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Abstract

Online Social Networks (OSNs) have grown exponentially in the last few years due to their applications in
real life like marketing, recommendation systems, and social awareness campaigns. One of the most important
research areas in this field is Influence Maximization (IM). IM pertains to finding methods to maximize the
spread of information (or influence) across a social network. Previous works in IM have focused on using
a pre-defined edge propagation probability or using the Hurst exponent (H) to identify which nodes to be
activated. This is calculated on the basis of self-similarity in the time series depicting a user’s (node) past
temporal interaction behaviour. In this work, we propose a Time Series Characteristic based Hurst-based
Diffusion Model (TSC-HDM). The model calculates Hurst Exponent (H) based on the stationary or non-
stationary characteristic of the time series. Furthermore, our model selects a handful of seed nodes and
activates every seed node’s inactive successor only if H>0.5 . The process is continued until the activation of
successor nodes is not possible. The proposed model was tested on 4 datasets - UC Irvine messages, Email
EU-Core, Math Overflow 3, and Linux Kernel mailing list. We have also compared the results against 4 other
Influence Maximisation models - Independent Cascade (IC), Weighted Cascade (WC), Trivalency (TV), and
Hurst-based Influence Maximisation (HBIM). Our model achieves as much as 590% higher expected influence
spread as compared to the other models. Moreover, our model attained 344% better average influence spread

than other state-of-the-art models.
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Abstract—Online Social Networks (OSNs) have grown
exponentially in the last few years due to their applications
in real life like marketing, recommendation systems, and social
awareness campaigns. One of the most important research areas
in this field is Influence Maximization (IM). IM pertains to finding
methods to maximize the spread of information (or influence)
across a social network. Previous works in IM have focused on
using a pre-defined edge propagation probability or using the
Hurst exponent (H) to identify which nodes to be activated. This
is calculated on the basis of self-similarity in the time series
depicting a user’s (node) past temporal interaction behaviour.
In this work, we propose a Time Series Characteristic based
Hurst-based Diffusion Model (TSC-HDM). The model calculates
Hurst Exponent (H) based on the stationary or non-stationary
characteristic of the time series. Furthermore, our model selects
a handful of seed nodes and activates every seed node’s inactive
successor only if H>0.5 . The process is continued until the
activation of successor nodes is not possible. The proposed
model was tested on 4 datasets - UC Irvine messages, Email
EU-Core, Math Overflow 3, and Linux Kernel mailing list.
We have also compared the results against 4 other Influence
Maximisation models - Independent Cascade (IC), Weighted
Cascade (WC), Trivalency (TV), and Hurst-based Influence
Maximisation (HBIM). Our model achieves as much as 590%
higher expected influence spread as compared to the other
models. Moreover, our model attained 344% better average
influence spread than other state-of-the-art models.

Index Terms—online Social Networks, Influence Maximization
(IM), Hurst-based Diffusion Model, Self-Similarity.

I. INTRODUCTION

In terms of size and reach, Online Social Networks (OSNs)
have grown exponentially during the last few years. OSNs
enable umpteen users to connect and share information.
OSNs have become an integral part of our lives and its
immense usage has led to the generation of unprecedented
volumes of user-related data. The availability of this data has

presented researchers with newer opportunities, pertaining
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to the research on user behaviour in social networks.
The widespread popularity of OSNs is owing to their
applicability in numerous areas like finance, bio-informatics,
politics, healthcare, social awareness, etc. Using OSNs for
diffusing (spreading) information is a part of many real-life
activities such as viral marketing [1]l, [2], [3], [4], [S]], online
recommendation systems [4], [3], [2], online advertising [4],
(6], [5]l, influential blogger identification [7], [5], healthcare
communities [7]], [3] , and political and social awareness
campaigns.

Information gets spread or diffused through interactions
between individuals in the society [8]. A real-world social
group can be conceptualized as a huge social network
(graph) wherein “a node is an abstract representation of an
individual user in the real world [9].” Interaction between
two users indicates a relation between them and is depicted
by an edge connecting the two corresponding nodes [[10], [11].

Social Interactions Analysis [[12] is all about analysing
social interactions for a better comprehension of social
structures and user relations. Social Influence Analysis is a
favoured research domain under social interactions analysis,
“which focuses on studying the process of information
diffusion in social networks along with the identification
of influential users [3].” Influence Maximization (IM),
a prominent research topic within the domain of social
influence analysis, aims at finding an answer to the question,
"how to maximize the spread of influence across an OSN."

A predominant commercial application of IM is viral
(word-of-mouth) marketing an organization does for its
product or service. Consider a scenario such that an
organization plans to utilize an OSN for viral marketing
of its new offering by utilizing an OSN. The organization
would thus aim to maximize the spread (reach) of its
campaign and touch as many potential customers as possible.
Achievement of this goal is reliant on two core steps. First
step is seed node identification. Seed nodes are a small subset
of OSN users who are the initial adopters of information and
initiate the diffusion process. The second task involves the
development of a diffusion model pertaining to the underlying
information diffusion process. The diffusion model signifies
how information would spread from a node to its neighbours,
over the edge connecting the two of them. Studies indicate



that “how information is propagating from one user to another
heaviliy impacts the influence spread achieved [13]]”. Hence,
selection of diffusion model is very critical as the diffusion
model outlines the condition(s) for node activation.

