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Abstract

Some of the most vexing problems of deep level relationship that remain in angiosperms involve the superrosids. The su-
perrosid clade contains a quarter of all angiosperm species, with 18 orders in three subclades (Vitales, Saxifragales and core
rosids) exhibiting remarkable morphological and ecological diversity. To help resolve deep-level relationships, we constructed a
high-quality chromosome-level genome assembly for Tiarella polyphylla (Saxifragaceae) thus providing broader genomic repre-
sentation of Saxifragales. Whole genome microsynteny analysis of superrosids showed that Saxifragales shared more synteny
clusters with core rosids than Vitales, further supporting Saxifragales as more closely related with core rosids. To resolve
the ordinal phylogeny of superrosids, we screened 122 single copy nuclear genes from genomes of 36 species, representing all
18 superrosid orders. Vitales were recovered as sister to all other superrosids (Saxifragales + core rosids). Our data suggest
dramatic differences in relationships compared to earlier studies within core rosids. Fabids should be restricted to the nitrogen-
fixing clade, while Picramniales, the Celastrales-Malpighiales (CM) clade, Huerteales, Oxalidales, Sapindales, Malvales and
Brassicales formed an “expanded” malvid clade. The Celastrales-Oxalidales-Malpighiales (COM) clade (sensu APG IV) was not
monophyletic. Crossosomatales, Geraniales, Myrtales and Zygophyllales did not belong to either of our well-supported malvids
or fabids. There is strong discordance between nuclear and plastid phylogenetic hypotheses for superrosid relationships; we

show that this is best explained by a combination of incomplete lineage sorting and ancient reticulation.
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Abstract

Some of the most vexing problems of deep-level relationships in angiosperms involve superrosids. The su-
perrosid clade contains a quarter of all angiosperm species, with 18 orders in three subclades (Vitales,
Saxifragales, and core rosids) exhibiting remarkable morphological and ecological diversity. To help resolve
deep-level relationships, we constructed a high-quality chromosome-level genome assembly for Tiarella poly-
phylla (Saxifragaceae), thereby providing a broader genomic representation of Saxifragales. Whole genome
microarray analysis of superrosids showed that Saxifragales shared more synteny clusters with core rosids
than Vitales, further supporting Saxifragales as being more closely related to core rosids. To resolve the
ordinal phylogeny of superrosids, we screened 122 single-copy nuclear genes from the genomes of 36 species
representing all 18 superrosid orders. Vitales were recovered as sisters to all other superrosids (Saxifra-
gales + core rosids). Our data suggest dramatic differences in these relationships compared to earlier
studies of core rosids. Fabids should be restricted to the nitrogen-fixing clade, while Picramniales, the
Celastrales-Malpighiales (CM) clade, Huerteales, Oxalidales, Sapindales, Malvales, and Brassicales formed
an “expanded” malvid clade. The Celastrales-Oxalidales-Malpighiales (COM) clade (sensu APG 1V) was
not monophyletic. Crossosomatales, Geraniales, Myrtales, and Zygophyllales did not belong to either our
well-supported malvids or fabids.

There is a strong discordance between nuclear and plastid phylogenetic hypotheses for superrosid relation-
ships, which can be best explained by a combination of incomplete lineage sorting and ancient reticulation.

Key words: genome assembly, Tiarella polyphylla , Angiosperm-mega 353, phylogeny, superrosids, ancient
reticulation.

Introduction

The core eudicots consist of Gunnerales, Dilleniales, superrosids, and superasterids, with the latter two
containing the vast majority of flowering plant diversity (Drinnan et al., 1994; Soltis et al., 2018 ).
Superrosids, comprising core rosids (eurosids), Saxifragales, and Vitales, contain more than 90,000 species
and thus represent more than a quarter of all angiosperms (Wang et al., 2009; Sun et al., 2020 ). Su-
perrosid species exhibit remarkable morphological and ecological diversity and include herbs, shrubs, trees,
vines, aquatics, succulents, and parasites (Zhao et al., 2016 ); Many important crops, as well as forest
trees, are superrosids (Wang et al., 2009 ) including Rosales (e.g., apple, jujube, and mulberry), Vitales
(grape), Cucurbitales (watermelon, cucumber), Fabales (peanut, soybean), Fagales (walnut, waxberry, oak),
and Brassicales (radish, mustard, and cabbage). Several superrosid orders, such as Malvales, Myrtales,
Cucurbitales, Fabales, Rosales, and Saxifragales, exhibit exceptionally high diversification rates among an-
giosperms (Magallon & Sanderson, 2001; Folk et al., 2019; Sun et al., 2021 ). The enormous
diversity and ecological and economic importance of superrosid species highlights the importance of greater
resolution in superrosid phylogeny.

The monophyly of superrosids has been recovered repeatedly in previous studies, with both organellar
(Moore et al., 2010; Sun et al., 2015; Li et al., 2019a ) and nuclear genes (Zhang et al., 2012; One
Thousand Plant Transcriptomes Initiative, 2019; Sun et al., 2021 ), as well as combined datasets



(Wang et al., 2009; Sun et al., 2020 ). However, relationships within superrosids have proven more
problematic. In APG IV (2016) , Saxifragales were sister to Vitales plus core rosids, a topology found in
multiple phylogenetic studies of mostly plastid genes (e.g., Wang et al., 2009; Soltis et al., 2011; Li et
al., 2019a ). The core rosid clade, in turn, consisted of fabid and malvid subclades. The fabids contained
the COM clade (Celastrales, Oxalidales, and Malpighiales), nitrogen-fixing clade (Fabales, Rosales, Cucur-
bitales, and Fagales), and Zygophyllales, which include Geraniales, Myrtales, Crossosomatales, Picramniales,
Sapindales, Huerteales, Malvales, and Brassicales.

