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Abstract

In this paper, we consider the non-fragile containment control problem of nonlinear multi-agent systems (MASs) with exogenous

disturbance where the communication links among agents under consideration is directed. Firstly, based on relative output

measurements between the agent and its neighbors, a disturbance observer-based control protocol is proposed to solve the

containment control problem of MASs with inherent nonlinear dynamics and exogenous disturbances. Secondly, because of

the additional tuning of parameters in the real control systems, uncertainties in the designing of observer and controller gains

always occur, and as a result, an output feedback controller with disturbance rejection is conceived and the containment control

problem of nonlinear MASs with non-fragility is thoroughly investigated. Then, depending on matrix transformation and

inequality technique, sufficient conditions of the designed controller gains exist, which is derived from the asymptotic stability

analysis problem of some containment error dynamics of MASs. Finally, two simulation examples are exploited to illustrate the

effectiveness of the proposed techniques.
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SUMMARY

In this paper, we consider the non-fragile containment control problem of nonlinear multi-agent systems
(MASs) with exogenous disturbance where the communication links among agents under consideration is
directed. Firstly, based on relative output measurements between the agent and its neighbors, a disturbance
observer-based control protocol is proposed to solve the containment control problem of MASs with inherent
nonlinear dynamics and exogenous disturbances. Secondly, because of the additional tuning of parameters
in the real control systems, uncertainties in the designing of observer and controller gains always occur,
and as a result, an output feedback controller with disturbance rejection is conceived and the containment
control problem of nonlinear MASs with non-fragility is thoroughly investigated. Then, depending on matrix
transformation and inequality technique, sufficient conditions of the designed controller gains exist, which
is derived from the asymptotic stability analysis problem of some containment error dynamics of MASs.
Finally, two simulation examples are exploited to illustrate the effectiveness of the proposed techniques.
Copyright c⃝ 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

During the last decade, cooperation control of MASs has found substantial success in a variety of
applications, such as consensus [1–3], tracking control [4–6], formation control [7, 8], containment
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2 NON-FRAGILE CONTAINMENT CONTROL

control [9], cooperative output regulation [10] and optimization [11]. Consensus problem, as
a fundamental and non-negligible research topic of MASs, requires that all agents achieve an
agreement on a common state, depending on the designed consensus protocols using only relative
measurements among neighboring agents. In general, due to the number of leaders in the control
system, consensus problem is then called consensus tracking problem (one leader) or containment
control problem (multiple leaders). As a matter of fact, it is much more attracting and challenging
to investigate the containment control problem in practical application, especially in military areas
such as sea hunting.

The fact of containment, generally speaking, is that the states of all followers eventually enter
into a given geometric space spanned by those of the leaders. Motivated by the pioneer works on
consensus problems of MASs, a number of fruits on containment control problems have already
sprung up. By using Z-transformation and Routh Criterion, [12] studies the containment control
problem of discrete-time first-order MASs and shows that different step-sizes have a specific effect
on the stability of MASs. Utilizing Lasalle’s Invariance Principle of hybrid stability theory, [13]
researches the containment control problem of continuous-time first-order MASs and the obtained
result holds for arbitrary state dimensions. Further, depending on non-smooth analysis and adaptive
control method, [14] investigates the robust containment control problem of linear MASs where
the time-varying uncertainties exist. Different form the static control schemes in which internal
information might be difficult to detect [12–14], the containment control problem of liner MASs is
solved in [15–17] via an output feedback approach depending on relative output measurements of
the neighboring agents. Note that the aforementioned works [14–17] focus on the linear dynamics,
however, the nonlinearity always exists in various engineering applications. Thus, it is of great
significance to handle the cooperation control problems of MASs with nonlinear dynamics [18,19].

As is well known, external disturbances are ubiquitous in practical control systems, especially
in large-scale networked systems. Therefore, many fruitful results have been placed on the
disturbances of the MASs. For example, by using a state feedback controller, [20] considers the
H∞ consensus problem of general liner MASs with bounded disturbances. Different form the state
feedback method proposed in [20], based on a truncated predictor output-feedback strategy, [21]
studies the H∞ scales consensus problem of MASs, in which both Lipschitz nonlinearity and external
disturbances are involved. Note that the H∞ control [20,21] can not directly compensate the influence
of disturbances of the system depending on the disturbance estimate. Thus, a disturbance observer-
based control scheme is adopted to handle those defects and a great number of achievements
have been reported in the literature [22–27]. Specifically, by designing a disturbance observer-
based control scheme based on only the relative state information, [22] discusses the consensus
disturbance rejection of linear MASs and [23–25] address the consensus tracking problem for
nonlinear MASs with disturbance rejection, respectively. For further consideration, by using an
observer-based output feedback control scheme, consensus tracking problem of nonlinear dynamics
is investigated in [26], in which the disturbances considered are nonlinear. In addition, [27] deals
with the containment control problem of MASs with disturbance rejection.