The diffusion model helps in assessing the influence
spread anticipated to be achieved by the selected seed nodes.
Some existing diffusion models for IM are Independent
Cascade (IC) (14|, Weighted Cascade (WC) [14], Linear
Threshold (LT) [14|, Trivalency (TV) model [15[], and
Dynamic Independent Cascade (DIC) model [16]. In all
these aforesaid diffusion models, diffusion is reliant on some
pre-decided value for propagation probability and is either
selected randomly or from a pre-defined set of values. Deng
et al. developed the Credit Distribution with Node Features
model [17]], in which the credits allocated to a node are the
deciding factor for its activation. The credits are decided
based on the past interactions carried out by the node. Under
the Voter model of diffusion [18]], [[19]], a node chooses a
successor, based on the probability derived from the assigned
edge weights, and aligns its own opinion with the opinion of
the chosen successor [20], [21].

Edges surely depict the probable paths for diffusion,
but how much diffusion has been carried out over a path,
can only be known by studying the connecting node’s past
temporal behaviour. Thus, “to develop a more realistic
diffusion model, node’s actual past interactions should also be
considered [22]]” for node activation.Propagation probability
signifies likelihood of diffusion, but node’s past interaction
pattern presents a more truthful view of diffusion that has
actually taken place [23].

User behaviour (interactions) being a time dependent
phenomenon, can be represented in the form of a time series
and this time series can further be analyzed to discover the
existence of a pattern/ trend. Although, human are assumed
to behave randomly in general, researchers have found that
human behaviour tends to repeat over time, thereby displaying
statistical similarity. Studies reveal that time series generated
analogous to how humans behave in the real-world, has been
found to exhibit self-similarity [24]. On similar lines, the
behaviour of OSN users over time can also be expected
to exhibit statistical self-similarity. Although “the role of
self-similarity in edge creation in OSNs [25]” has been
explored, exhibition of self-similarity in an OSN users’ past
interaction pattern is not a much explored aspect.

Saxena and Saxena [260] presented the Hurst-based Influence
Maximization (HBIM) diffusion model, in which firstly a
time series has been generated corresponding to each node’s
past interactions. Thereafter, Hurst exponent (H) is computed
for quantifying the self-similarity trend (SST) displayed by
each node’s generated time series. Under HBIM model node
activation is reliant on its degree along with the H value
quantifying its past activity’s SST.

A time series can be either stationary or non-stationary.

Researchers have observed that applying the same method for
computing the H value of a stationary as well as non-stationary
time series may lead to inaccurate evaluations [27], [28].
Drawing motivation from this notion, a novel diffusion
model, called Time Series Characteristic based Hurst-based
Diffusion Model (TSC-HDM) is being presented in this
paper, which augments the aforementioned HBIM model [26]
and incorporates the usage of different methods to compute
H value, depending upon if the time series is stationary or not.

Under the proposed TSC-HDM model, firstly a time
series corresponding to the past interactions of each node
is generated, followed by the computation of H value for
quantifying the SST displayed by the time series. Based upon
the characteristic of the time series under consideration, i.e.,
whether it is stationary or not, different methods have been
used to compute H value. Thereafter, based on the nature of
SST, node activation takes place. Thus, node’s activation is
dependent on its past real-time behaviour.

The proposed work has been presented in 5 sections. A
brief discussion about the existing models of diffusion for
IM is presented in Section [[I} Section [ITI] presents the work
proposed in this paper. Experimental setup and analysis of
results are discussed in Section Lastly, section |V| presents
the final conclusion.

A. Research contributions of this work

Following are the key contributions of the proposed work:

1. We have proposed a novel diffusion model called Time
Series Characteristic based Hurst-based Diffusion Model
(TSC-HDM) wherein activation of node relies on the
SST displayed by its past interaction pattern, which is
quantified by computing the H value for the time series
generated based on node’s past interactions.

2. Our model takes into account each node’s influence
potential as a criteria for its activation. It does not rely
on a random edge propagation probability like many of
the existing works done before in the field of IM.

3. Our model computes H value on the basis of whether the
generated time series is stationary or non-stationary. This
has not been done before and is the first of its kind in
the field of IM.

4. This has led to TSC-HDM model outperforming
other existing models by 344%. Our model also
achieved anywhere from 27% to 590% higher expected
influence spread as compared to Independent Cascade
(IC), Weighted Cascade (WC), Trivalency (TV), and
Hurst-based Influence Maximisation (HBIM) models.

5. Our model is the first to place so much importance on the
characteristics of time series - whether they are stationary
or non-stationary, and then calculate H value depending
on that and this has led to our model performing much
better. Apart from this, our paper will be an important
landmark as it proves that node activation during the
diffusion process should be dependent on the node’s past
temporal interaction behaviour.
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Figure 1: The framework used for our TSC-HDM Model

II. RELATED WORKS

IM is explored as an algorithmic problem in the seminal
work of Domingos and Richardson [1]. Following that, for
addressing the problem of IM in OSNs, many diffusion
models along with seed identification algorithms have been
designed. Influence Maximization (IM) largely covers two
activities, which are development of the diffusion model and
identification of the seed node. “The various existing seed
identification algorithms can be classified into two types -
heuristic based approaches and greedy based approaches. [[7]],
[13]". Seed selection in greedy based approaches is done on
the basis of the nodes’ marginal gain, whereas in heuristic
based approaches seed selection is relent on the fulfilment of
some condition(s).