Although superrosids have long been the focus of phylogenetic research (Wang et al., 2009; Soltis et al.,
2011; Zhang et al., 2012; Li et al., 2019a; Sun et al., 2020 ), relationships remain problematic, in part
because of rapid radiation (Wang et al., 2009) combined with substantial recent evidence of incongruence
between nuclear and plastid topologies (Zhang et al., 2012; Li et al., 2019a; Sun et al., 2020 ). Key
problems in our understanding of relationships in superrosids remain:1) Are Saxifragales or Vitales the sister
lineage of core rosids? 2) What are the major subclades within core rosids, and what orders should be
included in fabids vs. malvids? 3) What are the relationships between COM clade members, and are they
actually monophyletic? An improved nuclear-based phylogeny of superrosids and core rosids would help
provide a better understanding of the evolutionary history of this enormous clade.

Previous phylogenetic studies of superrosids were primarily based on plastid and mitochondrial genes or
relied on a small number of nuclear genes (Wang et al., 2009; Moore et al., 2010; Zhang et al.,
2012; Sun et al., 2016; Li et al., 2019a; Sun et al., 2020 ), with a recent exception that includes
numerous nuclear genes derived from transcriptomes (One Thousand Plant Transcriptomes Initiative,
2019 ). Organellar genomes (mitochondrial genomes and plastomes) are generally inherited uniparentally,
and the mitochondrial genome is slowly evolving and sometimes affected by horizontal gene transfer, which
introduces biases and errors in phylogenetic reconstruction (Birky, 2001; Davis et al., 2014 ); likewise The
plastome is frequently transferred horizontally through introgression (Okuyama et al., 2005; Stegemann
et al., 2012 ). In contrast, nuclear genes are inherited biparentally and show higher substitution rates
than organellar genes, thereby overcoming many of these issues (Springer et al., 2001; Davis et al.,
2014 ). In particular, low- or single-copy nuclear genes provide a crucial line of evidence for resolving
angiosperm phylogeny (Zeng et al., 2014; Zhang et al., 2020 ), and the importance of using these genes
for phylogenetic reconstruction has long been recognized (Strand et al., 1997; Duarte et al., 2010;
Zhang et al., 2012 ). Therefore, the use of a sufficient number of single- or low-copy nuclear genes coupled
with broad taxon sampling is a promising approach to elucidate angiosperm phylogeny (Duarte et al.,
2010; Soltis et al., 2018; One Thousand Plant Transcriptomes Initiative, 2019 ). In green plants,
however, identifying orthologous loci has proven difficult because of frequent whole-genome duplication
events, especially in angiosperms (Blanc & Wolfe, 2004; Barker et al., 2009 ). The increasing availability
of genomic resources held in public repositories and the availability of many newly developed bioinformatic
pipelines to identify low- or single-copy genes have enabled bait kit design for orthologous genes from a wide
range of flowering plant groups (Campana, 2018; Vatanparast et al., 2018; McLay et al., 2021 ).
Universal bait kits, such as Angiosperms353 loci used in this study, aim to capture the same set of loci from
samples representing significant phylogenetic breadth and evolutionary timescales (Bossert& Danforth,
2018; Johnson et al., 2019; Breinholt et al., 2021 ). Currently, the Angiosperms353 probe set has
been widely used to study the relationships between different groups (Maurin et al., 2021; Thomas et
al., 2021; Zuntini et al., 2021; Acha & Majure, 2022 ).

Increasing amounts of genomic data have been sequentially applied to resolve rapid radiation in both green
plant (Carlsen et al., 2018; Rouard et al., 2018 ) and animal (Malinsky et al., 2018; Jensen et
al., 2021 ) lineages. Much of this work has used large numbers of coding regions extracted from genomes;
however, chromosome-level genomes offer an additional path to assessing phylogenetic relationships via
microsynteny, which is particularly valuable for resolving recalcitrant phylogenetic nodes (Zhao et al., 2021
). A number of available genome assemblies have been published for Vitales (Massonnet et al., 2020;
Minio et al., 2022 ), as well as for diverse families and orders of the core rosids (Wang et al., 2021b;
Wang et al., 2022a ), Rosales (Jiao et al., 2020; Cao et al., 2022 ), but few high-quality genomic



resources have been obtained for Saxifragales, preventing the use of this information to resolve phylogeny or
understand genome evolution in the earliest radiation of the superrosids. Although small, Saxifragales are
an ancient and morphologically diverse group (Jian et al., 2008; Soltis et al., 2018 ) with early and rapid
radiation (789.5 to 110 Ma) that has made resolving phylogenetic relationships challenging (Fishbein et al.,
2001; Wang et al., 2009; Jian et al., 2008; Dong et al., 2018; Folk et al., 2019 ). For the 15 families
of Saxifragales, seven whole-genome assemblies from four families are available: Paeonia ostii T. Hong and J.
X. Zhang (Yuan et al., 2022 ), Paeoniasuffruticosa Andrews (Paeoniaceae, Lv et al., 2020 ), Hamamelis
virginiana L. (Hamamelidaceae, Korgaonkar et al., 2021 ), Cercidiphyllum japonicum Siebold et Zucc.
(Cercidiphyllaceae, Zhu et al., 2020 ), and three Crassulaceae species (Kalanchoe fedtschenkoi Raym.-
Hamet et H. Perrier,Yang et al., 2017 ; Rhodiola crenulata (Hook. f. et Thoms.) H. Ohba, Fu et al.,
2017 ; Sedum album L.,Wai et al., 2019 ). However, of these assembled genomes, only C. japonicum
and P. ostiiare assembled at the chromosomal level. To improve the genome resources for Saxifragales and
provide genome-scale data needed for our analyses of relationships, we produced a chromosome-level genome
assembly for Tiarella polyphylla D. Don (Saxifragaceae) (Fig. 1-A ). This species has a wide distribution
(Wu & Raven, 2003 ); it is an ideal model for use in future biogeographic studies as well as to investigate
the features of Saxifragaceae (e.g., it is used in traditional medicine; Lee et al., 2012; Kim et al., 2021 ).

