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Abstract

In this paper, we show that any displacement of a plate is the sum of a Kirchhoff-Love displacement and two terms, one for
shearing and one for warping. Then, the plate is loaded in order to obtain that the bending and shearing contribute the same

order of magnitude to the fiber rotations.
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1 | INTRODUCTION

Modeled from the beam theory in the 19th century the theory of thin plates was developed assuming that the fibers of the plate
remain non-deformable and perpendicular to the mid-surface (Kirchoof-Love displacements) and neglecting some components
of the stress tensor. Later, Mindlin, Timoshenko, Reissner and Uflyang developed the theory of thick plates taking into account
the shear (see'Y). From the 3D variational formulation of the elasticity problem for a plate, it has been proven that the limit
displacement is of Kirchoff-Love type. The limit of all the components of the stress tensor has been also obtained (see e.g.**).
This justifies the first hypothesis and assumptions.

The aim of this paper is to give an a priori decomposition of a plate displacement as the sum of a Kirchhoff-Love displacement,
shearing and warping.

Consider a plate ; whose mid-surface is a bounded domain @ and whose thickness is 26. We show that every displacement
u € W'(Q;) can be written as

oV !
V(') = x5 222 (x) X3%1(x)
0x,
u(x) = / avs -, + |x30,()| + ulx) fora.e. xin Q,. ()
v — x,—3 3l s
H(x7) x3ax2(x) \ . )
Vy(x') 0 warping
~ ~ ~ N~——
Kirchhoff-Love displacement shearing

Here, U, = U\e, + U,e, is the membrane displacement, it represents the displacement of the mid-surface of the plate, U3 is

V. oV
the bending. The map x; € R +— x; <a—3(x’)e1 + a—s(x’)e2> stands for a small rotation of the fiber {x'} X (=6, §) whose axis
X1 X

oV
is directed by 0—3(x’)e1 - 0—3(x’)e2 and whose angle is approximately equal to the euclidian norm of this vector. Since we
x

. 2 Xy . o . .
are in the framework of small cflsplacements, the symmetric part of the rotation is neglected. After rotation, the fiber remains
perpendicular to the plate mid-surface.

The second term in the above writing represents the shear: x3(rl(x’ e, + r(x )ez), that is two small rotations of the fiber
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{x'} X (=4, 8), the first one with axis e, and angle —r,(x’) and axis e, and angle r,(x") for the second. The last displacement is
the warping, it gives informations on the deformations of the fibers. It satisfies 4 simple relations (¢ € {1,2})
F] P

/E(),(x’,x\;)dx3 = /E(),(x’,x\;)x3dx3 =0 forae x €w. )
=5 =5
Such a decomposition is of interest only if we can give an order of the different terms that compose it. For a loading of the plate
whose elastic strain energy (the square of the L? norm of the strain tensor) is of order 6°, usually the membrane displacement
is of order 82, the bending of order 6, the rotations of the fibers of order 52, r; and r, of order 5% and so the shearing is of order
8% (all the estimates in Theorem [2)).

A few years ago, we introduced other decompositions to study thin structures made up of straight or curbed rods, plates or
shells. We have proven that any displacement of a curved or straight rod is the sum of an elementary rod displacement plus a
warping (see@H8PLUIAISION Thig decomposition method has been also applied for plates, shells and structures made up plates
(seeBHIBTY or structures combining rods and plates (see!213U723) T ater, the same ideas were applied to decompose the defor-
mations of thin structures (see? 2220 for curved rods or shells).

As a general reference on elasticity, we refer the reader to®>. For mathematical modeling of plates we refer to°*.
The paper is organized as follows:

e In Section 2] we introduce the main notations and we recall the first result on the decomposition of a plate displacement.

e In Section [3] the new decomposition (I)) of a plate displacement is introduced. Theorem [2] give all the estimates of the
terms of this decomposition with respect to 6 and the L” norm of the strain tensor. Then, if the plate is fixed on a part of
its lateral boundary, Korn-type inequalities are given.

e In Section[#} we choose a sequence of displacements of the clamped plate Q; whose strain tensor has a L? norm of order
62+1/7 In Theorem [3| besides the limits of the terms of the decomposition, we give the asymptotic behavior of the strain
tensor using the limits of the terms of the decomposition.

e In Section[5| we give an application of our decomposition, we load a straight plate in order to obtain that the bending and
the shearing contribute with the same order of magnitude to the rotations of the fibers.

e In Section [p] we conclude this study by giving a shorter decomposition for thin plate displacements (see #3))).

o Sections [7lf8l are concerned with calculations needed in Section 3

In this work, the constants appearing in the estimates will always be independent from &. As a rule the Latin indices i, j, k
and / take values in {1,2,3} while the Greek indices a and f in {1,2}. We also use the Einstein convention of summation over
repeated indices.

This paper is inspired by2® and follows the same lines.

2 | NOTATIONS AND RECALLS

We denote by | - | the euclidian norm of R? and by - the associated scalar product.

In this paper, @ denotes a bounded domain in R? with Lipschitz boundary. We refer o to an orthonormal frame (O; e, ez). We
set e; = €, A €,. So, the space R? is referred to the orthonormal frame (O; e e,, e3).

Denote

e Q; the plate with mid-surface w and thickness 26

Q; = w X (5,0)

o Y (0,12 Z =(-1/2,1/2)0,
Z =(~1/2,3/2)* = interior(Z U (e, + Z) U (e; + Z) U (¢, + &, + Z)),

_ _ _ _ 3
Y =(0,2)?= interior(Y U, +Y)u(e;+Y)u(e +e, + Y)), ©)



e w, ={x' €R? | dist(x,®) <} and Q = w;; X (=5, 5)

o forevery v € W(Q))’, 1 < p < oo,

(904 v0) (G50
=—((Vo)" +Vv), ) ==(—+=—).
e = {(Vor +Vu ¢ (V) =5 ox, " ox,
e(v) is the 3 X 3 symmetric matrix whose entries are the e;;(v)’s.
Proposition 1. There exists &, > 0 such that for every § € (0, §,], there exists an extension operator P; from W !(Q;)* into
WP Q). 1 < p < oo, satisfying

Yu e Wl,p(gé){ Ps(u) € WLP(Q;)3’ Pé(”)|£25 =u, ”e(Pa(u)) < C||e(u)||L,,(gﬁ).