Maximizing the influence spread across a given network is
IM’s aim. “The extent of influence spread attained by the
chosen seed nodes is dependant upon the diffusion model
[13]”. Hence, quantifying the diffusion process and deciding
the criteria for node activation is a critical activity. The
following section briefly describes some of the existing
diffusion models.

A. Existing Diffusion Models

Three diffusion models were discussed by Kempe et al.
[14] namely Independent Cascade (1C),Weighted Cascade
(WC), and Linear Threshold (LT). Under IC diffusion
model, the network edges are assigned a randomly chosen
pre-defined propagation probability. In LT, edges are assigned
a randomly chosen pre-defined weight and a pre-defined
random threshold value is allotted to each node. When the
sum of edge weights of the active neighbours of a node
exceeds its assigned threshold value, the node gets activated.
WC model is a variant of the IC model, wherein each edge’s
probability of propagation is equivalent to the reciprocal of

the recipient node’s in-degree. Chen et al. [|15] proposed the
Trivalency (TV) diffusion model, where an edge’s probability
of propagation is randomly chosen from amongst three values,
0.1, 0.01, and 0.001.

As can be observed, in all these aforementioned models,
diffusion is driven by a randomly chosen value or weight
assigned to the edges in the network. These models get behind
the idea that an inactive node’s chances of transitioning to
an active state increases when the inactive node’s active
neighbours increase. Table [I| given below talks about related
works on Influence Maximization

Dynamic Independent Cascade model (DIC) [16], extends
the IC model. Under the DIC model, the edge propagation
probability is randomly picked from a pre-defined distribution,
but unlike IC, the edge’s probability of propagation isn’t the
same for all of the edges. Deng et al. [17] developed the
Credit Distribution with Node Features model, where credits
are assigned to a node on the basis of it’s past interactions
and depending on these credits, the node is activated. Both,
dynamic and static influence are taken into consideration
while assigning credits to these nodes.

In Voter model of diffusion [19], [18], first a weight is
assigned to every edge in the network. Thereafter, based on
the probability proportional to the assigned edge weights, a
node selects one of its successors and adopts the opinion held
by the chosen successor. The Voter model was extended by
Li et al. [31]] in order to incorporate negative relationships.
In their model, if the edge to the chosen successor holds
positive opinion, then the opinion of the successor is adopted
by the node. Whereas if negative opinion is held by the edge,
then an opinion opposite to the opinion of the successor is
adopted by the node.



Table I: Related works on Influence Maximization

References

Contributions

Strengths

‘Weaknesses

Kempe et al. [14

Discussed about the widely popular Independent
Cascade model (IC) in which a randomly
chosen pre-defined propagation probability

is given to every edge in a network

For an arbitrary instance of the IC Model, the resulting
influence function o() is submodular

Diffusion is dependent on a pre-defined edge
propagation probability, which is not reliant

on any node characteristic and is the same

for all of the edges in the Online Social Network
(OSN) in the Independent Cascade model

Chen et al. [15

Their algorithm gives the users the ability to
control the balance between the spread of
influence of the algorithm and the running time

Their algorithm not only scales beyond million-sized graphs
where greedy algorithm becomes infeasible, but their

algorithm also performs consistently in all the size ranges, from
small to very large

In their MIA model the authors assume

that the seeds which are in S, influence each
node v in the graph G through its MIIA(v, 0)
(Maximum Influence In(Out)-Arborescence

Tong et al. |16

The paper introduces the concept, which is
adaptive seeding strategy and it also presents
the Dynamic Independent Cascade (DIC) Model

The Dynamic Independent Cascade model is able to
capture both - The dynamic aspects of a real social network
as well as the uncertainness of the diffusion process

H-Greedy is a heuristic strategy, which is not effective
for all the settings of the Dynamic Independent
Cascade model. Moreover, with a round limit, their
objective function is no longer submodular

Zhang et al. [29]

Proposed Opinion-based Cascading
model (OC), which studies the spread of
positive opinion across an OSN

An opinion indicator is attached to each node,
which depicts a positive, negative, or neutral opinion

The opinion spread function O(), which is under the

Opinion-based Cascading model is no longer submodular

Shrivastava er al. [30

Our proposed approach

They propose a cost-effective diffusion model based
on the classic IC model, but each active node

tries to infect it’s most influential neighbour

with a predefined constant probability platform

Our proposed diffusion model activates a node
on the basis of the self-similarity trend exhibited
by the past interaction pattern of the node

The conventional IC model is outperformed by the proposed
model by more than 5 times for the core super-spreaders and
2 times for the non-core super-spreaders

Our proposed model outperforms other state-of-art
diffusion models by 344 %. Our model identifies

the importance of the characteristics of time

series - whether they are stationary or non-stationary,
and then calculates H value depending on that

The paper assumes that for each of the infected
edge, there is an equal cost

Assumption that the node can be expected to continue
displaying similar behaviour in the future

The Opinion-based Cascading (OC) model, which was
developed by Zhang et al. [29], studies the spread of positive
opinion across an OSN. Under the OC model, an opinion
indicator is attached to each node, which depicts a positive,
negative, or neutral opinion. When for a node its active
predecessors’ collective edge weight exceed the node’s
pre-defined threshold, activation of the node takes place.
On activation, a node adopts the opinion of the incoming
influence.