In this study we: (1) use gene sequence data for numerous nuclear loci representing all orders of superrosids to
resolve relationships and evolutionary history; (2) constructed a high-quality chromosomal assembly reference
genome for T. polyphylla to help elucidate evolutionary history; and (3) combined our newly generated
complete genome and published complete nuclear genome sequences to conduct microsynteny analyses of
superrosids to further resolve relationships.

Materials and methods
Genome sequencing, assembly and annotation

One living individual of T. polyphylla was collected from the Chongdugou scenic spot in Henan, China
(111°39°41.64° ‘E, 33°56’23.87 *’ N) for whole genome sequencing. We sequenced and assembled the genome
using a combination of Illumina short-read sequencing and Nanopore long-read sequencing. The comple-
teness of the genome assembly was assessed with sets of both the Core Eukaryotic Genes Mapping Ap-
proach(CEGMA; Parra et al., 2007) and benchmarking universal single-copy orthologs (BUSCOj; Si-
mao et al., 2015) . For repetitive element annotation, simple sequence repeats (SSRs), tandem repeats and
transposable elements (TEs) were identified in the T'. polyphylla genome. We combined de novo , homology-
based, and RNA sequencing-aided methods for gene prediction. For details, see Supporting Information
Methods S1.

Hi-C library construction and chromosome assembly

To generate a chromosome-level assembly of the T. polyphyllagenome, a Hi-C library was constructed follo-
wing Rao’s protocol (Rao et al., 2014 ). Fresh leaf cells were fixed in 1% formaldehyde for cross-linking.
The cross-linked DNA was homogenized by tissue lysis, digested with Dpnll restriction endonuclease, la-
belled with biotin-14-dCTP, and ligated using T4 DNA Ligase. After reversal of the cross-links, the ligated
DNA was purified and sheared into 300-600 bp fragments. Biotinylated DNA fragments were extracted using
streptavidin beads to construct the Hi-C fragment library. After PCR enrichment, high-quality libraries were
sequenced on an Illumina NovaSeq 6000 platform to produce approximately 160.46 Gb data.

The cleaned Hi-C data were mapped to the initial genome assembly using BOWTIE2 v2.3.2 (Langmead
& Salzberg, 2012) with the end-to-end model (-very-sensitive -L 30), and only unique mapped read pairs
were retained in further analysis. Then, the valid mate pair reads were used for chromosome-level genome
assembly, and the contigs of the draft genome were sorted, oriented, and divided into different chromosomal
groups using the LACHESIS pipeline (Burton et al., 2013) with the following parameters: CLUSTER
MIN RE SITES = 100, CLUSTER MAX LINK DENSITY = 2.5, CLUSTER NONINFORMATIVE RATIO
= 1.4, ORDER MIN N RES IN TRUNK = 60, and ORDER MIN RES IN SHREDS = 60.



Whole genome duplication events of T. polyphylla

Three genomes were selected for comparison to investigate the whole genome duplication (WGD) history
of T. polyphylla : Vitis vinifera (Vvi), Cercidiphyllum japonicum (Cja), and Tiarella polyphylla (Tpo). We
identified paralogs (within Vvi, Cja, and Tpo) and orthologs (Tpo/Vvi and Tpo/Cja) using BLASTP (E-
value [?| 1le-5). For each gene pair, the number of synonymous substitutions per synonymous site (Ks ) was
calculated using PAML v4.8 (Yang, 2007 ) using the YNOO NG model. MCScanX (Wang et al., 2012
) was employed to identify syntenic blocks between genomes of Tpo, Vvi, and Cja based on the all-to-all
BLASTP results, and a python version of MCScan was used to analyze the synteny (minspan = 100) to
further detect whole genome duplication events.

Whole genome microsynteny of superrosids

Sixteen genomes, including 7. polyphylla , representing 14 orders of superrosids, were used for microsynteny
network construction (Table S1 ) using an approach described in detail previously (Zhao et al., 2017 ;
Zhao et al., 2021 ). Briefly, DIAMOND (v0.9.14.115) (Buchfink et al., 2015 ) was used for all pairwise
intra- and inter-genome comparisons using all predicted protein sequences of each genome. Next, MCScanX
(Wang et al., 2012 ) was used to detect all pairwise inter- and intra-synteny blocks under default settings.
All synteny blocks were integrated into the total synteny network of syntenic genes. The Infomap algorithm
(v0.20.0) (Rosvall & Bergstrom, 2008 ) was used for network clustering in the two-level partitioning mode
with ten trials (-clu -N 10 -map -2). All synteny clusters identified were phylogenically profiled. A cluster
profile recorded the number of nodes in a given cluster for each species. The collection of phylogenomic
profiles (of all syntenic clusters) was summarized into a binary data matrix.