Lr(Q)

The constant does not depend on 6.

Proof. From?* Lemma 5.22, there exists 5(’) > 0 (which only depend on the boundary of w) such that the boundaries Jdw,, for
n € (0, 5(’)], are uniformly Lipschitz.

Besides, if @’ is a bounded domain with Lipschitz boundary, in® Lemma 4.2 we show that there exist 6(/; € (0, 6(’) /2] (which only
depend on the boundary of ') and for every § € (0, 8, ] an extension operator P} from Wl’l’(co’ X (=8, 5))3 into Wl’P(co’z(S X
(-6,6))%, 1 < p < o0, satisfying

Vue W (o x(-5,8))’, “e(Pé’(u))

< Clle(u
by < Cle@lig,

where the constant does not depend on & (it depends on p and 0w/, it is the same constant for all the open sets ,, N € 0,8"D.
Now, let u be a displacement in Wl’p(95)3, if 6 < 58 /2, using the above result with @’ = w®, we extend u in oder to obtain a
displacement belonging to W "(w,5 X (=8, 8))*. Then, since 26 < 5(’)’ , the open set w,; has a Lipschitz boundary. So, we can
still apply the above extension result. We extend the extension of u and we get a displacement belonging to W (w5 X (=8, §))°.
This gives the result of the proposition. O
For simplicity, we will always write u instead of Ps(u) the extension of u to the plate Qg.

Below we recall the definition of an elementary displacement of the plate.
Definition 1. An elementary displacement of the plate Q is a displacement v € L'(Q;)* written in the form
o(x’, x3) = V(X') + x3A(x") forae. x = (x',x;) € Q.

The component V belongs to L'(w,5)* while A is in L!(w45)*, A = A e, + A,e,.
Here, V gives the mid-surface displacement and x5.4(x") represents a “small rotation” of the fiber {x’} X (-6, ), whose axis is
directed by —.A4,(x")e; + A,(x")e, and whose angle is approximately | A(x)].

To any displacement u € L' (93)3 we associate a unique elementary displacement U}, € L! (Q;)3 and a warpingu” € L' (Qé)3

u(x) = U, (x) + 1 (x)

fora.e. x = (x',x;) € 4
U (x) = U () + ;3 R*(x) V) €8 )
so that
5 5
/ﬁ*(x’,x3)dx3 =0, /EZ(x’,x3)x3dx3 =0 forae. x' € wy;. (5)
5 s

The above equalities determine V"*(x’) and R*(x') in terms of u and integrals over the fiber {x’} X (=8, §) (see® and?* Chapter
11). We have

3 3

U = % / u(x', x)dx;, R*(x') = %/)g(ul(x',xge1 +uy(x', x3)€,)dx;, forae. X' € ws;.
5 5
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Theorem 1 (Theorem 4.1 in®). Let u be a displacement belonging to Wl’p(Q;)3, 1 < p < oo, decomposed as ({@). The terms
U™, R* and u” of this decomposition satisfy

”E*”LP(Q;) < C5”e(u)”1‘p(gg)s ”VE*HLP(QQ) < C”e(u)”LP(Q{)s
(6)

2 % aU; s
SIVR sty + g Mo,y + |5+ R, — el -

LP(ws5) 51/p

The constant does not depend on 6.

Proof. All the estimates of (6) are the consequences of the ones in8 Theorem 4.1 except that of VR* which is replaced by

5“eaﬂ(R*)”LP(a)35) = 51/ —lle(u )”LF(Q/
. . o . . — bx,
The above estimate and the 2 D-Korn inequality give a rigid 2 D-displacement r(x') = <a1 + by > (a,,a,,b) € R3 such that
IR® = tll1a(uy < Cliegs RO el
llw oy, < Clleas L) = iviz 1 L)
Thus, the above and (6))5 yield
OU* C
< — -
|| ax L”(“’w) - 51"'1/17 ”e(u)lll‘p(gé)

Now, let ¢, be in D(w) such that / Podx’ = 1. We have

Uy eJon oUy ¢0
/[(a—l(x)+a1 bx2>a . _<d_x2(x)+az+bxl)()x1 x’=2b/¢0dx'=2b.

2]

Besides, the Holder inequality leads to

doy v 0,
’/ (x)+al_bx2>ax2 <6x2 )+ ay b, ) 30 ]d
oy o
<C(ll5 + il * 5 + 7ol J1VS0N
So, |b] < 515/ lle(@)ll 1y, which in turn gives (6)5. .

Remark 1. Suppose that the plate is clamped on a part of its lateral boundary
[; =7 X(=6,6)
where y C dw is a set with non-null measure. Since the fields T'* and R* are defined via integrals over the fibers, we have

U* =0, R*=0, ae.ony, u' =0ae.on [y @)

3 | DECOMPOSITION OF A PLATE DISPLACEMENT VIA A KIRCHHOFF-LOVE
DISPLACEMENT

In this section we decompose every displacement as the sum of a Kirchoof-Love displacement and shearing plus warping. This
decomposition suits our purpose better and simplifies the way to obtain estimates and later the asymptotic behaviors of sequences
of displacements.

Denote
Bs = {5622|5(5+Y)ﬂw¢¢}, Bl =50 (e, +E5) U (e, + ;) U (€ +e, + E;),
@5 = Interior U s(6+7).
=

Observe that @ C @; C w55 and note that for every & € By, we have

S(6+Z)Cawy;, S(E+e+Z) Cwss, S(E+e,+Z) Cass, 6(E+e +€,+2Z) Ca,



So for every & € E, we have 5(& + Z) C wa.