Saxena and Kumar [22] developed Activity-based IC
(AbIC) and Activity-based LT (AbLT) models of diffusion,
which draw inspiration from the IC [14]] and LT [14] models,
respectively. Under AbIC and AbLT models, the number of
interactions a node initiated in the past are the basis on which
edge propagation probability is computed.

An extension of the classic IC model is the second-order IC
model [32]]. In the second order IC model, activation takes
place at both node and edge level. Each of the seed nodes
propagates influence to its out-neighbours with a pre-defined
influence probability. Thus, node to node activation takes
place in the first order. Additionally, whenever a seed node
successfully activates it’s out-neighbour, the connecting edge
also becomes active. Thereafter, in the second-order, edge to
edge influence propagation takes place, in which every edge
which is active attempts to convert their inactive out-edges to
active ones with some constant probability.

Yu and Li [33] developed the CMMI model for diffusion
that incorporates user preferences and diffusion enhancement.
Under CMMI model, a node on receiving information,
changes state from inactive to active. Once a node becomes
active, it can then move into accepted or rejected state, if
the node’s probability of accepting product is greater or less
than a pre-defined node transition threshold, respectively.
Probability of accepting product is computed based on
internal influence (user preference), influence of adjacent

nodes, and external influence. Accepted state is indication that
the node has accepted the product and will be propagating it
further, whereas rejected state is an indication that the node
has rejected the product and has refused to propagate it further.

Hudson and Khamfroush [34] developed the Behavioral
Independent Cascade diffusion model (BIC) for the purpose
of opinion maximization, where user nodes’ opinions
and their personalities form the basis for propagation
probabilities. Though the BIC model makes use of IC
model [14] framework, it differs from it in certain aspects.
Unlike the classical IC model, propagation probabilities in
the BIC model are not static and pre-determined. Rather,
they are dynamically computed before each activation
using behaviour and opinion parameters assigned to each
node. Further, BIC model permits multiple activation attempts.

Li et al. [35] proposed the User Behavior Model (UBM)
for undirected networks. Under UBM, a message is sent by
every node to all its neighbours with a pre-defined probability
(similar to classic IC model [[14]]). On the successful receipt
of the message, a node gets activated and responds to the
message as per its personal interest, and may then send out
a message (forward or reply) to all its neighbours. Diffusion
stops when all nodes have tried responding to the received
messages.

With the aim of developing an integrated information
diffusion model, Kong et al. [36] proposed the Diffusion and
Influence Model (DIM), which combined the two aspects
- diffusion as well as information influence together. DIM
consists of two stages, one is called the diffusion stage and
the other is called the influence stage. These two stages
are represented using diffusion and influence functions,
respectively. The diffusion function is a probabilistic function
depicting the chance of information being spread by users.
The influence function is also a probabilistic function,
representing how users in a network get influenced. DIM
presents a unified approach for implementing classic diffusion



models, which can be done by varying the settings of the
diffusion and influence functions.

Shrivastava et al. [30] proposed a cost-effective diffusion
approach motivated by the classic IC mdel [14]. Under the
proposed model, each active node tries to infect its most
influential neighbour with a pre-defined constant probability.
In case the node fails to activate its most influential neighbour,
it then tries infecting the second most influential neighbour.
If it fails again, it tries infecting the third most influential
neighbour and so on.

III. PROPOSED TIME SERIES CHARACTERISTIC BASED
HURST-BASED DIFFUSION MODEL (TSC-HDM)

This section first of all provides a brief overview of the
concepts that have been used for our model and the later part
of the section explains the proposed model.

A. Rescaled Range (R/S) analysis

R/S analysis technique helps in assessing a time series’s
variability over time [37]]. For computing H using R/S analysis
technique, firstly divide the full-length time series into various
shorter, varying length time series. Thereafter, computation
of an average value for the R/S is done [38]]. For a given
time series X; of length n, where ¢ € n, R/S is calculated as
follows:

1) Firstly, mean (z) of given time series (X) is computed
using Eqn. [T}
1 n
x n;;J

2) Then, generate the mean-adjusted series (Z) using Eqn.

2t

(D

Zt:Xt*I'7 t:1,2,..n (2)

3) Then, compute cumulative deviate series (C') using Eqn.

t

>z, t

j=1

Cy

1,2,.n 3)

4) Generate range (R) and standard deviation (S) series as
indicated in Eqn. ] and [5}

Ry = max(Cy, Cs...C,)—min(Cy, Cs...Cy), t=1,2,..n

“)
Sy = ®)
Use Eqn. [6] to compute Rescaled Range value:
R
(R/S);= =%, t=1,2,.n (6)
St

Thereafter, estimation of H is done by fitting a straight line
through the plot of the values of log(R/S) vs. log (t) and (n
being the time series length):

(R/S); oc t"
Slope of the fitted line represents H [37], [38].

(7

B. Detrended Fluctuation Analysis

(DFA) DFA [39]] is used for quantifying the SST of a
non-stationary time series [27]], [40]. For computing H using
DFA technique, a time series of length K is first integrated.
Assume a bounded time series y; of length K, where t €
K. Eqn. [§] first of all converts the bounded time series to
unbounded time series X; [41].