Identification of nuclear markers for phylogenetic analyses

To resolve the superrosid phylogeny, 34 transcriptomes and three nuclear genomic datasets were downloaded
from GenBank and combined with the T. polyphylla sequences obtained in this study, representing all accepted
orders of superrosids and outgroups (Table S2 ). Two species of Buxales (Buzus semperivirens and Buzus
sinicavar. insularis ) were selected as outgroups (Chanderbali et al., 2022 ). HybPiper v1.2 (Johnson
et al., 2016 ) was used to identify nuclear markers among the Angiosperm-mega 353 gene set (McLay et
al., 2021 ) from all the datasets. The identified contigs matching probe can be extract using the following
command line “. /reads first.py -b mega353.fasta -r sample R1.fastq sample R2.fastq -prefix sample -
result -bwa”, and we selected the genes commonly shared in 38 samples to construct the phylogenetic tree.

Phylogenetic inference

We used both coalescent and concatenation-based methods to reconstruct the phylogenetic trees. We
first estimated individual gene trees using IQ-TREE v1.6.12 (Minh et al., 2020 ); ModelFinder
(Kalyaanamoorthy et al., 2017 ) implemented in IQ-TREE enables a free-rate variation model for each
partition alignment. The individual gene trees inferred by IQ-TREE were used as input in ASTRAL-IIT
(Zhang et al., 2018 ) with default parameters to show the local posterior probabilities (LPPs).

A concatenated phylogeny was inferred using maximum likelihood (ML) and Bayesian inference (BI) analy-
ses. ML analysis was performed using the CIPRES Science Gateway v3.3 (https://www.phylo.org/portal2)
(Miller et al., 2010 ) and RAxML v8.1.11 (Stamatakis et al., 2008 ). One thousand rapid bootstrap
iterations were used, and the default settings were used for the other parameters. BI analysis was carried out
using MrBayes v3.2.3 (Ronquist & Huelsenbeck, 2003 ), and the posterior probability was estimated us-
ing four chains running 5,000,000 generations sampling every 1,000 generations. Convergence of the MCMC
chains was assumed when the average standard deviation of split frequencies reached 0.01 or less, and the
first 25% of the sampled trees were considered burn-in trees.

To investigate the gene tree expectations under coalescence, which can be used to gain insight into whether
topological features are attributable to ILS (incomplete lineage sorting) or hybridization (reviewed in Folk
et al., 2018 ), we used a previously described simulation pipeline (Folk et al., 2017 ; Garcia et al. 2017 ;
https://github.com /ryanafolk /tree utilities). Briefly, assuming a species tree with estimated branch length



measured in coalescent units, 1000 gene tree histories were simulated and clade probabilities were calculated
for all observed relationships in the species tree, where p ~ 0 indicates a relationship not expected under ILS
alone. Where the ILS is high, many relationships could be low in probability, so two further probabilistic
tests were implemented. First, a significance test was conducted based on comparing the complete set
of all pairwise Robinson-Foulds distances (1) among simulated gene trees and (2) between simulated and
empirical gene trees, where a significantly higher empirical distance would suggest discord not predicted by
the ILS, indicative of potential hybridization. Second, clade probabilities enumerated from the simulated
gene tree set were compared to clade probabilities in the empirical gene set. Similarly, significantly lower
clade probabilities in the empirical gene set are suggestive of potential hybridization. Both analyses were
implemented as one-tailed ¢ -tests.

Results
Genome sequencing and assembly

The diploid Tiarella polyphylla (2n = 2z = 14;Fig. 1-B, C ) genome size was estimated to be 393.29
Mb based on the total number of 20,057,799,129 21-mer and a peak 21-mer depth of 51, and the estimated
heterozygosity rate was approximately 0.273% (Fig. S1; Table S3 ). A total of 65.3 Gb of ONT (Oxford
Nanopore Technology) reads was produced with an N50 of 30.0 kb from one PromethION R9.4.1 flow cell.
The longest ONT read was 219.8 kb, and the genome coverage was c¢. x162 (Table S4 ). We trimmed
the raw reads using the CANU software, and the corrected reads were assembled for resulting in an initial
assembly with a genome size of = 404.3 Mb and a contig N50 of "11.5 Mb (Table 1 ). After polishing
using NextPolish, we retrieved a corrected genome with size 418.1 Mb and contig N50 12.0 Mb. Finally,
after removing sequences originating from the plastome, the mitochondrial genome and bacteria, the de novo
genome assembly was 412.2 Mb in size, with contig N50, longest contig, and contig number of 12.0 Mb, 26.3
Mb and 206, respectively.
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Fig. 1 Characterization of Tiarella polyphylla . (A) Whole plant, flowers, and fruits of T. polyphylla (pho-
tos by Pan Li). (B) Hi-C interaction heat map between 7 chromosomes for the T. polyphyllagenome. (C)
Characterization and synteny of the T. polyphyllagenome. Circles from the outside inwards: (a) pseudochro-
mosomes, (b) gene density, (c) repeat density and (d) GC content. The density was calculated with 500 kb
sliding windows.