Other than the external disturbances, non-fragility plays an important role in the study of
consensus problems of MASs, as well. In particular, by employing a non-fragile state feedback
consensus protocol, [28] researches the finite-time consensus of MASs with time-varying input

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
Prepared using rncauth.cls DOI: 10.1002/rnc



A DEMONSTRATION OF THE INT. J. ROBUST. NONLINEAR CONTROL CLASS FILE 3

delay over switching topologies. In [29], the non-fragile guaranteed-performance H∞ consensus
tracking problem of MASs is discussed, in which Lipschitz nonlinearities and exogenous
disturbances are taken into account. Compared to the state feedback control method proposed in
[28–30], by adopting an output feedback control method, [31] deals with the non-fragile consensus
problem of nonlinear MASs with randomly occurring deception attacks. Further, via a non-fragile
output feedback controller, [32] handles the non-fragile cooperative containment control problem
of MASs with time delay. Moreover, in order to reduce communication burden, [33] proposed
a non-fragile memory sampled-data control scheme to address the consensus problem of MASs.
However, to the best of our knowledge, there are few reports concerning the issue of the non-fragile
containment control problems of MASs with disturbance rejection. In this paper, via a disturbance
observer-based approach, we investigate the non-fragile containment control problem of nonlinear
MASs over directed communication topology.

The contributions include the following aspects. Firstly, two kinds of disturbance observer-based
control schemes of MASs are developed. The former is used to investigate the containment control
problem with disturbance rejection, and the other is used to address that problem with non-fragility.
Secondly, by taking advantage of matrix transformation and inequality technique, the feedback
controller gain, as well as the corresponding observer gain, is obtained. Finally, only external
disturbance or non-fragility is handled in references [17, 22–24, 27, 29–32], however, there exist
few works to deal with consensus problems considering both external disturbance and non-fragility.
In this paper, to fill the research gaps on consensus problems, we solve the non-fragile containment
control problems of MASs with disturbance rejection under directed communication topology, in
which all these two factors are involved.

The organizational structure of the paper is as follows. In Section 2, problem formulation
is presented. Section 3 respectively discusses the containment control problem and the non-
fragile containment control problem of nonlinear MASs with external disturbance. Two simulation
examples are given to validate the effectiveness of the developed algorithes in Section 4. Finally,
Section 5 summarizes the paper.

Notations: The notations used in this paper are fairly standard. ⊗ stands for the Kronecker
product, ∗ denotes a symmetric term and In represents an identity matrix with dimension n. In
addition, an n dimension column vector with all the elements being 1(0) is denoted as 1n(0n)

and diag{ε1, ε2, · · · , εn} is used to represent a block diagonal matrix with diagonal blocks being
ε1, ε2, · · · , εn. Given real symmetric matrix A and B, A > B(A ≥ B) denotes that A−B is positive
definite (positive semi-definite).

2. PRELIMINARIES AND PROBLEM FORMULATION

In this section, the basic knowledge of graph theory is introduced and the considered problem is
shown, respectively.

2.1. Preliminaries

Generally, G = {V , E } is used to represent a directed communication topology, where V =

{1, 2, . . . , N} and E ⊆V ×V are the set of nodes and that of edges, respectively. ( j, i)∈ E denotes

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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4 NON-FRAGILE CONTAINMENT CONTROL

that the ith agent can receive the information from the jth agent in the directed communication
topology G , but not vice-versa. A = [ai j]∈ RN×N is use to stand for the adjacency matrix connected
with the directed topology G by aii = 0, ai j = 1 if ( j, i) ∈ E , and ai j = 0 otherwise. In addition, the
Laplacian matrix L = (li j)N×N is defined as li j = −ai j with i ̸= j and lii = ∑N

j=1, j ̸=i ai j with i = j.
The above-mentioned content of graph theory is introduced in [34].

2.2. Problem Formulation

We consider a multi-agent system (MAS) consisting of N + M agents with N followers and M
leaders, where the dynamics of the ith agent is described by

ẋi(t) = Axi(t)+Bui(t)+Ddi(t)+E f (t, xi(t)),

yi(t) =Cxi(t), (1)

for i = 1, · · · , N +M, where xi(t) ∈ Rn, ui(t) ∈ Rm and yi(t) ∈ Rr respectively denote the state,
control input and output of agent i, and f : R×Rn → Rn denotes inherent nonlinear dynamics.
A ∈ Rn×n, B ∈ Rn×m, C ∈ Rr×n, D ∈ Rn×s and E ∈ Rn×n are constant matrices, and di(t) ∈ Rs is a
disturbance that is generated by an exosystem

ḋi(t) = Sdi(t), i = 1, · · · , N, (2)

with S ∈ Rs×s being a known constant matrix.
In the paper, the agents indexed by 1, 2, . . . , N are followers and those indexed by N + 1, N +

2, . . . , N +M are leaders. We let F = {1, 2, . . . , N} and R = {N + 1, N + 2, . . . , N +M}
denote the set of the followers and that of the leaders, respectively. Suppose that the leaders have
no parents in the directed communication topology, then the corresponding Laplacian matrix is

divided into L =

[
L1 L2

0M×N 0M×M

]
, where L1 ∈ RN×N and L2 ∈ RN×M . Furthermore, the convex

hull constructed by the states of the set of multiple leaders xR(t) = {xN+1(t), · · · , xN+M(t)} is
denoted as co(xR(t)) =

{
∑N+M

i=N+1 αixi(t)| ∑N+M
i=N+1 αi = 1, αi ≥ 0

}
.

Definition 1 ( [15])
The containment control problem of MAS (1) is achieved if each follower asymptotically enters into
the convex hull co(xR(t)) formed by the states of the leaders set as time goes to the infinity.