2(t) =Y (i — ), ®)
i=1

where (y) denotes the mean of the time series and z(t) denotes

the summation profile. Then, integrated time series is divided

into shorter time series (boxes) of length k£ samples each. Next,

the fluctuation (mean-squared residual) is calculated using:

1 D
F(k) = | 35 D_o(t) = war(®)]?, ©)

D signifying the total number of data points. Thereafter, using
fluctuation the self similarity in the time series is calculated
(Eqn. [T0), which is further used to calculate the H.
F(k) o k°,
In(F(k)) = aln(k) + In(C)

(10)
(1)

where C' and « denote constant of proportionality and
scaling exponent estimated using least-squares fit, respectively.
Finally, H is calculated using Eqn.

H=0a(2)-1 (12)

Development of a model for diffusion of information
(influence) across an OSN is an important aspect of IM. A
node is either active (influenced) or inactive. Diffusion model
outlines the condition(s) to be fulfilled by a node to transition
from inactive to active state.

As stated earlier, in the widely popular IC model [14],
diffusion is not reliant on any node characteristic, rather it
is dependent on a pre-decided probability of propagation.
Further, all edges are assigned the same propagation
probability. In the LT diffusion model [14], a threshold is
assigned to each node, which again is not dependent on any
node characteristic and is the same for all nodes in the OSN.
This threshold value assigned to a node is to be crossed by
the incoming influence, only then the node can get activated.
Additionally, influence propagated over an edge is a randomly
chosen pre-defined value, which is again same for all edges.
The propagation probability in WC model [14], is equivalent
to the reciprocal of the recipient node’s degree. TV model
[15] picks the propagation probability from the set 0.001,
0.01, 0.1 at random. Under the DIC model [16], propagation
probability is randomly picked from a pre-defined distribution.

It can be observed that in most of these popular
diffusion models, node activation is not relying on any
node characteristics, and is mostly based on a randomly



chosen edge propagation probability or weight. Instead of
selecting a random propagation probability, a better approach
would be to consider each node’s influence potential as a
criterion for its activation. To assess the influence potential of
a node, its structural and temporal characteristics are usually
considered.

As mentioned before, an aspect that has not been explored
much in context with OSN users (nodes) is the SST displayed
by a node’s past interactions. Study of human behaviour
conducted by Fan et al. [24] suggests that humans have a
tendency of repeating their actions in real world, i.e., human
behaviour over time can be exhibits statistical self-similarity.
On similar lines, OSN users can also be presumed to repeat
their behaviour and hence exhibit statistical self-similarity
[26]. User behaviour is a time dependent phenomenon
and can be represented as a time series and the extent of
self-similarity (auto-correlation) in this generated time series
can be assessed using Hurst exponent (H) [24], [27], [40].
“H measures the relative inclination of a time series to either
regress strongly to the mean or to cluster in one direction [42].”

H helps figure out whether a time series is exhibiting
an anti-persistent, random, or persistent trend. The value of
H lies between 0 and 1. H value between 0 — 0.5 signifies
an anti-persistence (long-term switching between high and
low values). H = 0.5 signifies uncorrelated (random) time
series, for which establishment of any trend becomes difficult
owing to the non-existence of correlation. H between 0.5 —
1 signifies persistence indicating the possibility of a high
value being followed by another high value, and the trend
will possibly remain so for a long time.

Drawing motivation from the aforementioned notion,
Saxena and Saxena [26]] developed the HBIM diffusion
model which utilizes degree of the node and the H value
corresponding to the SST of its past interactions, as the
criteria for node activation. Under HBIM model, a node gets
activated if its degree is greater than the average node degree
in the network, and if its H value is greater than 0.5. In
the HBIM model R/S analysis technique is used to compute
the value of H corresponding to a generated time series.
But, a time series can be either stationary or non-stationary.
Kirichenko et al. [27], Resta [40], and Wairimu [28] have
found that applying the same method for computation of
H for stationary as well as non-stationary time series may
lead to inaccurate evaluations. R/S analysis method has been
found to be more suitable for computing H corresponding
to a stationary time series, and Detrended Fluctuation
Analysis (DFA) method has been found to give more accurate
evaluations for non-stationary time series [27], [40], [28]].

For getting a realistic estimation of a node’s influence
potential, its past temporal behaviour must be regarded as a
significant contributor. Driven by this belief, a novel Time
Series Characteristic based Hurst-based Diffusion Model
(TSC-HDM) is being proposed in this paper, which augments
the aforementioned HBIM model [26] and aims to develop

a diffusion model for IM, in which diffusion is based on
the H value corresponding to the time series of the recipient
node’s past interactions, and the method used for computing
H is reliant on the characteristic (stationary or non-stationary)
of the generated interaction time series. The proposed work
supports the premise that node activation during the diffusion
process should be dependent on its influence potential, instead
of some pre-defined probability or threshold [22]], [26].

The HBIM model makes use of R/S analysis method
for computing H value corresponding to each generated
time series, while not considering the nature (stationary or
non-stationary) of the time series. Though R/S analysis is
prevalently used for computing H, researchers have been
found that DFA method is more suitable for making accurate
evaluations pertaining to a non-stationary time series [27]],
[40], [28]]. Hence, in the proposed work, each generated
time series is first checked for stationarity, and thereafter
depending upon the characteristic of the time series (i.e.,
stationary or non-stationary). R/S analysis and DFA methods
have been used for computation of H for stationary and
non-stationary time series respectively.

