized from A. terreus ATCC 20542 in glyc-
erol culture. Hasan et al.(Hasan, Abd Rahim et al. 2019) inserted the antibiotic marker hygromycin B (hyg
) within the gedC gene that encodes emodin anthrone polyketide synthase (PKS), got an A. terreusmutant
strain (γεδ῝Δ ). Compared with the wild-type strain, the yield of lovastatin was increased by 80% to 113
mg/L. This study also provided a practical method for controlling carbon flux (Figure 3(F)).

3.4 Evolution of strains

Evolution of strains is a method to obtain high-yield strains. Chemical inducers and ultraviolet radiation are
common methods of random mutation. Kaur et al.(Kaur, Kaur et al. 2009) induced A. terreusGD13 for three
cycles to get high-yielding lovastatinA. terreus EM19, increased 7.5-fold to 1424 mg/L. Azeem et al.(Azeem,
Arshad et al. 2020) induced A. terreus with ethidium bromide for a long time, which greatly improved
the yield of lovastatin in solid-state fermentation. El-Bondkly et al.(El-Bondkly, El-Gendy et al. 2021)
obtained 4.51 mg/gds lovastatin by solid-state fermentation of straw by Fusarium sp. Alaa-20. Enhancing
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mutagenesis induction and three successive gene recombination of Fusarium alternium, increased the titer to
52.1 mg/gds. Dzhavakhiya et al.(Dzhavakhiya, Voinova et al. 2015) obtained a strain S. xanthochromogenes
S33-1 that is high tolerance of compactin by multi-step random UV mutagenesis of S. xanthochromogenes
RIA 1098. After the fermentation medium improvement, the maximum bioconversion rate of this strain has
reached 91% at the daily compactin dose equal to 1 g/L and still remained high (83%) even at the doubled
dose (2 g/L) (Figure 3(G)).

4、、、Challenges and future prospects

From the perspective of statins production strategies, most of the research is based on solid-state fermentation
and submerged fermentation. Most of them are optimized for the composition of carbon source, nitrogen
source and inorganic salt in the medium. Some papers have also studied the fermentation parameters and the
substances produced in the fermentation process that may affect the yield of statins. It can be concluded that
simply optimizing the culture medium components and fermentation parameters will not lead to significant
progress in statins production. At the same time, the lack of microbial growth and catalytic activity in
industrial fermenters will lead to low product yield, weak cell growth and other problems. Global screening
or random mutagenesis of existing strains to obtain more adaptable strains may solve this problem(Maltsev,
Maltseva et al. 2020, Chekanov, Litvinov et al. 2021). Metabolic engineering strategies have also been used
to increase statins production, but these have been relatively infrequently reported. This is partly because
some of the statins synthesis gene clusters have not been fully characterized(Abe, Suzuki et al. 2002, Baba,
Abe et al. 2009), limiting gene modification. Therefore, a complete analysis and characterization of the
statins synthesis gene cluster will further promote statins synthesis.

S. cerevisiae is an ideal host for heterologous gene expression(Novo, Bigey et al. 2009, Vatanparast and Kim
2019, Davies, Tsyplenkov et al. 2021). The mature technologies of gene editing and expression, high cell-
density culture and fermentation process control made S. cerevisiae to be a very promising microorganism
for statins production. The successful synthesis of simvastatin(Bond and Tang 2019) has demonstrated
thatSaccharomyces cerevisiae may be a promising microorganism for the production of statins. In particular,
new statins can be synthesized by introducing exogenous synthetic genes into S. cerevisiae (Giugliano,
Maiorino et al. 2019, Chioua and Marco-Contelles 2021). However, some challenges still exist to translate
bio-statins into practical industrial applications.

In the future, major advances in statins production will depend on metabolic engineering strategies, which
also need biotechnology innovation. Methods such as protein engineering, synthetic biology, metabolic
engineering and fermentation engineering will be used to overcome challenges and solve biotechnology prob-
lems(Liu, Xue et al. 2022). Synthetic biology and systems biology tools help to explore and construct shorter
alternatives to the classical statins synthesis pathway(2012, Nielsen and Pronk 2012). Protein engineering
and structural biology tools are needed to improve transformation efficiency and mitigate the inhibition of
key intermediates and end products. Adaptively directed evolution of enzymes has also benefited from ad-
vances in protein engineering. Therefore, through the further study of metabolic engineering strategies, the
production of statins will make significant progress. Compared to review papers on statins production previ-
ously published(Manzoni and Rollini 2002, Barrios-González and Miranda 2010), We describe the strategies
of statins synthesis in more detail. And we outlook the challenges and possible solutions of statins synthesis
in more detail and comprehensively. Overall, statins biosynthesis is a worthy-studied theme, as statins still
have high application and value.
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Porcel, E. M. R., J. L. C. López, J. A. S. Pérez and Y. Chisti (2008). ”Lovastatin production by Aspergillus
terreus in a two-staged feeding operation.” 83 (9): 1236-1243.