Assumption 1
The directed topology G is connected. And for each follower, there exists at least one leader that
has a directed path to it.

Assumption 2
The control input matrix B ∈ Rn×m is of full-column rank, namely, rank(B) = m.

Assumption 3
The disturbance is matched, namely, there exists a matrix V ∈ Rm×s such that D = BV .

Assumption 4
Given ηN+1, ηN+2, . . . , ηN+M with ∑N+M

i=N+1 ηi = 1, and ηi ≥ 0, i = N+1, N+2, . . . , N+M. There

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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A DEMONSTRATION OF THE INT. J. ROBUST. NONLINEAR CONTROL CLASS FILE 5

exists a non-negative constant α such that the nonlinear function f satisfies∥∥ f (t,x)−∑N+M
i=N+1 ηi f (t,yi)

∥∥≤ α
∥∥x−∑N+M

i=N+1 ηiyi
∥∥ ,

∀x, yi ∈ Rn, i = N +1, N +2, . . . , N +M, ∀t ≥ 0.

Remark 1
Assumption 1 is commonly used in the containment control problems of MASs, see [12–17]. It is
worth noting that it is of great importance to study the consensus containment problems of MASs
under directed topology than undirected topology in [27]and [29]. The character of B specified
in Assumption 2 is in order to make matrix transformation [35] for subsequent containment error
analysis. From Assumption 3, the disturbance di(t) is the non-vanishing harmonic disturbance and
D = BV is the matching condition of MAS (1) with external disturbance, and Assumption 3 is
commonly used in the consensus problems [22–24,26,27]. All linear and some nonlinear functions
such as ccos t + vsin t and xe−t satisfy the condition above in Assumption 4. When only one leader
exists, the condition converts to the form of Lipschitz condition, namely, ∥ f (t, x)− f (t, y)∥ ≤
α ∥x− y∥, and the containment control problem is transformed into the consensus tracking problem
[18, 19, 23–26, 29].

Lemma 1 ( [14])
If Assumption 1 holds. The real parts of all the eigenvalues of L1 are positive, each entry of −L1

−1L2

is nonnegative and the sum of each row of the matrix −L1
−1L2 is equal to one.

Lemma 2 ( [35])

From Assumption 2, it is seen that B̃ = T BW =
[

T T
1 T T

2

]T
BW =

[
QT 0

]T
with the

existence of matrices T ∈ Rn×n and W ∈ Rm×m, where T1 ∈ Rm×n and T2 ∈ R(n−m)×n, and Q =

diag{q1, q2, . . . , qm} is a diagonal matrix, qi (i = 1, 2, . . . , m) are nonzero singular value of the
matrix B. Assume that the equality P1 = T T

1 P11T1+T T
2 P22T2 holds, there exists a nonsingular matrix

P ∈ Rm×m such that BP = P1B, where P11 ∈ Rm×m > 0 and P22 ∈ R(n−m)×(n−m) > 0.

Remark 2
Finding a solution to Lemma 2’s problem of BP = P1B for P is intended to help us build the LMI
approach to the controller design. Since we can always perform congruence transformation on B,
the assumption that B is a full-column rank is purely for presentation convenience and does not lose
any generality. If P1 = T T

1 P11T1 +T T
2 P22T2 is true, P exists, but it might not be unique unless B is

square and nonsingular.

Lemma 3 ( [33])
Given matrix Y = Y T , H and E with compatible dimensions, if Y +HG(t)E +ET GT (t)HT < 0
holds for all G(t) satisfying GT (t)G(t)≤ I. Then, Y +ζ HHT +ζ−1ET E < 0 holds with any scalar
ζ > 0.

Lemma 4 ( [32])
For any two real vectors a and b with the same dimension, then 2aT b ≤ aTUa+bTU−1b holds with
U > 0.

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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6 NON-FRAGILE CONTAINMENT CONTROL

3. MAIN RESULTS

In this section, both the distributed cooperation containment control problem and that with non-
fragility of nonlinear MASs over directed topology are investigated, respectively.

3.1. Containment Control Problem

In this subsection, the containment control problem is transformed to the stability analysis of a
containment error system and the existing conditions on gains of observer and controller of MAS
(1) is shown. Motivated by [22,23,27,29,31,32], a distributed disturbance observer-based controller
is given as:

ui(t) = 0, i ∈ R,

ui(t) =−K ∑
j∈R∪F

ai j(x̂i(t)− x̂ j(t))−V d̂i(t), i ∈ F , (3)

with

˙̂xi(t) = Ax̂i(t)−G1(yi(t)− ŷi(t)), i ∈ R,

d̂i(t) = 0, i ∈ R, (4)

and

˙̂xi(t) = Ax̂i(t)+Bui(t)+Dd̂i(t)−G1(yi(t)− ŷi(t)), i ∈ F ,

˙̂di(t) = Sd̂i(t)−G2 ∑
j∈R∪F

ai j((yi(t)− y j(t))− (ŷi(t)− ŷ j(t))), i ∈ F , (5)

where ŷi(t) = Cx̂i(t), x̂i(t) denotes a state observer, d̂i(t) denotes the estimate of the disturbance.
The feedback gain K, state observer gain G1 and disturbance observer gain G2 are constant matrices
to be designed. Then, from (3), the system (1) can be rewritten as

