A Hand-held Optical Coherence Tomography Angiography Scanner based on Angiography Reconstruction Transformer Networks

JINPENG LIAO¹, Shufan Yang², Tianyu Zhang¹, Chunhui Li¹, and Zhihong Huang¹

¹University of Dundee ²University College London

March 28, 2023

Abstract

Optical coherence tomography angiography (OCTA) has successfully demonstrated its viability for clinical applications in dermatology. Due to the high optical scattering property of skin, extracting high-quality OCTA images from skin tissues requires at least six-repeated scans. While the motion artifacts from the patient and the free hand-held probe can lead to a low-quality OCTA image. Our deep-learning-based scan pipeline enables fast and high-quality OCTA imaging with 0.3-second data acquisition. We utilize a fast scanning protocol with a 60 μ m/pixel spatial interval rate and introduce Angiography-Reconstruction-Transformer (ART) for 4× super-resolution of low transverse resolution OCTA images. The ART outperforms state-of-the-art networks in OCTA image super-resolution and provides a lighter network size. ART can restore microvessels while reducing the processing time by 85%, and maintaining improvements in structural similarity and peak-signal-to-noise ratio. This study represents that ART can achieve fast and flexible skin OCTA imaging while maintaining image quality.

Hosted file

manuscript - final ver - 2.docx available at https://authorea.com/users/600800/articles/ 632240-a-hand-held-optical-coherence-tomography-angiography-scanner-based-onangiography-reconstruction-transformer-networks