For every ¢ € L'(w;) we set
1
M ()(1) = 5 / $(t+2)dz\dz,, Vi=(i},1;) € s suchthatt +6Z C wy,
V4

M;(@)(68) = é / $(6¢ + 2)dz,dz, = My(9) (8¢ + g<e1 +e2)>, Vé € 8.
8Y

Now, let u be a displacement in W ?(Q;)?, extended in an element belonging to W“’(ng and then decomposed as @).

3.1 | The Kirchhoff-Love displacement associated with u
We first set
v, =17, U,=U; a.e.in w. (8)
Below, we define the third component U5 in @;. In the cell 6(¢ + ?), £ € E;, we set
Us(x") = @y g Xy = 681, %, = 6&,), Vr' = (x.X,) €8(E+Y), E=(6.8)
where @, g ¢ is given in Section@
A= (Ma(U’;)(Sf), M(U)(6E + 6ep), M(UY)(6E + de; + bey), Ms(U5)(6& + 5e2)),
B= —(M(S(RT)(éé), MR + 6ep), Ms(R)(E + de; + be,), Ms(R)(6E + 6e2)), 9)
C= —(Mé(Rz)(éé), MRS + 6ep), Ms(R)(6E + de; + be,), Ms(R3)(6& + 5e2)).
By construction, U3 belongs to W22(&;).
The Kirchhoff-Love displacement associated with u is
V.
Uy(x) - x36713(x’)

Ug (X' x3) = Vy(x') = x5 Uy ) fora.e. x = (x', x3) = (x1, X,, X3) € Q;.
0x,

Us(x")

3.2 | The decomposition of the displacement u

Now, we write

u(x) = U (xX) + x30(x") + u(x), for a.e. x in Q;. (10)
The above equality defines r = r,e; + r,e, and u by (¢ € {1,2})
* aUS - _ =% *
ra=Ra+ax , u=u+ (U; - Uyes. (11)
Theorem 2. The fields V,, = Ve, + U,e,, U3, t and u satisty

U, t€ W (0)?, U;€W*(w), ueW"(Q;)?

and the following estimates:

C
||eaﬂ(Um)||Lp(w) < _”e(u)”LP(Qa)v

8l/p
|| 021/3 “ 02U3 + “ 02U3 < L ”e(l,l)”L,,(Q y
ox2 ) ™ 17gx2 e ™ llox, ox, L) = 1170 ’ (12)
C
el 1oy + 5”%“ < = lle@)ll a,)-

Lr(w) — §l/p
7l Lo,y + 811 Vitll oo, < Clle@)ll 1oga,-

The constants do not depend on &.
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Proof. Estimate (I2)) is the consequence of (6)); and (8).

Below in the estimates the constants do not depend on £ and 6.

Step 1. We prove (12)),.

From the estimates (46) in Lemmawe get for every & € 5y, (a, f) € {1, 2}2, (see also @),
7 M(UDIBE + Be,) — My(UT)(6E)

+ (MRS + e, + MRG0

5
| o 1
s—( / " dx,dx, + & / || dxldx2>
2 (3x 0x, (13)
5(E+Y) 6(E+Y)
M(R*)(SE + Se ;) — My (R*)(SE) IR
& ——= L |,, < / —"dx,dx,
1) 0x,

6(E+Y)
Now, as a consequence of the above estimates, the expressions of the second order partial derivatives of U3 given in Section [§]

we obtain

L () H ()xg
Then, we get (12), thanks to (6);.
Step 2. We prove (12)5.

First, the Poincaré-Wirtinger inequality applied in the cells 6(¢ + Z), 6(§+Y) and thenin 6(§ + Z) U S(E+Y), & € B, allows
to compare M;(R>)(6¢) and M;(R?)(6&). We obtain

et
Lr(w) 0x,0x,

“a v, + ||VRa”L/’(w3,;)>‘

ES
Ll’(w) <5 || 0x Y Lr(wy5)

2 %
67 |Ms(R)(68) — Mg(R VBN < CE"IVRN, 5064 205641y (14)
Besides, we have
s R: — Ms(R2)(S
“ Lr6E+Y) <|| s(Ro( 9, Lr(3(E+Y))
2 * * p B
+82 M(RL)(68) = Mu(RUGE + ||— + MRGD,, ).
Then, using equality (48), estimates (I3, (€); and the above one, after summation over ¢ € E; we obtain
57/'3 15
|55 * Rl = 577 @l o, (15)
We have t, = R +
C
el Loy < 51/ =7 le@ll Lo,)-
oU5
Observe that Vr, = VR + V— py , this leads to the estimates of Vr using (I2)), and (6);.
Step 3. We prove (12),.
For a moment, set 1t = 1/'3* — U5. Thus
kel PSS
0x, @ Y 9x,
which gives
|22 + el
ox L) 51/1’ L@
Using (12)5, this leads to
C
IVl oy < SUr lle@ll Lrq,)- (16)

The above together with (), and equality (TT)), yield the estimate of Vu.
First, consider the function U}O defined in the cell 6(¢ + Y) by

UP() = Uy () — MyU)(58) + My(ROGEx, — 8, — 6/2) + My(R3(GENx, — 68, — 5/2).