ẋi(t) = Axi(t)+E f (t, xi(t)), i ∈ R,

ẋi(t) = Axi(t)−BK ∑
j∈R∪F

ai j(x̂i(t)− x̂ j(t))−BV d̂i(t)+Ddi(t)+E f (t, xi(t)), i ∈ F , (6)

According to (1)-(6), one gets

ẋi(t) = Axi(t)+E f (t, xi(t)), i ∈ R,

˙̂xi(t) = Ax̂i(t)−G1C(xi(t)− x̂i(t)), i ∈ R,

and

ẋi(t) = Axi(t)−BK ∑
j∈R∪F

ai j(x̂i(t)− x̂ j(t))−BV d̂i(t)+Ddi(t)+E f (t, xi(t)), i ∈ F ,

˙̂xi(t) = Ax̂i(t)−BK ∑
j∈R∪F

ai j(x̂i(t)− x̂ j(t))−G1C(xi(t)− x̂i(t)), i ∈ F ,

which are rewritten in compact forms

ẋR(t) = (IM ⊗A)xR(t)+(IM ⊗E)F(t, xR),

yR(t) = (IM ⊗C)xR(t),

˙̂xR(t) = (IM ⊗ (A+G1C))x̂R(t)− (IM ⊗G1C)xR(t),

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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A DEMONSTRATION OF THE INT. J. ROBUST. NONLINEAR CONTROL CLASS FILE 7

and

ẋF(t) = (IN ⊗A)xF(t)− (L1 ⊗BK)x̂F(t)− (L2 ⊗BK)x̂R(t)+(IN ⊗D)e(t)+(IN ⊗E)F(t, xF),

yF(t) = (IN ⊗C)xF(t),

˙̂xF(t) = (IN ⊗ (A+G1C)−L1 ⊗BK)x̂F(t)− (IN ⊗G1C)xF(t)− (L2 ⊗BK)x̂R(t),

where e(t) = [eT
1 (t), · · · , eT

N(t)]
T with ei(t) = di(t)− d̂i(t), xF(t) = [xT

1 (t), · · · , xT
N(t)]

T , xR(t) =
[xT

N+1(t), · · · , xT
N+M(t)]T , yF(t) = [yT

1 (t), · · · , yT
N(t)]

T and yR(t) = [yT
N+1(t), · · · , yT

N+M(t)]T . More-
over, F̄(t)= (L1⊗E)[F(t, xF)+(L1

−1L2⊗In)F(t, xR)], F(t, xF)= [ f T (t, x1), . . . , f T (t, xN)]
T and

F(t, xR) = [ f T (t, xN+1), . . . , f T (t, xN+M)]T . Then, one has

ė(t) = ḋ(t)− ˙̂d(t) = (IN ⊗S)e(t)+(L1 ⊗G2C)(xF(t)− x̂F(t))+(L2 ⊗G2C)(xR(t)− x̂R(t)).

Let ηi(t) = ∑
j∈R∪F

ai j(xi(t)− x j(t)) and η̂i(t) = ∑
j∈R∪F

ai j(x̂i(t)− x̂ j(t)) denote the containment

error vectors, i = 1, 2, · · · , N, with η(t) = [ηT
1 (t), · · · , ηT

N (t)]
T and η̂(t) = [η̂T

1 (t), · · · , η̂T
N (t)]

T .
Denote η̄i(t) = ηi(t)− η̂i(t), i = 1, 2, · · · , N, with η̄(t) = [η̄T

1 (t), · · · , η̄T
N (t)]

T . Thus, we have

η(t) = (L1 ⊗ IN)xF(t)− (L2 ⊗ IN)xR(t),

η̂(t) = (L1 ⊗ IN)x̂F(t)− (L2 ⊗ IN)x̂R(t),

η̄(t) = η(t)− η̂(t) = (L1 ⊗ IN)(xF(t)− x̂F(t))+(L2 ⊗ IN)(xR(t)− x̂R(t)).

Further, it yields

ė(t) = (IN ⊗S)e(t)+(IN ⊗G2C)η̄(t),

˙̂η(t) = (L1 ⊗ IN) ˙̂xF(t)+(L2 ⊗ IN) ˙̂xR(t) = (IN ⊗A−L1 ⊗BK)η̂(t)− (IN ⊗G1C)η̄(t),

˙̄η(t) = η̇(t)− ˙̂η(t) = (L1 ⊗ IN)(ẋF(t)− ˙̂xF(t))+(L2 ⊗ IN)(ẋR(t)− ˙̂xR(t))

= (IN ⊗ (A+G1C))η̄(t)+(L1 ⊗D)e(t)+ F̄(t). (7)

Based on (7), the error system is expressed in a compact form

ε̇(t) = Āε(t)+ F̃(t), (8)

where

ε(t) =

 e(t)
η̂(t)
η̄(t)

 , Ā =

 IN ⊗S 0 IN ⊗G2C
0 IN ⊗A−L1 ⊗BK −IN ⊗G1C

L1 ⊗D 0 IN ⊗ (A+G1C)

 , F̃(t) =

 0
0

F̄(t)

 .

Now, we are in the position to present our result as follows.