Porcel, E. R., J. L. C. López, M. A. V. Ferrón, J. A. S. Pérez, J. L. G. Sánchez and Y. Chisti (2006).
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Company Sankyo Merck Merck Sankyo Sandoz Pfizer AstraZeneca JINGXIN

Half-life / 3 h 2-3 h 1.5 h 2.3±0.9 h 14 h 19 h 11 h
Clearance / Hepatic Hepatic Hepatic and renal Hepatic Hepatic Hepatic and renal Hepatic
Form Administered / Inactive lactone Inactive lactone Active hydroxy acid Active hydroxy acid Active hydroxy acid Active hydroxy acid Active hydroxy acid
Solubility / Lipophilic Lipophilic Hydrophilic Lipophilic Lipophilic Hydrophilic Lipophilic
Derivative Fungal Fungal Fungal Fungal Synthetic Synthetic Synthetic Synthetic
Structure
Generation / First First Second Second Third Third Third
Drug name Compactin Lovastatin Simvastatin Pravastatin Fluvastatin Atorvastatin Rosuvastatin Pitavastatin

Table 2. Submerged fermentation for statins biosynthesis.

Statins Strain methods & strategies Titer Ref.

Lovastatin A. terreus ATCC 20542 Adding KH2PO4, MgSO4·7H2O, NaCl and ZnSO4·7H2O to the medium 25.52 mg/L (Abd Rahim, Lim et al. 2019)
Adding 2mM or 5mM Zn2+ to the medium 49.2±1.4 mg gDCW-1 (Jia, Zhang et al. 2009)
Controlling higher redox potential during fermentation 83.8 mg/L (Pawlak and Bizukojc 2013)
Lactose is the initial substrate while feeding with glycerol 122.4 mg/L (Pecyna and Bizukojc 2011)
Glycerol is the initial substrate while feeding with lactose 161.8 mg/L (Pecyna and Bizukojc 2011)
The age of inoculated spores from 9 days to 16 days 186.5±20.1 mg/L (Porcel, López et al. 2006)
Carbohydrate concentration of jujube syrup 64 g/ L, yeast extract 15 g/L, PH 6.5, 150 rpm 241.1 mg/ L (Ansari, Jalili et al. 2018)
Adding10µm talc particles to the culture medium 250 mg/L (Gonciarz, Kowalska et al. 2016)
Soybean and peanut flours as substrate 250˜280 mg/L (Rollini and Manzoni 2006)
The air bubbles diameter of bubble column bioreactor is 0.18cm 443 mg/L (Ansari, Jalili et al. 2019)
20% dissolved oxygen, 7 days of fermentation at 23 572 mg/L (Lai, Tsai et al. 2005)
Adding 50 mg/L tylosin to the culture medium 952.7±24.3 mg/L (Jia, Zhang et al. 2010)
Adding 1% w/v coconut oil to the culture medium 87.18 g/ L (Sripalakit and Saraphanchotiwitthaya 2020)

A. terreus URM 5579 60 g/L soluble starch, 15 g/L soybean flour, pH 7.5, 200 rpm and 32 °C for 7 days 100.86 mg/L (Oliveira, Paulo et al. 2021)
P. ostreatus OBCC 1031 30 g/L glucose, 10 g/L yeast extract, 200 rpm, 28 , and pH 6 114.82 mg/L (Atli, Yamaç et al. 2013)
M. purpureus MTCC 369 29.59 g/L glucose, 3.86 g/L NH4Cl, 1.73 g/L KH2PO4, 0.86 g/L MgSO4·7H2O and 0.19 g/L MnSO4·H2O 351 mg/L (Sayyad, Panda et al. 2007)
A. terreus KPR 12 Sago processing wastewater as substrate 429.98 mg/L (Srinivasan, Thangavelu et al. 2022)
A. terreus GD13 C:N ratio in the culture medium was 37:1; Seven days of fermentation 1342 mg/L (Kaur, Kaur et al. 2010)

Compactin P.citrinum NCIM 768 Using chemically-defined medium; Adding surfactant tween 80 175 mg/L (Chakravarti and Sahai 2002)
Glc 4.65 g/L, Gly 15.8 g/L, U 0.61 g/L; IA 4.24 days and HT 8.9 days 490 mg/L (Chakravarti and Sahai 2002)

A. terreus ATCC 20542 7 days fermentation with modified base medium (CLD); 14 days fermentation with standard medium (STD) 300˜320 mg/L (Rollini and Manzoni 2006)
A. terreus Optimizing the medium constituents like glycerol, CuCl2·2H2O, FeSO4·7H2O, KH2PO4 and MgSO4·7H2O 701 mg/L (Syed and Rajasimman 2015)
P.citrinum MTCC 1256 7.0% glucose, 1.0% yeast extract and 0.1% MgSO4 390˜410 mg/mL (Kónya, Jekkel et al. 1998)

Glycerol, peptone, yeast extract, MgSO4·7H2O and CaCl2·2H2O 589.3 mg/L (Ahmad, Panda et al. 2010)
P.citrinum L-18065 10 days of fermentation with 1.5 g/L triton X-100 1200 mg/L (Kumar, Srivastava et al. 2014)

Table 3. Solid-state fermentation for statins biosynthesis.
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Statins Strain Description Titer Ref.