Applying the Poincaré-Wirtinger inequality leads to

Onp _ 3 *
IV W oery < € Z “ + MR, 6o, LP(6(E+Y))
< 8° .
Cc Z <|| o, ey T S’ IIVR, ||Lp(5(§+Y))>
and
Oyp 8° *
I3 W ry < €8 Z <” 0x, Ly 7IVR, ”L’”<5(5+Y>>>

Then, consider the function U'3A defined in the cell 6(¢ + Y) by
UL = Us(x) = MGU6E) + M(RIBE(x, — 8, = 5/2) + My(RIGENxy — 68, — 6/2).
Again, thanks to the Poincaré-Wirtinger inequality and (I4)-(T5) we have

VLN ey < €8 Z <|| R,

The above estimates lead to (observe that u = U — U} = l/‘3<> — UL + MUy = U3)(88) in 86+ Y))

D *||1P
Lr(5(6+2)) TR Mo r2) )

— MU » 3 LR » *
”11 MUy 1/3)(65) LP(3(E+Y) =C a=1 (” 0x, *lrr@E+2) ToIVR, ”L”<5(5+Z>>) (17
It remains to estimate ”M Uy = U3)(6 5) J— . From equality (#9) we obtain
| —
— _ _o Ms(UT)6E + o(ke| + Ley) — AM(UT)(6E)
&MUy - U3)(5§)|p < C52(| Zico Lo Mol . L2 o3 |”
o Tioo Ma(RGE + 66, +620,) = Mu(R})(GE + 60€,) ’ as)
246
+52p| Z/i:() MRS + o€, + 6key) — Ms(R3)(6E + okey) |p>
246 '
The third estimate in (#6) implies
52p+2| o MG(RGE + Se, + 60e,) — My(RI(E + 6e,) |,,
246
(e 19)
S MG(RE)SE + Se, + Ske,) — My(RE)(SE + key) 2
2p+2 k=0 2 2 2 #
o | 246 | ) s o7 z ”VR ”L”(5(§+Z))

a=1
Now, observe that
11

DY MGUTIGE + ke, + Ley)) — 4AM(U)(5E)
k=0 £=0

=(M(U)(3E + Be, + bey) — 2M5(1/'3*)(5§ + gel + 5e2) + M(U)EE + bey))
+H(M(U)OE + bey) — 2M5(1f;)(5: + ge1> + M(U(68))

+2<M5(1f3*)((6§ + gel + 5e2> — AN WTN6E)) + Mé(v;)(ag + ge, ))
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Remind that My(U;)(68)) = Mﬁ(U;)(éé’ + gel + gez). Thanks to @8}, we get

1 1
8| Y, Y MUGE + ke, + £ey)) = 4MGWU)@0)|
k=0 =0 (20)

<cw Z (15 += + IR

Lr(5(E+2)) L”(5(€+Z)))

So, (I7)-(18)-(19) and (20) after summation over & € E; lead to the estimate of [|1t]] 1,

”u”Lp(w) < C5]_1/p||e(u)”u(95)- 2D
Using the above, (€), and equality (IT)), completes the proof of (I2)),. O
Corollary 1. We have
[lu— UKL”LP(Qﬁ) < C5||e(”)”u(gﬁ)’ IV — UKL)”LP(QJ) < C”e(”)”u(gzg)- (22)
The constants do not depend on 6.
Proof. Estimates (22)) are the immediate consequences of (12). O

Remark 2. Tt worth to note that the Kirchhoff-Love displacement Uy, is close to the initial displacement u (see (22)), but we
cannot replace u by Uy, in an elasticity problem. Shear and warping, even though much smaller than the membrane displacement
and the bending, they can not be neglected. If the plate is made up of a homogeneous and isotropic material with Lamé’s
constants A and u, at the limit in the bending or stretching systems, these constants are replaced by the Young modulus E and
the Poisson coefficient v, this is due to the limit shearing and warping (see e.g."1¥ or the proof of Theorem EI)

Lemma 1. If the plate is clamped on I'; then we have U} = U, = 0 a.e. on y (see Remarkand equalities (8)). Moreover, we
have

||U3”Lp(y) < Cél_z/p”e(“)”u(ggﬁ), ||VU3||LP(y) = ||e(u)”1_p(g§) (23)

52/
The constants do not depend on 6.

Proof. The boundary of w being Lipschitz, so from (T6) and (ZT)) we have the trace result

< C5° 2 le)]|”

1
+Cs |V’ .

[l ST

Lo S
Remind that u = U3 — U5 and Uy = 0 a.e. on y, thus we get (23),. Similarly, (T2), yields

L7 (w) Lr(w) —

C
”r”Lp(aw) 520 —lle(u )”Lp(gﬁ

1%
2 and R* = 0 a.e. on , this gives (23),. O

(4

Since v, = R +

Remark 3. If y is an open subset of do with a finite number of connected components then we can construct U5 such that

U5 =0, VU;=0 ae.ony. 24)
Indeed, proceeding as in?* Lemma 12.1, we can prove that
# * C
IR Loy < CONIVR | oy < 51/plle(u)llu(gﬁ

where
"= {X ew|dist(x',y) < 35}.
Then, we obtain

||VU3*||L;J(7§1) = ”e(”)“Lﬂ(Q )

C
sl/p
Hence

”U; ”Lp(ygl) < C(Sl_l/p”e(u)”]_p(gé)-



Now, in the cell 6(¢ + ?) with dist(6&,y) < \/55, we replace the values of A, B, C given by (9) by
A =(0,0,0,0), B =(0,0,0,0), C =(0,0,0,0).
So, the estimates in Theorem [2]are still valid and moreover we have (24).
As a consequence of the above Theorem [2]and Lemmal([I] one has

Proposition 2 (Korn type inequalities). Let u be a displacement in W !P(Q;), 1 < p < co. Assume the plate clamped on I';.
Then, we have
||”1 o, + ol o, + Sllusll oo,y < Clle@ll o),

ou
2|+ 152 g <€
el Lo,
a;1 ” Lr(@,) @) = 7€) (25)
2
Ous C
= le(u
~ (H L/(Q;) Hax3 LI’(Q)> 5 lle@llzr@,)-

The constants do not depend on 6.
Proof. First, we decompose u as (I0). Then, (IZ)),, the clamped condition satisfied by U, U, and the 2 D-Korn inequality lead to