Algorithm 1 TSC-HDM Diffusion Model
Graph G = (V, E), seed_nodes []: seed node set of size k
expec_spread: expected spread to be achieved

for each node n do
Generate time series based on past interactions, 7.S(n),

for the time span under consideration Using Augmented
Dicky Fuller method, check if TS(n) is stationary or

non-stationary if 7S(n) is stationary then
LCompute H for TS(n) using the Rescaled Range

Analysis method

else
L Compute H for TS(n) using the Detrended Fluctuation

Analysis method

influenced_nodes[] = seed_nodes|]
LEN(influenced_nodes[])
for each seed in seed_nodes do
for each successor of seed do
if successor not in influenced_nodes then
if IF H(successor) > 0.5 then
expec_spread =  expec_spread + 1
L influenced_nodes|expec_spread] := successor

expec_spread =

Return expec_spread

Under the proposed TSC-HDM model diffusion is modelled
as a two-step process. First step focuses on the computation
and assignment of I to each node based on the SST
exhibited by a node’s past interactions. For this, a time series
is first created corresponding to each node’s past interaction
pattern. Thereafter, using the widely popular Augmented
Dicky Fuller (ADF) method the generated times series is
checked for stationarity. If the generated time series is
found to be stationary, then the H value is computed using
the R/S analysis method. However, if the generated time



series exhibits non-stationarity, then DFA method is used for
computing the H value corresponding to the SST depicted by
the time series under consideration. Once the H values get
assigned to each node, the second step commences.

In the second step, the diffusion cascade is initiated
using a k-sized seed set, and the diffusion propagates from
an active node to its inactive successor if for the successor H
> 0.5. So, during the first iteration, active seed nodes contact
their yet inactive successors, and activate those successors
for whom H > 0.5. Thereafter, in each subsequent iteration,
an active node checks on all its yet inactive successors
and activates those whose H > (.5. Thus, in the proposed
TSC-HDM model node activation takes place if the node’s
predecessor is active and the node’s self H value is greater
than 0.5. “Activation criteria of H > 0.5 is based on the fact
that, H > 0.5 depicts a persistent time series [26]”. Diffusion
process keeps continuing until no further activation cannot
be done. Algorithm 1 presents an outline of the proposed
TSC-HDM diffusion model.

IV. EXPERIMENTS

For evaluating the proposed TSC-HDM diffusion model, its
performance has been compared with four existing diffusion
models for IM, namely IC [14], WC [14], TV [15], and
HBIM [26]] models. In the IC model, the edge’s probability
of propagation has been set as 0.1 for evaluation purposes.

All the experiments have been run on Windows Operating
System in a Python Environment. The machine on which
the experiments have been run has an Intel Core i5-8250U
CPU, running at a base clock speed of 1.6GHz. The machine
has 8GB RAM. The following section describes the datasets
used.

A. Datasets

Four real-world social network datasets, available publicly,
were used for evaluations. Each of the four datasets is a
directed temporal network. Details of all the four datasets
have been shown in Table

Each dataset, for the purpose of evaluation, is split into
two parts. For calculating H as well as creating time series,
the first part is used. For studying the diffusion process, the
second part is used. First 100 days data of the UC Irvine
dataset, first 1-year data of the Email EU-Core dataset, first 4
years data of the Math Overflow dataset, and first 5 years data
of the Linux Kernel dataset is used to compute H and create
interaction time series. To study the spread of influence, the
remaining data is used.

B. Evaluation of TSC-HDM model

The proposed TSC-HDM diffusion model’s performance is
compared to the performance of four diffusion models, namely
IC [14], WC [14], TV [43], and HBIM [26]] models. The four
datasets mentioned previously have been used to do evaluation.

Initial sets of seeds having different sizes (k = 10, 20, 30, 40,
and 50) were created using the below-mentioned algorithms
for seed selection (number of nodes in the initial set of seeds
is denoted by k):

e Degree [14] - The k nodes which have the highest degree
are selected as the seed nodes by this seed selection
algorithm.

o SingleDiscount [43] - In this algorithm, the node with
highest degree becomes the seed node, and the degree of
every inactive neighbour of that node gets discounted by
1.

o DegreeDiscountIC [43] - Tt this scheme, node having
highest degree node is chosen as seed node. After that, the
degree of the node’s yet inactive neighbours is discounted
based on the degree of that inactive neighbour and how
many of its neighbours have been selected as seeds.

The generated seed sets were given as input to the IC, WC,
TV, HBIM and proposed TSC-HDM models. The spread
attained by the given seeds under the 5 diffusion models
under consideration has been computed and compared. If we
start the process with k seed nodes, the overall number of
nodes which are expected to be influenced when we reach
the end of the diffusion process, are denoted by the Influence
Spread attained.

The spread of influence is calculated independently for
all the five different seed set sizes, i.e., k = 10, 20, 30, 40, and
50. For the purpose of representing, the spread of influence
attained by the seed set having k = 50 has been shown in Fig
1(a), 1(b), 1(c), and 1(d) corresponding to the UC Irvine, the
Email EU-Core, the Math Overflow, and the Linux Kernel
datasets respectively.

Obtained results depict that the spread of influence attained
by our proposed TSC-HDM model is far greater than the
influence spread attained by the remaining four existing
models under consideration, by the generated seed sets.
Hence it has been found that, a greater number of nodes
are getting influenced in the proposed TSC-HDM model,
in comparison with the IC, WC, TV, as well as HBIM models.