Theorem 1
Suppose that the directed topology satisfies Assumption 1, the feedback gain, state observer gain and
disturbance observer gain are designed by K = WQ−1P11

−1QW T X , G1 = P−1
1 Y1 and G2 = P−1

1 Y2

such that MAS (1) with external disturbance system (2) under the control protocol (3) solves the
containment disturbance rejection problem if there exist matrices P11 > 0, P22 > 0 and matrices X ,

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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8 NON-FRAGILE CONTAINMENT CONTROL

Y1 and Y2 such that the following LMI holds:



θ11 0 θ13 IN ⊗P1 0 0 0 0
∗ θ22 IN ⊗Y1C 0 IN ⊗P1 0 α(IN ⊗ET ) 0
∗ ∗ θ33 0 0 IN ⊗P1 0 α(IN ⊗ET )

∗ ∗ ∗ −InN 0 0 0 0
∗ ∗ ∗ ∗ −InN 0 0 0
∗ ∗ ∗ ∗ ∗ −InN 0 0
∗ ∗ ∗ ∗ ∗ ∗ −InN 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −InN


< 0, (9)

where

θ11 = IN ⊗ (P1S+ST P1), θ22 = IN ⊗ (P1A+AT P1)−L1 ⊗BX − (L1 ⊗BX)T ,

θ13 = (L1 ⊗P1D)T + IN ⊗Y2C, θ33 = IN ⊗ (P1A+AT P1)+ IN ⊗Y1C+(IN ⊗Y1C)T .

Proof
Select the following Lyapunov functional for system (8)

V1(t) = εT (t)P̄ε(t), (10)

where

P̄ =

 IN ⊗P1 0 0
0 IN ⊗P1 0
0 0 IN ⊗P1

 ,

and P1 is positive definite and symmetric. Calculating the time derivative of V1(t) along the trajectory
of (8) yields

V̇1(t) = εT (t)(ĀT P̄+ P̄Ā)ε(t)+2εT (t)P̄F̃(t).

By Lemma 4 and Assumption 4, it has 2εT (t)P̄F̃(t)≤ εT (t)P̄P̄T ε(t)+F̃T (t)F̃(t)≤ εT (t)P̄P̄T ε(t)+
εT (t)Ωε(t), where

Ω =

 0 0 0
0 α2(IN ⊗ET E) 0
0 0 α2(IN ⊗ET E)

 ,

Obviously, it gives

V̇1(t)≤ εT (t)Πε(t), (11)

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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A DEMONSTRATION OF THE INT. J. ROBUST. NONLINEAR CONTROL CLASS FILE 9

where

Π =



ϕ11 0 ϕ13 IN ⊗P1 0 0 0 0
∗ ϕ22 IN ⊗P1G1C 0 IN ⊗P1 0 α(IN ⊗ET ) 0
∗ ∗ ϕ33 0 0 IN ⊗P1 0 α(IN ⊗ET )

∗ ∗ ∗ −InN 0 0 0 0
∗ ∗ ∗ ∗ −InN 0 0 0
∗ ∗ ∗ ∗ ∗ −InN 0 0
∗ ∗ ∗ ∗ ∗ ∗ −InN 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −InN


,

ϕ11 = IN ⊗ (P1S+ST P1), ϕ22 = IN ⊗ (P1A+AT P1)−L1 ⊗P1BK − (L1 ⊗P1BK)T ,

ϕ13 = (L1 ⊗P1D)T + IN ⊗P1G2C, ϕ33 = IN ⊗ (P1A+AT P1)+ IN ⊗P1G1C+(IN ⊗P1G1C)T .

If there exist matrices P11 and P22 satisfying Lemma 2, by using P1T T [QT 0]TW T =

T T [QT 0]TW T P in Lemma 2, then a nonsingular matrix P = (W T )−1Q−1P11QW T is obtained which
satisfies BP = P1B. Furthermore, by K = WQ−1P11

−1QW T X , G1 = P−1
1 Y1 and G2 = P−1

1 Y2 in
Theorem 1, it is obtained that X = PK, Y1 = P1G1 and Y2 = P1G2.

Therefore, it is obvious to see that Π < 0 in (11) is equivalent to (9), implying that V̇1(t) < 0
holds. Further, it follows from the closed-loop systems (8) that η̄(t)→ 0 , η̂(t)→ 0 and e(t)→ 0 as
t → ∞, then it has η(t)→ 0 as t → ∞, which means (L1 ⊗ In)xF(t)+(L2 ⊗ In)xR(t)→ 0. Hence, by
Lemma 1, it can be derived that xF(t)→−(L1

−1L2 ⊗ In)xR(t) as t → ∞. That is to say, all followers
asymptotically converge to the convex spanned by all leaders as t → ∞ which complies with the
character in Definition 1, meaning that the distributed containment control problem for MASs with
inherent nonlinear dynamics and disturbance rejection has been solved. The proof is complete.