Vi llwo@) + 12 llwir@w) < 75 6@l rg,)-

51/p
We recall the following classical result: there exists a strictly positive constant C (which only depends on p, dw and y) such that
VO e W (@), Dl < CUIVPl Loy + 1Pl 1)) -
Estimate (12, together with (23 and the above yield
C C
||V7/'3||W1,,,(w) < m”e(u)”u(gzﬁ) = ||U3“W2~P(w) S1+1/p Sty e )”LP(Q)
Then, the estimates of the proposition are the consequences of those in (I2)); 4 and those above. O

4 | ASYMPTOTIC BEHAVIOR OF A SEQUENCE OF DISPLACEMENTS

First, we recall the definition of the dimension reduction operator.
Definition 2. For ¢ measurable function on €, the dimension reduction operator I1;(¢) is defined as follows:
I5()(x 1, x5, X3) = (X, Xy, 6X3) fora.e. (x,x,, X3) € Q.
I15(¢) is a measurable function on Q =wX(-1,1).
We easily check that
1. forany ¢ € LP(Q;), 1 < p < ©

TPl o) = 775 191l Lo (26)

51/
2. forany ¢ € W'P(Q;),1 <p < oo

dI1 d oIl 0 oIl 0
() =H5<—¢>, 5(@) =H5(—¢>, 5(@) :5H5<_¢). @7
0x,; ox,; 0x, 0x, 0X; x4
Let u be a displacement belonging to W 1*(Q;), decomposed as (10).
The strain tensor of u is given by the following 3 X 3 symmetric matrix defined a.e. in ; by:
2
1
ew) = v i Z (28)
elz(U‘ ) - X3 a a + X3612(r) + elz(u) 622(‘1/‘ ) > + X3822(1¢) =+ ezz(u) *
2
1 _ 1 _ _
_rl + 613(u) _r2 + 923(1/4) 933(14)

2 2
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Whel"f: r= tlel + r2e2, Um = U]e] + U2e2.
For every (®,,, ®s, w@) € WP (w)? x W2P(w) X WP (w)? X LP(w; W'P(—1,1))? we denote

0° D,
e (@) — X3— * *
X
— 0D, 0@,
E(®,, D3y, @) =|e;(®,) - Xsa en(®,) = X3—s=  * (29)
X,0x, x3
1, 4199 1, 4190 9%
217 20x, 227 35x,  ox,

Where q)m = ‘Dlel + (1)262, Y = Wlel + l[/zez.

Theorem 3. Let {u;}; be a sequence of displacement belonging to W!#(Q;), 1 < p < oo, decomposed as (T0). Suppose the
plate clamped on I"5 and

||€(”5)||L2(Qé) <csHir
where the constant does not depend on 6. Then, there exist a subsequence of {4}, still denoted {6} and U}, = Ve, + V3e, €
Whr(w)?, Uy € W2P(w), t € LP(w)? and U € LP(w; WP(~1, 1)), such that

1
52 Un

%1/3’5 —= U, weakly in W2P(w).
U,,, U satisfy the following boundary conditions:

UV, =0 ae.ony, U3;=0, VU3=0 ae.ony.

5=~ U, weaklyin W' (w)*,
(30)

We also have (a« € {1,2})
5%115(55) —~ U weakly in L’(w;W'P(=1,1)),

Ln (()_f%) ~0 weaklyin L7(Q) G1)
52 °\ox, Y :

5%% — 1t weakly in LP(w)?, %v% —~ 0 weaklyin L’(w)*

d
an o,

ll'[,;(ua 5= U — X, weakly in LP(w; W'P(=1, 1)),

52 ’ 0x, 32

) (32)
gﬂa(uw) — U3 strongly in Lf(w; whr(=1,1)).

Moreover

éﬂa(e(ué)) N E(U’m,Ug,r,ﬁ) weakly in LP(Q)°. (33)

Proof. Convergences (30)-(31)-(33) are the immediate consequences of the estimates (12), the ones in Proposition [2] and the
properties (26)-(27) of the operator IT;. Convergences (32)) come from those in (30)-(31)) and again the properties of the operator
I,. O

The limit warping U satisfies (@ € {1,2})
1 1

/ U, (. X3)dX, = / U,(.X3)X3dX, =0 ae.inw.

4 5
We denote 28, the following subspace of LP(ew; W'#(—1,1)):

1 1

B, = {V € LP(w; WP(=1, 1)) | /Va(-,X3)dX3 = / V,( X)X5dX; =0 aeinw ae(1,2) }
4

-1
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S | APARTICULAR LOADING OF THE PLATE

For simplicity we assume that the plate is made of a homogeneous and isotropic material whose Lamé constants are A and p.
We also assume that the plate is clamped on its lateral boundary.

In this section we want to investigate a plate loaded with applied body and surface forces, these forces are chosen so that they
do not see the Kirchhoff-Love displacements.

We denote . . .
Hy Q) = {¢p € H'(Q,) | ¢ =0 ae.ondw; X (=5,6)},

ik = 46,6, + H(‘Sik‘sﬂ + 6il6jk)’ {i,j k. 1} € {1,2,3}*
where §,; is the Kronecker symbol.
We recall that there exists a strictly positive constant C such that

CIlICI? < ;1166 forall 3 X 3 symmetric matrices § (34)

where ||| - ||| is the Frobenius norm.
We denote

0,(V) = a;e,; (V) Vv e H'(Qy).
The 3 X 3 symmetric matrix ¢ whose entries are the o; j(v) is the stress tensor of v.

We consider the following elasticity problem given in the variational form:
Find u; € H! (Q,) such that Vo € Hllﬁ(Qé)3,

/o-ij(ua)eij(v)dx=/F5-de+/G?-de’ (35)

Q; Q; 00t

where F; belongs to L*(Q;)*, G; € L*(w)* and 0Q; = w X {+6}. The existence and uniqueness of the solution to problem
is a classical result.
Now, we suppose that the applied forces are given by

Fy(x) = f5(x') forae. x€Q; f5€ LY (w).
G (x") = -G;(x") = g5,(x")e; + g5,(x")e,, forae. x' €w, g5, 8, € L ().