Table 1. Statistics of the Tiarella polyphylla genome assembly

Genome

assembly of T.

polyphylla (2n Nanopore+Hi-

= 14) Nanopore Nanopore Nanopore C
SMARTdenovo NextPolish blastn LACHESIS

Total 404,318,547 418,052,640 412,241,708 -

assembly

size of

contigs (bp)

Number of 247 247 206 -

contigs

N50 contig 11,502,989 12,010,362 12,010,362 -

length (bp)

N90 contig 899,560 932,839 968,152 -

length (bp)



Genome

assembly of T.

polyphylla (2n Nanopore+Hi-
= 14) Nanopore Nanopore Nanopore C

Longest 25,752,925 26,317,235 26,317,235 -

contig (bp)

Total - - - 403,101,895
assembly

size of

scaffolds

(bp)

Number of - - - 160
scaffolds

N50 scaffold - - - 57,234,420
length (bp)

N90 scaffold - - - 44,079,820
length (bp)

Note: N50, shortest sequence length at 50% of the genome; N90, shortest sequence length at 90% of the
genome. The dashed line indicates data not available.

The completeness of genome assembly has been validated using various approaches. More than 97.31% of
the complete single-copy BUSCOs were found in the genome assembly, and only 2.18% of the BUSCOs were
missing (Fig. S2 ; Table S5 ). CEGMA assessment retrieved 241 (97.18%) (Table S6 ) of the 248 core
eukaryotic genes (CEGs). Furthermore, Illumina short reads (65.3 Gb) were aligned to the assembled genome
using BWA software, with a mapping efficiency of ~ 98.15% and coverage percentage of ~ 95.44%, suggesting
a high consistency between Illumina reads and the assembled genome (Table S7 ). Together, these results
show that the assembled T. polyphylla genome sequence was complete and had a low error ratio.

Chromosome level assembly of Hi-C data

We generated 171.54 Gb of raw Hi-C data, consisting of 1,148,659,116 paired-end reads (Table S8 ). After
quality control, 169.83 Gb of clean data remained, containing 99.00% clean paired-end reads, which were
used as input for the BOWTIE2 and LACHESIS Hi-C analysis pipelines. Finally, 160 scaffolds (representing
97.78% of the total genome length) were anchored to the seven chromosomes of T. polyphylla with a length
of 403.10 Mb (Fig. 1; Table 1 ). The lengths of the chromosomes ranged from 44.08 Mb to 79.84 Mb with
a scaffold N50 of 57.23 Mb (Table S9 ).

Genome annotation

Repeat sequences, accounting for 60.10% of the genome, were identified based on the assembled sequence of
the T. polyphylla genome (Table S10 ). Of these, SSRs accounted for 0.18% of the repeat fraction, including
44,893 di-, 7,943 tri-, and 856 tetra-nucleotide repeats (Table S10-S11 ). We also identified 34,470 tandem
repeats containing 2.39 Mb sequences, accounting for 0.58% of the T. polyphylla genome (Table S11 ).
Overall, the combined results of the de movo and homology-based methods revealed that 57.29% of the
T. polyphyllagenome contained TEs, of which Class I (retrotransposons) and Class II (DNA transposons)
comprised 49.57% and 7.71% of the genome, respectively (Table S11 ). Of these, long terminal repeat
(LTR) retrotransposons constituted the predominant repeat element in the genome, accounting for 45.02%.
Further examination showed that two types of LTRs, Gypsy and Copia, occupied 25.39% and 4.07% of the
genome sequences, respectively.

We identified 25,319 protein-coding genes in the T. polyphyllagenome (Table S12, Table S15 ), with
average gene length, coding sequence length, and exon length estimated as 4192.8 bp, 1221.8 bp and 227.8



bp respectively, and the average exon number per gene was 5.36 (Fig. S3 ). In total, 23,041 genes were
annotated in at least one of the five databases, accounting for 91% of the total genes (Fig. S4; Table S13
). In addition to protein-coding genes, various non-coding RNA sequences were identified and annotated
(Table S14 ), including 703 transfer RNAs, 607 ribosomal RNAs, 90 microRNAs, and 220 small nuclear
RNAs.

Whole genome duplication events of T. polyphylla

Microsynteny analysis revealed that a typical ancestral region in theT. polyphylla genome could be linearly
connected to one region in the Vitis vinifera and Cercidiphyllum japonicum genomes (Fig. 2A ). Syntenic
depth analyses showed that 45% of theT. polyphylla blocks were covered by one Tpo-Vvi block, 2% were
covered by two Tpo-Vvi blocks, 51% of the V. wvinifera blocks were covered by one Vvi-Tpo block, and 3%
were covered by two Vvi-Tpo blocks. Similarly, we found that 62% of the T. polyphylla blocks were covered
by one Tpo-Cja block, 2% were covered in two Tpo-Cja blocks, and 67% of the C. japonicum blocks were
covered by one Cja-Tpo block and 1% were covered in two Cja-Tpo blocks (Fig. 2B ). These results suggest
a 1:1 syntenic depth pattern for T. polyphylla versus V. vinifera and T. polyphylla versusC. japonicum .
Moreover, the K distribution of paralogs also showed only one dominant peak for T. polyphylla (1.39; Fig.
2C ), which was the same as V. vinifera (1.12-1.40) and C. japonicum (0.79). The peak of T. polyphylla
occurred before the divergence peak at 0.77 between Tpo and Vvi, and was earlier than the speciation peak
at 0.46 between Tpo and Cja, confirming that the WGD event occurred in the ancestor of the three species.
Hence, these results strongly suggest that, as expected, T. polyphylla experienced the same gamma WGD
event asV. vinifera and C. japonicum .
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Fig. 2 Genome duplication in Tiarella polyphylla . (A) Syntenic depth pattern between (a) T. polyphylla vs
V. vinifera and (b) T. polyphylla vs C. japonicum . (B) Macrosynteny patterns showing that a typical region
in T. polyphylla can be traced to no more than one region in V. vinifera and C. japonicum respectively.
(C) Distribution of synonymous nucleotide substitutions (Ks ) among T. polyphylla , V. viniferaand C.
japonicum .