Remark 3
In [27], an output feedback observer is presented to solve the containment control problem with
disturbance rejection, and the topology considered here is undirected. And in [17], the containment
control problem is addressed under directed topology, in which no exogenous disturbance is
considered. Compared with the linear dynamics of [27] and [17], however, the nonlinear dynamics
considered in [23–25] are more practical and challenging. In view of these facts, the protocol (3)
is conceived based on the output feedback strategy to handle the containment control problem
where exogenous disturbances and inherent nonlinear dynamics are involved simultaneously, and
the communication topology considered here is directed. Moreover, it is easy to find that no matter
how many agents are involved, processing the LMI (9) yields the gain matrices K, G1 and G2 in
Theorem 1. Even though the form of followers N becomes more complex and the calculation of LMI
(9) increases, the Theorem 1’s scalability and reasonableness for many followers is still guaranteed.

3.2. Non-fragile Containment Control Problem

In the last subsection, the distributed containment control problem for MASs is discussed, in which
no controller or observer gain variations are considered. In order to handle the problem with gains
variations in the controller and observer designs, a novel non-fragile disturbance observer-based
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control protocol is proposed as follows:

ui(t) = 0, i ∈ R,

ui(t) =−(K +∆K) ∑
j∈R∪F

ai j(x̂i(t)− x̂ j(t))−V d̂i(t), i ∈ F , (12)

with

˙̂xi(t) = Ax̂i(t)− (G1 +∆G1)(yi(t)− ŷi(t)), i ∈ R,

d̂i(t) = 0, i ∈ R, (13)

and

˙̂xi(t) = Ax̂i(t)+Bui(t)+Dd̂i(t)− (G1 +∆G1)(yi(t)− ŷi(t)), i ∈ F ,

˙̂di(t) = Sd̂i(t)− (G2 +∆G2) ∑
j∈R∪F

ai j((yi(t)− y j(t))− (ŷi(t)− ŷ j(t))), i ∈ F , (14)

where x̂i(t), ŷi(t), d̂i(t), K, G1 and G2 are the same as those defined in the last subsection. Note
that the uncertainties matrices ∆K, ∆G1 and ∆G2 denote the possible controller and observer gain
variation. Furthermore, the gain perturbations ∆K, ∆G1 and ∆G2 are represented in the following
form:

∆G1 = E1H1(t)F1, ∆G2 = E2H2(t)F2, ∆K = E3H3(t)F3, (15)

where E1, F1, E2, F2, E3 and F3 are known matrices with appropriate dimensions, and the
unknown matrices H1(t), H2(t) and H3(t) are described by H1(t)T H1(t) ≤ I, H2(t)T H2(t) ≤ I and
H3(t)T H3(t)≤ I.

Then, based on (12), the system (1) is rewritten as

ẋi(t) = Axi(t)+E f (t, xi(t)), i ∈ R,

ẋi(t) = Axi(t)−B(K +∆K) ∑
j∈R∪F

ai j(x̂i(t)− x̂ j(t))−BV d̂i(t)+Ddi(t)+E f (t, xi(t)), i ∈ F ,

(16)

According to (1) and (12)-(16), one gets

ẋi(t) = Axi(t)+E f (t, xi(t)), i ∈ R,

˙̂xi(t) = Ax̂i(t)− (G1 +∆G1)C(xi(t)− x̂i(t)), i ∈ R,

and

ẋi(t) = Axi(t)−B(K +∆K) ∑
j∈R∪F

ai j(x̂i(t)− x̂ j(t))−BFd̂i(t)+Ddi(t)+E f (t, xi(t)), i ∈ F ,

˙̂xi(t) = Ax̂i(t)−B(K +∆K) ∑
j∈R∪F

ai j(x̂i(t)− x̂ j(t))− (G1 +∆G1)C(xi(t)− x̂i(t)), i ∈ F ,

which are rewritten in compact forms

ẋR(t) = (IM ⊗A)xR(t)+(IM ⊗E)F(t, xR),

yR(t) = (IM ⊗C)xR(t),

˙̂xR(t) = (IM ⊗ (A+(G1 +∆G1)C))x̂R(t)− (IM ⊗ (G1 +∆G1)C)xR(t),

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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and

ẋF(t) =(IN ⊗A)xF(t)− (L1 ⊗B(K +∆K))x̂F(t)− (L2 ⊗B(K +∆K))x̂R(t)

+(IN ⊗D)e(t)+(IN ⊗E)F(t, xF),

yF(t) =(IN ⊗C)xF(t),

˙̂xF(t) =(IN ⊗ (A+(G1 +∆G1)C)−L1 ⊗B(K +∆K))x̂F(t)− (IN ⊗ (G1 +∆G1)C)xF(t)

− (L2 ⊗B(K +∆K))x̂R(t),

Then, one has

ė(t) = (IN ⊗S)e(t)+(L1 ⊗ (G2 +∆G2)C)(xF(t)− x̂F(t))+(L2 ⊗ (G2 +∆G2)C)(xR(t)− x̂R(t)).

Further, according to the same procedures in the last subsection, it yields

ė(t) = (IN ⊗S)e(t)+(IN ⊗ (G2 +∆G2)C)η̄(t),

˙̂η(t) = (IN ⊗A−L1 ⊗B(K +∆K))η̂(t)− (IN ⊗ (G1 +∆G1)C)η̄(t),

˙̄η(t) = (IN ⊗ (A+(G1 +∆G1)C))η̄(t)+(L1 ⊗D)e(t)+ F̄(t). (17)

Based on (17), the error system is expressed in a compact form

ε̇(t) = Ãε(t)+ F̃(t), (18)

where

Ã =

 IN ⊗S 0 IN ⊗ (G2 +∆G2)C
0 IN ⊗A−L1 ⊗B(K +∆K) −IN ⊗ (G1 +∆G1)C

L1 ⊗D 0 IN ⊗ (A+(G1 +∆G1)C)

 .