Fig 1(a) shows that for the UC Irvine dataset, the spread of
influence achieved by the seed set initialized using Degree
algorithm under our TSC-HDM model is about 351% more
than the influence spread attained under Independent Cascade
model, 29% more than WC model, 644% more than TV
model, and 114% more than HBIM model. For seed set
generated using SingleDiscount algorithm, spread achieved
under TSC-HDM is 332% higher than IC, 27% higher than
WC, 627% higher than TV model, and 114% more than
HBIM model. For seed nodes chosen using DegreeDiscountIC
algorithm, influence spread under TSC-HDM is 315% more
than IC, 31% more than WC, 616% more than TV, and 110%
more than the spread achieved under the HBIM model.

Fig 1(b) shows the spread of influence attained by the
seed set generated pertaining to Email EU-Core dataset.
Spread achieved by seeds chosen utilizing the Degree



Table II: Details of used datasets

Dataset Name Total Static | Temporal | Data Available For (Duration) | Time Span
Nodes | Edges | Edges (in days)
UC Irvine messages ﬂ 1,899 20,296 | 59,835 15-04-2004 to 26-10-2004 193
Email EU-CoreJ_ZI 986 24,929 | 3,32334 01-01-1970 to 15-03-1972 803
Math Overflow Ef 24,818 | 506,550| 239,978 29-09-2009 to 06-03-2016 2350
Linux Kernel mailing list |4| 63,399 | 242,976 1,096,440 | 01-01-2006 to 01-01-2014 2922
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algorithm by our TSC-HDM model is about 67% higher than
the influence spread attained by the Independent Cascade
model, 96% higher than WC model, and 275% higher than TV
model. Seed nodes selected using SingleDiscount algorithm,
attain 67% more spread under TSC-HDM as compared to IC
model, 94% more than WC, and 264% more than TV model.
For seeds chosen using DegreeDiscountIC algorithm, spread
under TSC-HDM is 65% more than IC, 103% more than
WC, and 245% higher than the spread obtained under the TV
model. Influence Spread achieved by seed sets chosen by all
the seed selection algorithms which are under consideration,
is about 88% higher in our TSC-HDM model, in comparison
with the influence spread attained by the same seeds in the
HBIM model.

Fig 1(c) shows that for the Math Overflow dataset, influence
spread attained by our TSC-HDM model is about 252% more
than the influence spread attained by the Independent Cascade
model, 134% more than WC, and 852% more than TV model
for those seed sets which are initialized by making use of the

Degree algorithm. Spread of influence in TSC-HDM is 250%
higher than IC, 136% more than WC and 855% more than
TV for seed set generated using SingleDiscount algorithm.
For seed nodes selected using DegreeDiscountIC algorithm,
spread under proposed TSC-HDM is 248% higher than IC,
150% higher than WC, and 840% higher than TV model.
Spread of influence attained in our TSC-HDM model is
approximately 95% higher than the influence spread attained
in the HBIM model by all the seed sets which are under
consideration.

Fig 1(d) shows that the spread of influence attained by
seeds chosen using Degree and SingleDiscount algorithms is
approximately 253% higher under TSC-HDM in comparison
with the influence spread attained by the same set of seeds
when they are under the Independent Cascade model, and
approximately 259% higher for seed set generated using
DegreeDiscountIC algorithm. Compared to the spread of
influence attained by the WC model, spread attained under
proposed TSC-HDM increases by approximately 157% for
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Figure 2: Influence spreads attained by the generated seed sets in the IC, WC, Trivalency and TSC-HDM models

Degree seed set, 155% for SingleDiscount seed set and
200% for DegreeDiscountIC seed set. Compared to the
spread attained under TV model, the spread achieved under
TSC-HDM model increases by approximately 590% for seeds
of Degree and SingleDiscount algorithms, and 595% for seeds
selected using DegreeDiscountIC algorithm. Compared to the
spread attained under HBIM model, the spread of influence
attained by our TSC-HDM model is approximately 50% more
for seeds of Degree and SingleDiscount algorithms, and 49%
for seeds selected using DegreeDiscountIC algorithm.

Thus, it has been affirmed by the results obtained, that
in comparison with the influence spread attained under four
existing diffusion models under consideration, namely IC,
WC, TV, and HBIM models, there is a higher spread of
influence in our TSC-HDM model. Consequently, on account
of the results obtained, we can come to the conclusion
that taking aspects of a node’s past interaction pattern into
consideration, results in a better assessment of the influence
potential of a node and hence, should be considered as a
criterion for node activation during the diffusion process.
Furthermore, on comparing the obtained results for HBIM and
proposed TSC-HDM models, it can be observed that using
different methods for computing H value (corresponding to
generated interaction time series), depending upon the time
series’ nature - stationary or non-stationary, significantly
improves the expected influence spread.

Researchers generally don’t present a comparison of
research work related to Influence Maximization in Online
Social Networks with existing approaches because the results
which are obtained are not comparable directly. Results
obtained by a particular approach depend on different
parameters such as different types of datasets used. Datasets
which are used, many times differ with regards to the type
of information they consist of as well as the time period
for which the dataset’s data is being considered. For the
purpose of comparison, the proposed TSC-HDM model’s
performance, with regards to the spread of influence achieved,
is compared to nine state-of-the-art existing approaches for
IM (where each uses the initial seed set size, kK = 50), namely
LIR [44], A-Greedy [16]], LPIMA [45], Genetic Algorithm
with Dynamic Probabilities [46], NeighborsRemove [47],
DegreeDecrease [47|], IGIM [48], IRR [49], and PHG [50].
The average percentage of spread of influence attained by an
initial seed set of size k = 50, i.e., having 50 seed nodes, has
been used as the base for comparison.