Whole genome microsynteny of superrosids

The size of the matrix obtained from the microsynteny network construction was 16 x 21,326, which contained



a binary presence/absence coding for each cluster in the synteny network (Table S16 ). A total of 15,413 and
15,119 synteny clusters were detected in Vitis riparia and V. vinifera , while the numbers of synteny clusters
were detected in Cercidiphyllum japonicum and Tiarella polyphylla were 13,537 and 12,728 respectively (Fig.
3A). For the remaining 12 species, the number of synteny clusters varied significantly, ranging from 6,131 in
Hibiscus cannabinus to 13,497 in Juglans regia . Moreover, dividing the above 16 species into three major
groups, namely Vitales, Saxifragales, and core rosids (Fig. 3B), 14,675, 15,833, and 21,326 synteny clusters
were detected in Saxifragales, Vitales, and core rosids, respectively, and 12,870 synteny clusters were shared
among the three major groups. Interestingly, we found that the number of synteny clusters shared between
Saxifragales and core rosids (1,433) was greater than that shared by Vitales and core rosids (990) or Vitales
and Saxifragales (170) apart from the 12,870 synteny clusters.
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Fig. 3 Whole genome comparisons and microsynteny cluster detection. (A) The number of synteny clusters
detected in the whole genome of the 16 studied species; (B) The number of synteny clusters recovered in
Vitales, Saxifragales and core rosids, and the detail of the shared synteny clusters among the three groups.

Phylogenetic relationships within the superrosids

Gene recovery was successful for all species based on the Angiosperm-mega 353 gene set, with gene recovery
rates of at least 91.22%, and the recovered gene number ranged from 322 genes recovered in Carica papaya
to 350 genes in Gerrardina foliosa(Fig. 4, Table S17 ), resulting in a total of 166 putative single-copy
nuclear genes shared among 38 species. Owing to the short length of some recovered genes, 44 genes with
a gene length less than half of the target gene were removed, and the remaining 122 putative single-copy
nuclear genes were used for phylogenetic inference.
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Fig. 4 Heatmap of gene recovery efficiency. Each row represents 36 superrosid species and two outgroups,
and each column represents one target gene. Shading indicates the percentage of the target length recovered.
Asterisk indicates the two outgroup species.

The phylogeny we obtained for superrosids was identical in both the ML and BI analyses, and we recon-
structed a robust (ML bootstrap support (BS)/BI posterior probability (PP); BS/PP = 100/1) phylogeny
for superrosids, with Vitales sister to Saxifragales plus the core rosids (Fig. 5 ). Saxifragales was strongly
supported (BS/PP = 100/1) as a sister to the core rosids. Within the core rosids, the Geraniales + Crosso-
somatales clade (BS/PP = 60/1), followed by a clade of Zygophyllales + Myrtales (BS/PP = 100/1), were
sisters to the remaining core rosids. The remaining core rosids comprised two major subclades, which we
are referring to here as “fabids” and “malvids,” although these differ from the circumscription given in APG
IV; both clades as defined here received maximal BS support. Here, the fabids comprised only four orders
known as the nitrogen-fixing clade, within which Fagales (BS/PP = 100/1) and Rosales (BS/PP = 100/1)
were subsequent sisters to Fabales + Cucurbitales. Among the malvids defined here, Picramniales was sister
to the remaining members. COM clade orders (Celastrales, Oxalidales, and Malpighiales) did not form a
monophyletic group in our analyses. Celastrales and Malpighiales grouped together (BS/PP = 100/1) as
sisters to the remaining orders (Huerteales, Oxalidales, Sapindales, Malvales, and Brassicales). For the re-
maining five orders, Huerteales was then resolved as sister to the other four orders with maximum support
(BS/PP = 100/1); Oxalidales and Sapindales were subsequently recovered as successive sisters to Malvales
+ Brassicales with strong support (BS/PP = 98/1).
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the numbered plant photographs at the right. Fabids as defined here are shown with green branches; the
expanded malvid clade is shown with blue branches.

Under the coalescence method, some backbone nodes had lower LPP compared to the two concatenation
analyses, but the three analyses were topologically highly similar (Fig. 6 ). Vitales was sister to Saxifragales
+ core rosids (LPP = 0.77). The phylogenetic positions of COM clade members, Picramniales, Huerteales,
Zygophyllales, and Myrtales were completely consistent in the coalescence and concatenation trees; incongru-
ences between the two approaches were mainly observed for the positions of Crossosomatales and Geraniales.
In the coalescence phylogeny, after the successive branching of Vitales and Saxifragales, Crossosomatales was
sister to all other core rosids with maximum local branch support (LPP = 1.0). Subsequently, Geraniales
was sister to a clade comprising Zygophyllales, Myrtales, fabids, and malvids, with moderate support (LPP
= 0.55). Fabids comprised nitrogen-fixing clade orders (LPP = 1), and malvids consisted of Picramniales,
Malpighiales, Celastrales, Huerteales, Brassicales, Malvales, Oxalidales, and Sapindales (LPP = 0.99).
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with blue branches.