Lovastatin A. flavipes BICC
5174

Wheat bran as
substrates,
fermenting in
aerated stirred
beds for 6 days

16.65 mg/g (Valera, Gomes et
al. 2005)

O. olearius
OBCC 2002

Fermenting of 5 g
of barley, 1–2 mm
particle diam, at
28 °C

139.47 mg/g (Atlı, Yamaç et
al. 2015)

M. purpureus
MTCC 369

Sago starch as
substrate

180.9 mg/g (Subhagar,
Aravindan et al.
2009)

Long grain rice as
substrate

190.2 mg/g

Barley as
substrate

193.7 mg/g

A. terreus MTCC
279

1.5 g of green
peas, 1.5 g of
millet and 1.5 g of
ragi

1467.12 mg/gds (Syed, Rajendran
et al. 2014)

A. sclerotiorum
PSU-RSPG 178

Agricultural
wastes as
substrates, such
as dry corn
trunks, rice husks,
wild sugarcane
and soy bean
sludge; adding
addition palm oil

0.99 mg/g (Iewkittayakorn,
Kuechoo et al.
2020)

M. purpureus
KCCM 60168

25.64 °C, 14.49
days, 1.32%
glucose and 0.20%
peptone

13.98 mg/gds (Suraiya, Kim et
al. 2018)

A. terreus UV
1718

Optimizing
medium
supplemented
with mycological,
peptone by
response surface
methodology

3.723 mg/g (Pansuriya and
Singhal 2010)

A. terreus PL 10 Controlling
packed bed
reactor of
superficial air
velocity at 23.37
cm/min; 54%
substrate
composition

1.86 mg/g (Kumar,
Srivastava et al.
2014)
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Statins Strain Description Titer Ref.

M. purpureus
MTCC 369 and M.
ruber MTCC 1880

Co-culturing m.
purpureus MTCC
369 and m. ruber
MTCC 1880 for 14
days

2.83 mg/g (Panda, Javed et al.
2010)

Compactin P.
brevicompactum
WA 2315

Adding various
supplements
(glycerin, etc.);
optimize
supplement
pH=7.5

0.815 mg/gds (Shaligram, Singh
et al. 2008)

Control the
substrate initial
water content
50%; fermenting
168 hours; adding
glycerol

1.25 mg/gds (Shaligram, Singh
et al. 2008)

A. terreus MTCC
279

Using 1.5 g of
green peas, 1.5 g
of millet and 1.5 g
of ragi as
combinations of
the substrates

389.34 mg/gds (Syed, Rajendran
et al. 2014)

A. terreus
GCBL-03

Bagasse as
substrates, using
potassium
hydroxide to
pretreat bagasse

30.63±1.24
mg/100mL

(Javed, Bukhari
et al. 2016)

Table 4. Engineering strains strategies to improve the production of statins.

Statins Strain Description Titer Ref.

Simvastatin S. cerevisiae BY4741 Introducing the synthetic gene of monacline J; adding the acyl-donor dimethylbutyryl-S-methyl mercaptopropionate (DMB-SMMP) into the culture medium; In situ chemical lysis of cell wall 55 mg/L (Bond and Tang 2019)
Lovastatin P. pastoris GS115 Introducing lovastatin synthesis gene into P. pastoris GS115; using dihydromonacolin L as a metabolic node, dividing the synthetic pathway into upstream and downstream modules; Co-culture strategy 250.8 mg/L (Liu, Tu et al. 2018)

Overexpressing the statins pump protein TapA (a membrane protein that enables lovastatin to flow out of cells) 419.0±9.5 mg/L (Liu, Bai et al. 2018)
A. terreus ATCC 20542 Inserting the antibiotic marker hygromycin B (hyg) within the gedC gene that encodes emodin anthrone polyketide synthase (PKS), a primary gene responsible for initiating (+)-geodin biosynthesis to get an A. terreus mutant strain (gedCΔ) 113 mg/L (Hasan, Abd Rahim et al. 2019)
A. terreus EM19 Inducing A. terreus GD13 for three cycles 1424 mg/L (Kaur, Kaur et al. 2009)
Fusarium sp. Alaa-20 Enhancing mutagenesis induction and three successive gene recombination of Fusarium sp. Alaa-20 52.1 mg/gds (El-Bondkly, El-Gendy et al. 2021)

Pravastatin Streptomyces sp. Y-110 Adding compactin to the medium intermittently 1000 mg/L (Park, Lee et al. 2003)
P. chrysogenum DS50662 Introducing the compactin pathway into the beta-lactam-negative P. chrysogenum DS50662; A evolved cytochrome P450 (P450 or CYP) were used to catalyze the final compactin hydroxylation step 6 g/L (McLean, Hans et al. 2015)

17



P
os

te
d

on
22

M
ay

20
23

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
68

47
50

27
.7

99
97

40
8/

v
1

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

18



P
os

te
d

on
22

M
ay

20
23

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
68

47
50

27
.7

99
97

40
8/

v
1

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

19