Thus, the responding results about non-fragile containment control with external disturbance is
presented as follows.

Theorem 2
Suppose that the directed topology satisfies Assumption 1, the feedback gain, state observer gain and
disturbance observer gain are designed by K = WQ−1P11

−1QW T X , G1 = P−1
1 Y1 and G2 = P−1

1 Y2

such that MAS (1) with external disturbance system (2) under the control protocol (12) solves the
distributed non-fragile containment control problem with external disturbance if there exist matrices
P11 > 0, P22 > 0 and matrices X , Y1 and Y2 such that the following LMI holds:

[
Π̃ M̃
∗ −Ñ

]
< 0, (19)

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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where

Π̃ =



θ11 0 θ13 IN ⊗P1 0 0 0 0
∗ θ22 IN ⊗Y1C 0 IN ⊗P1 0 α(IN ⊗ET ) 0
∗ ∗ θ33 0 0 IN ⊗P1 0 α(IN ⊗ET )

∗ ∗ ∗ −InN 0 0 0 0
∗ ∗ ∗ ∗ −InN 0 0 0
∗ ∗ ∗ ∗ ∗ −InN 0 0
∗ ∗ ∗ ∗ ∗ ∗ −InN 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −InN


,

M̃ = [M1, M2, M3, M4, k1NT
1 , k2NT

2 , k3NT
3 , k4NT

4 ], Ñ = diag{k1, k2, k3, k4, k1, k2, k3, k4},

MT
1 = [(IN ⊗P1E2)

T , 0, 0, 0, 0, 0, 0, 0], MT
2 = [0, −(L1 ⊗P1BE3)

T , 0, 0, 0, 0, 0, 0],

MT
3 = [0, (IN ⊗P1E1)

T , 0, 0, 0, 0, 0, 0], MT
4 = [0, 0, (IN ⊗P1E1)

T , 0, 0, 0, 0, 0],

N1 = [0, 0, IN ⊗F2C, 0, 0, 0, 0, 0], N2 = [0, IN ⊗F3, 0, 0, 0, 0, 0, 0],

N3 = [0, 0, IN ⊗F1C, 0, 0, 0, 0, 0], N4 = [0, 0, IN ⊗F1C, 0, 0, 0, 0, 0].

and θ11, θ22, θ13 and θ33 are defined in Theorem 1.

Proof
Construct the following Lyapunov functional for system (18)

V2(t) = εT (t)P̄ε(t), (20)

According to the same method of calculating the time derivative of V1(t), one has

V̇2(t)≤ εT (t)(Π+∆Π)ε(t), (21)

where Π is given in the proof of Theorem 1, and

∆Π =

 0 0 IN ⊗P1E2H2(t)F2C
∗ ∆Π22 IN ⊗P1E1H1(t)F1C
∗ ∗ ∆Π33

 ,

∆Π22 =−L1 ⊗P1BE3H3(t)F3 − (L1 ⊗P1BE3H3(t)F3)
T ,

∆Π33 = IN ⊗P1E1H1(t)F1C+(IN ⊗P1E1H1(t)F1C)T .

By using matrix transformation, it yields that Π+∆Π < 0 is equivalent to

Π+NT
1 HT

2 (t)M
T
1 +M1H2(t)N1 +NT

2 HT
3 (t)M

T
2 +M2H3(t)N2

+NT
3 HT

1 (t)M
T
3 +M3H1(t)N3 +NT

4 HT
1 (t)M

T
4 +M4H1(t)N4 < 0, (22)

applying Lemma 3 to (22), it is derived that

Π+ k1NT
1 N1 + k−1

1 M1MT
1 + k2NT

2 N2+k−1
2 M2MT

2

+k3NT
3 N3 + k−1

3 M3MT
3 + k4NT

4 N4 + k−1
4 M4MT

4 < 0, (23)
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according to Schur complement, then (23) is equivalent to[
Π M̃
∗ −Ñ

]
< 0. (24)

Thus, it is obvious to see that the inequality (24) is equivalent to the inequality (19), implying that
V̇2(t) < 0 holds. Then, by using the same method made in the proof of Theorem 1, it follows from
the closed-loop systems (18) that η̄(t)→ 0 , η̂(t)→ 0 and e(t)→ 0 as t → ∞, then it has η(t)→ 0
as t → ∞, which means (L1 ⊗ In)xF(t)+(L2 ⊗ In)xR(t)→ 0. Hence, by Lemma 1, it can be derived
that xF(t)→−(L1

−1L2 ⊗ In)xR(t) as t → ∞. Namely, all followers asymptotically converge to the
convex spanned by the leaders as t → ∞, meaning that the non-fragile containment control problem
for MASs with inherent nonlinear dynamics and external disturbance has been solved. The proof is
complete.

Remark 4
Compared with [27] where a distributed disturbance observer-type protocol with output feedback
control strategy is proposed for undirected communication topology, a non-fragile observer-type
containment protocol (12) is conceived to solve the containment disturbance rejection problem, in
which both the controller gain variations and directed communication topology are considered.
Furthermore, in the works of [17, 22–24, 27, 29–32] where only part factors of non-fragility,
exogenous disturbances and nonlinearity are considered. In light of these, the containment control
problem involved with all these three factors for nonlinear MASs in this paper is addressed.