These forces satisfiy
/F5 Vg dx + / Gy - Vipdx' =0

Q; ot
0V;
V) — X3 0_x1
for every Kirchhoff-Love displacement Vi, = V) —x; 0_\73 belonging to Hr15(96)3'
0x,
Vs

This first leads to f5; = f5, = 0 and then

oV oV
26 / F53()V3(x")dx’ — / 25<g5,1(x')a—3(x/)+g552(x')—3(x/)>dx’ =0, VYV € HXw).
X, 0x,
Hence

0g og
f§’3 + 5,1 + 86,2

0x, 0x,

=0 in H Y(w).

Let g,, g, be two functions in H'!(w). We choose (« € {1,2})

0 0
% ﬁ>,
0x, 0x,

850 =068y  [r=—div(g) = —( fs3=0f5.
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So, for every admissible displacement u € H' (Q;)* decomposed as (I0), we have
8

/Fa-udx+/ s oudx

Q; oQt

=5 / fiitzdx + 26 / (Ladx + 87 / 8o (U (x',8) — U, (x', —8))dx’

w

_ 36)
2 2 aua
=5/ /garadx+6 /ga
0x3
Q; Q; Q;
=257 / g,e.3() dx.
Qs

As a consequence of the above equality and estimates (I2)) the solution u; to problem (33) satisfies
2
”e(u(s)“LZ(Qb.) <cs’
where the constant C does not depend on 6.

Proposition 3. Let u; be the solution to problem (33)). We decompose u; as (I0). Then, we first have

%U’m!é — 0

5 strongly in H'(w),

éU’w — 0 strongly in H*(w),
6%115(55,1)—\0 weakly in L*(w; H'(—1, 1)),

6—13n5(a5,i)—>o strongly in L3(w; H'(=1,1)), i€ {2,3}.

Moreover, there exist r;, r, € L*(), such that (a € {1,2})

1

2t = weakly in L*(w).

Proof. Theorem gives a subsequence of {6}, still denoted {6} and U, € H& (w)?, Uy € H g(w), Ue W, and 1,, 1, € L}(w)
such that convergences (30)-(31)-(32) and hold.
We choose ®,, = e, + Dre, € H}(w)?, @; € H(w), ® € W, N H'(Q)* and y,, y, € H}(w) where
HYQ) = {V € H'(Q? |V =0 ae. ondwx (-1, 1)}.
We define the test displacement ¢, by
0P —
510, = X35+ x38%, +x:8%, + 570, ( %)
X
0P —
$s(x3) = 82D, — x350—3 + 53q>2<-, %)
X2
g (.13
50, + 5 q>2<-, ?)
We have (see (28)) for the strain tensor of ¢)

P,
e (®,) — X3— * *
X
1 N 0>, Lo
52H5(e(¢5)) e (®,,) - X3W ey (®,) — X; z)xg * strongly in  L“(€)".
1, 10 1 109, 0%,
21T 209x, 22T 20x,  oxX,
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Now, in (33) we choose this test displacement, we transform the left and right hand sides using I1;, divide by 5> and pass to the
limit. Thanks to (36), we obtain

T Y ! ’ aﬁa ’
a0 Ej (U U 0, U ) Ey (@, @3, w, @)dx'd X, =2 | gow,dx + Sagy. 4% dXs.
3
Q @ Q;

This first gives

/ ”kkE l/'3,r,ﬁ)Ekk(CI)m,d)3,u/,6)dx'dX3
’ o, 90, , 37
+M/ eny) = Xo5 o )(e,z(opm) v ) }dx dX; =0
and . _ _
oU Pro 0o,
y/(r +07><1//a aX3)dx dXy = /ga(% = 3)afx dX;. (38)

o o
By density of 8, N H!(Q)’ in B, and H/(w) in L*(w), the above equalities are still satisfied for every ® € 2B, and y,, y, €
L (w).

So, from (B7) we get U, = U, = U = 0 and U = 0 (up to a function belonging to L*(w)) since (34) and (37) imply

2 2 oMV, 2 U, 2
2 (leas@l g, * | )+ 5%
2@ llodx,0x, 1L2Q) 0X; 2@
=1 a i} 3
2
PU; 2 U,
<
= C( a;l ) = X5 o 0x,0x, ll 2@ ” 0X, L%Q))
Then, (38) gives (a € {1,2})
T, = lga a.e. in o, Ea =0 ae. inQ.

Since the limit problems admit a unique solution, the whole sequences of fields converge towards their limit. As usual we prove
the strong convergence of the strain tensor which in turn gives the strong convergences in the proposition. O

The displacement
U (x) = 67x3 (1, (x)e, + 1,(x")ey) for a.e. x € Q;
is an approximation of the solution u; to problem (33). Below, we give an error estimate.

Lemma 2. Assume g, and g, € H, é (a)ﬂ then we have
lle(us — sl < €872 (1g1 1l 1wy + N82ll 111(0)- (39)
The constant is independent of 6.

Proof. First observe that under the assumption of the lemma, u;”

Ileaﬁ(ug")llu(gé) < C57/2(||g1||111(w) + ||82||H1(w)) (40)

is an admissible displacement of the plate. We first have

and

apy __ 62 apy __ 52 apy _
epsuy) = jrl, ex(ug) = Trz, ep(ug) =0

Now, let ¢ be a displacement in Hllé(Q,;)3, from (36) we have

4y / (e13uS)e 3() + ey (U )ers () dx = 267 / g,0.3(d) dx.
Q; Q;
Hence
/ o€, (uy — use (@) dx = — / Oy (U Ve s (P) dx (41)

Q.