Coalescent simulations demonstrated a significant role of the ILS in the backbone of the superrosids (Fig.
S5 ). The branch subtending (core rosids + Saxifragales), the critical node for examining the relative
placement of Vitales versus Saxifragales with respect to the core rosids, had a clade probability of 0.31. This
value is close to the theoretical minimum probability (0.33 for the species tree clade under the ILS in the
three-taxon case (Pamilo & Nei, 1988 ), suggesting that this branch is in the anomaly zone (Degnan &
Rosenberg, 2006 ). Therefore, these results are consistent with the primary role of the ILS in conflicting
interpretations of superrosid relationships. However, the expected clade probabilities were lower ([?] 0.1) in
the backbone of the rosids, suggesting high discord compared to ILS expectations. Statistical tests suggest
that ILS alone cannot explain gene tree incongruence; observed gene tree Robinson-Foulds distances were
significantly higher than expected (p < 1e-20), and the observed gene tree clade probabilities were lower
than the ILS expectation (p = 0.0043). These results are therefore consistent with a potential role for early
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reticulation in the radiation of rosids.
Discussion
Comparative genomics of Saxifragales

Although seven species from four families of Saxifragales have published whole-genome sequence assemblies
(Fu et al., 2017; Yang et al., 2017 ; Wai et al., 2019 ; Lv et al., 2020; Zhu et al., 2020; Korgaonkar
et al., 2021 ), only those of Paeonia ostii and Cercidiphyllum japonicum were assembled at the chromosomal
level. Here, we successfully assembled the genome of Tiarella polyphylla , which is the first chromosome-level
sequencing, assembly, and annotation of the genome of Saxifragaceae. The final size is 412.2 Mb, similar
to the estimated genome size (393.29 Mb) based on k-mer analysis. It is much smaller than estimates
reported in other genera of Saxifragaceae tribe Heuchereae (e.g., Mitella diphylla , 1C = 0.57 pg; Bai et
al., 2012 ; Heuchera cylindrica, 1C = 0.48-0.52 pg; Godsoe et al., 2013 ). Our results demonstrated
that T. polyphylla , C. japonicum and Hamamelis virginiana had no additional genome duplication after the
ancestral gamma hexaploidization event shared with all core eudicots. These three genera span Saxifragales,
demonstrating that there is no ancestral genome-wide duplication characteristic of the entire order. More
details on comparative genomics and whole-genome duplication are available in Discussion S1.

Vitales sister to core rosids 4+ Saxifragales

Our whole-genome microarray analysis of superrosids showed that Saxifragales shared more synteny clusters
with core rosids than Vitales (Fig. 3 ), suggesting that it has a closer relationship with core rosids. Similarly,
Vitales and Saxifragales were supported as successive sisters to the core rosids based on the phylogenetic
analysis of 122 nuclear putative single-copy genes with BS = 100% and PP = 1 in the concatenation tree
(Fig. 5 ). The same position of Vitales was also reconstructed using the coalescent method with a 1.0 LPP
support (Fig. 6 ). These results agree with the coalescent analysis in the 1IKP study (One Thousand
Plant Transcriptomes Initiative, 2019 ) and the coalescent and concatenation analyses in Zeng et al.
(2017) , both of which relied on nuclear gene sequence data but do not agree with most other studies that
largely relied on plastid gene sequences. While Vitales and Saxifragales are generally found to be closely
associated with core rosids, relationships among them are uncertain, and all three possible relationships have
been recovered (APG III, 2009; Moore et al., 2010 ). The consensus relationship in APG IV (2016)
, which is different from that reported here, considers Saxifragales as sister to the remaining superrosids
(Vitales + core rosids). For example,Wang et al. (2009) recovered the relationship of Saxifragales as
sister to Vitales + core rosids (BS = 72%) using numerous genes (primarily plastid), a topology that has
also been recovered in subsequent studies based on different molecular markers, for example, 17 loci including
11 plastid, two nuclear and four mitochondrial genes (BS = 85%, Soltis et al., 2011 ), four loci including
one mitochondrial and three plastid genes (BS = 97%, Sun et al., 2016 ), four mitochondrial genes (BS
= 13%, Sun et al., 2015 ), or even the entire protein-coding and rRNA genes of the plastid genome (BS
= 60%, Li et al., 2019a ). In other studies, Saxifragales plus Vitales occasionally formed a clade sister
to core rosids based on plastid phylogenomic data (BS = 82%, Moore et al., 2010; BS = 73%, Sun et
al., 2015; BS/PP = 91/0.99, Zhang et al., 2016 ), or sister to a clade comprising Caryophyllales and the
remaining rosid species based on 5-gene nuclear sequences (PP=1, Zhang et al., 2012 ; BS = 96%, Sun
et al., 2015 ). The topology of Vitales sister to Saxifragales + core rosids was first reported byMoore et
al. (2011) based on the plastid inverted repeat region. The same topology was also retrieved with strong
support byShi et al. (2020) using 44 plastid genes (PP = 1) as well asZeng et al. (2017) and Wang et
al. (2022b) based on numerous nuclear genes.