Remark 5
Note that the relevant system parameters should be chose reasonably during the simulation to
guarantee the solvability of the LMIs (9) and (19). Furthermore, it is shown that the control input
matrix B is full-column rank. Besides, the nonlinear function f (t, xi(t)) considered here is locally
Lipschitz continuous and satisfies Assumption 4.

4. SIMULATION EXAMPLE

In this section, two examples are given to demonstrate the theoretical results. The communication
topology considered here is a directed communication topology in Fig. 1, where the agents indexed
by 7−9 are leaders and the others are followers. The initial states of xi1 and xi2 are randomly chosen
within [−15 15]× [−15 15].

Example 1: The parameters of (1) and (2) are selected as follows:

xi =

[
xi1

xi2

]
, A =

[
0 2
−1 0

]
, B =

[
1
2

]
, C =

[
1
1

]
,

E =

[
0.1 0
0 0.1

]
, S =

[
0 2
−2 −2

]
, V =

[
0
1

]T

,

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
Prepared using rncauth.cls DOI: 10.1002/rnc



14 NON-FRAGILE CONTAINMENT CONTROL
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Figure 1. The communication topology.
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Figure 2. State trajectories of the leaders and followers of Theorem 1.

and suppose α = 0.5 and f (t, xi(t)) = 0.5× sin(t)× xi(t). By solving the LMI (9) in Theorem 1,
feasible results are derived that:

P11 = 11.61, P22 = 19.08, X = [57.67 96.57],

P1 =

[
17.58 2.99
2.99 13.10

]
, Y1 =

[
−62.87
−94.78

]
, Y2 =

[
−0.03
−37.03

]
,

and the controller and observer gain matrices are obtained as:

K = [4.97 8.32], G1 =

[
−2.44
−6.68

]
, G2 =

[
0.50
−2.94

]
.

Fig. 2 depicts that the state trajectories of the followers stay inside the region spanned by those of the
leaders whose curves are denoted by solid lines. Furthermore, Fig. 3 and Fig. 4 show the disturbance
observer errors and containment errors of the close-loop system asymptotically converge to zero as
t → ∞. Then, the containment control problem of MASs with external disturbance is solved.
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Figure 3. Disturbance observer errors of each states of followers of Theorem 1.
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Figure 4. Containment errors of each states of followers of Theorem 1.

Example 2: In this example, the effectiveness of Theorem 2 is illustrated. The parameters of
system (1) with (2) and control protocol (12) with (13) are selected as follows:

xi =

[
xi1

xi2

]
, A =

[
0 2.5

−1.5 0

]
, B =

[
1
2

]
, C =

[
1
1

]
, E =

[
0.1 0
0 0.1

]
,

S =

[
0 1
−1 −2

]
, V =

[
0
1

]T

, E1 =

[
0.5 0
0 0.5

]
, E2 =

[
0.5 0
0 0.5

]
,

E3 = [0.5 0], F1 = 0.5, F2 = 0.5, F3 = [0.5 0],

and suppose α = 0.5 and f (t, xi(t)) = 0.5× sin(t)× xi(t). By solving the LMI (19) in Theorem 2,
feasible results are derived that:

P11 = 3.48, P22 = 5.98, k1 = 18.23, k2 = 13.58, k3 = 18.10, k4 = 17.65,

X = [30.06 51.04], P1 =

[
5.48 1.00
1.00 3.98

]
, Y1 =

[
−24.16
−38.02

]
, Y2 =

[
0.01
−9.73

]
,

and the controller and observer gain matrices are obtained as:

K = [8.65 14.67], G1 =

[
−2.79
−8.85

]
, G2 =

[
0.47
−2.56

]
.
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Figure 5. State trajectories of the leaders and followers of Theorem 2.
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Figure 6. Disturbance observer errors of each states of followers of Theorem 2.
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Figure 7. Containment errors of each states of followers of Theorem 2.

Fig. 5 depicts that the state trajectories of the followers stay inside the region spanned by those of the
leaders whose curves are denoted by solid lines. Furthermore, Fig. 6 and Fig. 7 show the disturbance
observer errors and containment errors of the close-loop system asymptotically converge to zero as
t → ∞, which illustrates that the theoretical results are effective.
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5. CONCLUSION

In the paper, the non-fragile containment control problems of MASs over directed communication
network with external disturbances have been studied. The disturbances generated by an exogenous
system, as well as the uncertainties in the designing of the observer and controller gains, are
allowed to take place in the practical control systems. A class of distributed disturbance observer-
based controller depending on output feedback strategy is developed. Furthermore, by transforming
such problem into the asymptotic stability analysis problem of some containment error dynamics
of MASs, the corresponding designed observer and controller gains are obtained if the derived
LMI is solvable. Thus, the containment disturbance rejection problem involved with non-fragility
is solved by using the disturbance observer-based method. Finally, simulation results are presented
to verify the effectiveness of the proposed control schemes. One of the future research topics would
be the non-fragile formation-containment control problems of heterogeneous MASs with external
disturbances.
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