]

95
which in turn due to (@0) give (39). O

'If we only assume g, and g, € H'(w) we can prove that [le(us — u§")|| < C8*(llg, |l 1wy + 18211 111 (w)-
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Theorem 4. Under the assumption of Lemma 2] we have

%
V.
%né(um)ﬁ—)g 6x3 + X;r, stronglyin L*(w; H'(=1,1)),
1
1 U3<> .12 1
6_31_[5(”6’2) — — X, F + X;3r, strongly in L°(w; H (-1, 1)),
; 2
1

S115055) — U strongly in L(w; H'(~1,1)

where 1/'3<> € Hg(a)) is the unique solution to
vl ', o , >
((1 _ V)(dx o eaﬂ(r)> ot v(av? - eaa(r))A(D3)>dx =0, Vo, e Ho).

a

[

V= A the Poisson coefficient.
200+ w)
Moreover we have the following strong convergence in L?(Q)°:
rud 2vf .
- + - +ep(
x% e”(t) axlaxZ 612( )
1 a 290 29 79
_Hé(e(ué - ”,;p)) - X; 0 U3 J U3
53 _()xl()xz + eu(r) —a—xi + ezz(r) 0
A
0 0 Hzﬂ(AU;> — e (x) — ex(r))

Proof. We decompose us — us’ as (T0), we write
us(0) — u? () = UL, ;0 + x5t () +70(x).  fora.e. x € Q.

Due to Theoremsand there exist a subsequence of {4}, still denoted {6} and U’O, 7/'2<> (S HOl (w), 1/'3<> (S Hé(a)), ﬁo e W,
and t0 € L2(w)? such that

61_31/50’" - 1/',,<,> weakly in H(; (),
SUS = U0 weaklyin Hi),
—0
_ du
%H(g(ﬁ?) ~T° weaklyin L2(w; H'(-1, 1)), ;—3H5<#) 0 weaklyin L3(Q),
L0110 weaklyin L2(w)? Lo 2o Kly in L2(w)?
5% y in (w)*, ) N weakly in (w)

and

1 ; — .
ST (et; =) E(Wu0:0.T%) weaklyin L7(Q). (42)

Now, in (#I)) we choose the test displacement introduced in the proof of Proposition[3] we transform the left and right hand sides
using I1;, divide by 8% and pass to the limit. We obtain

/a[jk,Eij(‘lf,,?,U'So,rO,ﬁo) Eyy(®,, @y, y, @)dx'd X,
Q

:_/aaﬁa,ﬂ,eaﬂ(r)x3Ea,ﬁ,(®m,q>3,q/,6)dx’dx3.
Q

(43)

By density of 28, N H'(Q)* in 2B, and Hé (w) in L2(w), the above equality is still satisfied for every ® € 8, and y € L2(w)?.
The above equality yields

/(<>+aﬁ”<>)( +66”>a’ "dX; =0
T % ¢ =
H o 0X3 Yo 0X3 X 3

Q
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Hence r(? =0and ﬁf =0.

Equation (43) also gives
/ {la+20(en@ir-x A W) - X v Aaﬁ? [(ent@,) - x,222)
w20 (@~ 522 4 ent - 1, 25) 4225 e, -
J | H\ €1 3 dx% 22 3 6x§ 90X, /| 11 3 0x%
: o o UYL 021f3<> o\ 2D,
Ha(en @) - ;=2 ) + G 20 (en@) = ;=) + 4522 )] (enl@,) - X, 52)
L 0x] 6x2 0X; /] 0x; 44)
a(en@wd) - x e Mepnd) - x e A+2 9T 19y
Ha(en @D === )+ den@)) - Xs— == )+ Gt 2w 22 )| 52
N 5 3 3
o vl 0D, , P,
+,u<e12(7fm )= X, axlax2><e”@m) X5 ) }dx dX; = | Gupupeas@®XEpy (®,, @y, D)dx'dX;,
Q
In (@4) we choose @ = 0, this yields
()ﬁo A
3 _ Y% o %
50
Replacmg in (@4) leads to
X3
1 £ / ((1 — Vegy (U e s (@) + Ve (U e na(@®,))dx’
-V
/ —e (t )) 7 +v(AUL — ¢, (1)) AD ))dx’ —0
3(1 - 2) Cap 0x,0x, 3 aa 3
34+2
where E = w is the Young modulus. Hence, U‘<> 0 and we get the equation satisfied by U‘<>
Since the limit proéllem admits a unique solution, the whole sequences of the different fields converge towards their limit. As
usual we prove the strong convergence of the strain tensor which in turn gives the strong convergences in the theorem. O

As a consequence of Proposition |3[ and Theorem @, regarding the stress tensors, of u; and u; — u;’

we have the following
5
strong convergences in L2(Q)°:

1 1 00 81
51’[5(0‘(%)) — 3 0 0 gl
&1 &2 0
rul ru?
S R 21 = v) te (r))
| ox2 11 < ox,0x,
gH&(G(ua —u(sp)) - 1_ .2 21— v)( B 02U3<> te (r)> _(327/'<> o) 0 .
9,0, 12 Fy) 2

2
0 0 0
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6 | CONCLUSION

If we are dealing with a very thin plate, it will be better to replace the decomposition (1)) with a shorter one. So, any displacement

u € Whr(Q;), 1 < p < oo, is also decomposed as

’ 0U3 ’
Ui(x') - X3W(x )
1

u(x) = Uy — x3a—v’3(x') + u(x) for a.e. x in Q;.
Us(x) residual displacement

. /

Kirchhoff-Love displacement

The residual displacement is

u(x) = x3(x,(x)e; + rz(x’)ez) +u(x) forae.xinQ;.
It satisfies the following two conditions:

s s

/El(x’,x3)dx3 = /ﬁz(x’,x3)dx3 =0 forae x €.
=5 -5
As immediate consequence of Theorem 2] we have

Theorem 5. The fields U, = Ve, + Use,, U5 and U satisfy
U, e W (w)?, U,eW?>(w), ueW!'(Q;)’
and the following estimates:
llews Vol Loy <
U,
|22
1l gy + 1Vl ey < Colle@l ey

The constants do not depend on é.