Major changes in circumscriptions of fabids and malvids

In most studies using organellar genes, core rosids consisted of two major groups: fabids and malvids. In our
results, we recovered two major core rosid clades, but these differed in composition from those reported to
date (Fig. 5, Fig. 6 ). The fabid clade consisted only of the nitrogen-fixing clade (Cucurbitales, Fagales,
Fabales, and Rosales). Meanwhile, Picramniales, the CM clade, Huerteales, Oxalidales, Sapindales, Mal-
vales, and Brassicales composed the “expanded” malvids. The remaining four core rosid orders (Geraniales,
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Crossosomatales, Zygophyllales, and Myrtales) were recovered in more early diverging positions and were
not placed in either malvids or fabids, a relationship first reported by Qiu et al. (2010) . In our concate-
nation tree, Geraniales and Crossosomatales formed a strongly supported clade, Zygophyllales was sister to
Myrtales with strong support, and these two clades were subsequently successive sisters to the fabids-malvids
clade (Fig. 5 ). However, Geraniales and Crossosomatales did not form a clade in our coalescence analysis,
although the support for relationships was weak in this part of the tree (Fig. 6 ). Zhao et al. (2016)
recovered a similar rosid topology with fewer taxa based on 891 clusters of putative orthologous genes, except
for the position of Zygophyllales; however, most studies did not recover early diverging positions for the four
rosid orders. Missing data may be an important cause of inconsistent topologies because of their presence in
previous nuclear phylogenomic studies (Kvist & Siddall, 2013; Roure et al., 2013 ). Further literature
reviews concerning Picramniales and Huerteales are available in Discussion section S1.

The COM clade is non-monophyletic; constituent families should be placed in malvids

The COM clade, as circumscribed by two studies (Matthews &Endress, 2006; Zhu et al., 2007 ),
contains approximately 19,000 species, or approximately one-fifth of all superrosids (APG IV, 2016 ).
Despite rapid progress in elucidating the major branches of superrosid phylogeny, the position of the COM
clade has been a subject of much debate. We found that the COM clade was non-monophyletic, and the three
constituent families appeared with malvids based on coalescent and concatenation-based methods (Fig. 5,
6 ). The sister relationship between Celastrales and Malpighiales was strongly supported, and Oxalidales
was sister to a clade comprising Sapindales, Malvales, and Brassicales with strong support in concatenation
phylogeny, which was also reported by Zhao et al. (2016) . In our coalescent tree, Celastrales and
Malpighiales were also sisters with strong support, and Oxalidales and Sapindales formed a clade with LPP
= 0.89. Thus, the CM clade and Oxalidales should be members of malvids rather than fabids, which is also
supported by floral features shared between the COM orders and malvids (e.g., the inner integument of the
ovule, contorted petals, Matthews & Endress, 2006 ).

Cyto-nuclear discordance and ancient reticulation

The conflict between plastid trees and inferences from the nuclear genome goes back to the earliest studies
on plastid phylogenetics (Palmer et al., 1982 ). Such conflict subsequently appeared in many early plastid
restriction site analyses, in which one or more individuals of one species were nested within plastid-based
clades of another species (Rieseberg et al., 1991 ). These results demonstrate the high frequency of
cytoplasmic gene flow in angiosperms, as well as its extent within certain lineages (Rieseberg & Soltis
1991 ). Accordingly, the deep discordance between plastid and nuclear trees might be interpreted as ev-
idence of ancient hybridization, given the propensity for interspecific hybridization among extant species
(Gitzendanner et al., 2018 ), including more than hundred records of interspecific hybridization among
rosid taxa alone (Rieseberg & Soltis 1991; Rieseberg et al., 1996 ).

Although conflict between plastid and nuclear trees is typically attributed to hybridization, other processes
such as incomplete lineage sorting (ILS) may also cause phylogenetic incongruence between nuclear and
plastid DNA (Soltis & Kuzoff, 1995; Wendel & Doyle, 1998 ). While hybridization and ILS were
historically difficult to distinguish due to their similar phylogenetic signatures (Wendel & Doyle, 1998 ),
the multispecies coalescence (Mirarab et al., 2014; Mirarab & Warnow, 2015 ) offers a clear path for
testing the relative roles of ancient hybridization and ILS in explaining gene tree congruence (Folk et al.
2018 ). Sun et al. (2015)proposed that the incongruence in the positions of the COM orders between
studies based on plastid, mitochondrial, and nuclear genes was possibly the result of ancient hybridization and
introgression events. This hypothesis requires further study with probabilistic methods and larger samples
of the three genomic compartments of plants.

Here, we retrieved different relationships of superrosids based on 122 single-copy nuclear genes compared
to plastid genes, especially for the placement of Vitales and Saxifragales with respect to the rosids, non-
monophyly of the COM clade, and the re-circumscription of rosids and fabids seen here. As reviewed above
and in Discussion S1, while methodological decisions and data properties influence recovered topologies, the
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primary cause for differing deep relationships among superrosids appears to rely on different studies of either
cytoplasmic or nuclear markers. Although cytonuclear discordance is often attributed to hybridization, our
simulation results suggest a role for both ILS and hybridization. The pattern of gene tree discord between the
three major superrosid lineages (Vitales, Saxifragales, and rosids) was within ILS expectations and consistent
with this branch of the tree being in the anomaly zone. However, the degree of gene tree heterogeneity related
to backbone relationships within the core rosids was unexpected based on ILS alone, and is therefore likely
due to ancient hybridization. These results contribute to a growing awareness that complex evolutionary
processes should be considered, even for deep-level plant phylogenetics (Folk et al. 2018 ; Stull et al.
2022 ).

Conclusion

We successfully assembled the genome of Tiarella polyphylla and reported the first chromosome-level assembly
of Saxifragales. We leveraged this genome to generate a large nuclear gene dataset covering all superrosid
orders, as well as microsynteny data from complete genome assemblies to resolve relationships. We provided
strong support for Vitales as a sister to core rosids and Saxifragales. We also resolved the relationships
within the core rosids, demonstrating new circumstances for fabids and malvids. There is a strong discordance
between nuclear and plastid phylogenetic hypotheses for superrosid relationships, and our work demonstrates
that this is best explained by a combination of incomplete lineage sorting and ancient reticulation.
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