As per the reported results, LIR [44] achieves an average
percentage of spread of influence of 9.13%, A-Greedy
[16] attains 1.6%, LPIMA [45] achieves 2.7% and Genetic
Algorithm with Dynamic Probabilities [46| achieves 11.33%.
NeighborsRemove [47] and DegreeDecrease [47] have been
reported to achieve an average percentage of spread of



80

70

o
o

u
=3

IS
=]

Average Influence Spread %

w
o

20

10

LR A-Greedy LPIMA Genetic Neighbors Degree IGIM IRR PHG
Algorithm Remove Decrease
with
Dynamic
Probabilities

Influence Maximization Approaches

Proposed
TsC-

HDM

Model

Figure 3: Average % of influence spread under TSC-HDM
compared to state of art algorithms

influence of 18.91% as well as 18.58% respectively. Average
spread percentage for IGIM [48]], as per reported results,
is 13.27%, for IRR it is 3.39%, and for PHG
it is 7.98%. However, an average percentage of spread of
influence of 84% is achieved under the proposed TSC-HDM
model. Fig. 2 compares the average percentage of influence
spread attained under these ten aforementioned approaches
towards IM in OSN. The average percentage of spread of
influence values for all of the aforementioned nine algorithms
along with the proposed TSC-HDM model have also been
presented in Table

V. CONCLUSION AND FUTURE SCOPE

OSNs have long been researched upon to better understand
online social structures and behaviour. A favored research
field with regards to OSN is IM, which aims to maximize
influence spread in an OSN. The underlying diffusion model
imparts significant contribution towards IM as “the influence
spread attained by the chosen seed nodes is heavily affected
by the underlying diffusion model [13]”.

On reviewing existing literature pertaining to IM, it has
been observed that in many of the prevalent models of
diffusion, diffusion depends either on a randomly chosen
pre-defined edge propagation probability, or on the node’s
degree. Though a node’s connections represent the probable
paths for diffusion of information, but whether those paths
are actually being used for diffusing information from one
node to the next can only be known by examining the
node’s actual past temporal behaviour. Examining a node’s
past interaction pattern can lead to a more truthful view of

diffusion that has actually taken place between the node and
its neighbours. Hence, to achieve a more realistic diffusion
model, actual past temporal behaviour of a node must be
taken into consideration, when deciding the criteria for
diffusion.

The proposed work is motivated by the belief that to
assess a node’s influence potential, the actual extent to which
its making use of its connections should be considered as
a significant contributor. “A user having less connections
but using them often may prove to be more influential
than a user having a greater number of connections but
using them occasionally [22]]” By studying a node’s past
interaction pattern, it can be found out as to how much is it
utilising its connections and whether any repetitive pattern
(self-similarity) exists in its temporal behaviour [26]. In the
proposed work, Time Series Characteristic based Hurst-based
Diffusion Model (TSC-HDM) for IM in OSNs has been
presented. TSC-HDM draws inspiration from the HBIM
model [26], wherein node activation is done based on the
statistical SST displayed by the node’s past interactions. The
SST exhibited by the time series generated from the node’s
past interactions has been quantified using Hurst exponent (H).

HBIM model makes use of the same method for computing
the H value of each time series under consideration. However,
researchers have found that for computing more accurate
value of H corresponding to a time series, the method
for computing H should take into consideration the nature
(stationary or non-stationary) of the time series. Driven by
this notion, in the proposed TSC-HDM model, the nature of
each time series is first explored, i.e., it is first found out
whether the time series under consideration is stationary or
non-stationary, and then depending upon the characteristic of
the generated time series, separate methods have been used
for computing H value.

The proposed TSC-HDM diffusion model was evaluated
using four real-world OSN datasets. Obtained results reveal
that TSC-HDM outperforms IC [14], WC [14]}, TV [15]], and
HBIM models, as the given seeds achieve much higher
influence spread under TSC-HDM. For example, influence
spread attained by seed nodes selected from one of the
datasets under consideration, is around 253% higher than the
spread attained by them under IC model, 157% higher than
WC model, 590% higher than TV model, and 50% more than
the spread attained under HBIM model.

Hence, taking the node’s past interaction details into
consideration, has been found to contribute notably towards
improving the influence spread achieved by a seed set.
Furthermore, on comparing the performance of the TSC-HDM
(proposed) model with the HBIM model, it has been found
that using different methods for computing H value for a time
series, by taking stationarity characteristic of time series into
consideration, remarkably enhances the spread achieved by a
seed set.



A limitation of the work presented in this paper is that in
alignment with much of the research works carried pertaining
to IM in OSNS, a static snapshot of the data pertaining to the
node’s past interactions is being used to assess its temporal
behaviour. A node’s past static behaviour forms the base of
the proposed TSC-HDM diffusion model, with the assumption
that the node can be expected to continue displaying similar
behaviour in the future. Approaches developed by taking

the

other aspects of node’s structure and behaviour into

consideration can be further explored.
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