”e(u)”LP(Q())’

Lr(w) 0x,0x,

C
sl/p
” U,
Lr(w) axg

C
L) S m“e(u)”mgﬁ)’

(45)

If the plate is clamped on I, then the estimates of Lemma|T]are still valid and we have U;, = 0 on y. Of course, Proposition
is also still valid. Proceeding as in!' the above decomposition (@3) can be extended to structures made up of a large number

of plates.

7 | ALEMMA

Lemma 3. Let ® and ¥ two functions belonging to W”’((O, 26) % (0, 6)), 1 < p < 00. We have

26 6 26 6
M(D)(6) = M5(P)(0
[P RO AR L w000 + M) < //| +f dxdy+5p//| ['dxdy).
26 6 26 6
|M,;(CD)(5)—2M5(¢5’)(5/2)+M5(¢>)(0)|PS % ( / /|Z ¥ dxdy+ / / ’ |dxdy

2% 5

M;(P)(6) — M;(P)(O

| 5()()5 s(P)(0)p S%// |ddy
0 0

(46)
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where for every © € L'((0,26) x (0,6))

M§(®)(t)=%//@(sl+t,s2)dslds2, t €1[0,8].
0 0

The constants depend only on p.

Proof. Step 1. A preliminary result.
Let ¢ and y be two functions belonging to C!([0,25]). In this step we prove that (1 < p < oo)

’m5(¢)(5)gm5(¢)(0) mwO| < /’d_(’”"’(’)’ dt + 8 / |2 o) ar)
| RPNV 2P0/ 4 i @XD) e 2 / |20 +y|ar+ s / Ll ar).
0 0

|m5(ll/)(5) ; ma(w)(o)r < %f’z—t(t)’pdt

where for every 8 € L'(0,26)
5
my(0)(1) = é / 0+ s)ds, 1 €10,8].
0
We prove (¢7),. We have

)
qb(x+5)—¢(x)=/%(x+t)dt Vx € [0,5].

0
So
5 5 s

5 5
/ ¢(x+5)—¢(x))dx+5/1//(x)dx—// w(x)—w(x+1) dxdt+// —(x+t)+l//(x+t)>dxdt.
0 0

0 0 0
Above, the first termof the RHS is

6 x+t

5 6 5
// u/(x+t)—u/(x) dxdt ///i—t(s)dsdxdt.
0 0 0

X
Hence, using the Holdér inequality
5 6

25
d
| / / (wx+0 - y@)de] < 5! / 22| ds.
dx
0 0 0
The second term in the RHS is bounded by

25

)
| / / (2ot 4w+ Jaxa] < / |Z26) 4w 'ds
0 0

0
Finally, we get (7)), .

(47)
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We prove @T),. We have

) S5  s+6
d
Mo BNE) — ms )5/ = 1 / (85 +8) = 9ls +5/2))ds = 1 / / —"’(r)drds
0 0 s+6/2

1)

5 s+6/2
m5<¢><6/2)—m5(¢)<0>=§ / (s +6/2) — (s))d =§ / / —(r)dzds
0 s

0

Thus 6 s+6 6 s+6/2
MoDIG) = 2m (D)D) + my(B)O) =5 / [ (520 +wo)anas - § / / (S0 +wo))dias
0 s+6/2
5 s+6/2

_%// (vt +6/2) — y(0))dids.
0 K

Then, the Holder inequality leads to

26 26

p  3p-1 5202 ; 3p-1 5202 ’
my($)(6) = 2my($)(3/2) + my@)O)| < / / |20+ yo)|dras + 2 / / |20+ yo)| drds
(U] 0 0

6pr 2r-1 2r-1

6 26 26

p—1 <3p-3
35 6 1/// d"’(y)|ddzd

0

The above inequality yields @7),.

We prove (¢7);. We start with
5 5+t

é
d
5(ms(w(8) = my(w(0)) = / (W +0 = y(0)dr = / / “E(s)dsdr.
0 0 t

Then, using Holder inequality, this yields
25

d
'5(m5(ll/(5) - m,;(u/(O))|p < 521 / |%(S)|pdsdt.
0

Hence, (@7); is proved.

Step 2. We prove the inequality of the lemma.

We first choose two functions ® and ¥ belonging to C! ([0, 26] % [0, 6]). From 7)), we have

26 26

/|a—(x )+ W(x, y)| dx+51'/( (x,y)|pdx>.

0 0

1 o6 1 6 6
| 5 fo O(x+6,y)dx — 3/0 D(x, y)dx 1 /‘P(x y)dx
o 5

Now, using Holder inequality we obtain

M (D)(6) — M5(P)(0
| 5 )()5 5 )()+M5(‘P)(0)|p

/| /()¢(x+5y)dx+ f()d)(xy)dx 1
o o

B
—/‘P(x y)dx| dy

26 6 26 6

iz //|—(x y) + x| dxdy+6”//‘ (x,y)|pdxdy>
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Thanks to a symmetry argument, we also obtain
2% 5 2% 5

//| (x,y) — ¥(x, y)| dxdy+5”//| (x,y)‘pdxdy>.

From the two inequalities above, we obtain ([@6)), for ® and ¥ in C! ([O, 28] % [0, 6]). Similarly, we show (@6)), ; starting from
@7), 5. A density argument gives the estimates for every ® and ¥ belonging to wltr ((O, 26) x (0, 5)), 1 <p<oo. O

M;(@)(0)

| Ms(P)(6) -

- +A%H%®r

8 | THE FUNCTION ®, , . (SEE ALSO™S)

Denote Q,, O, QO and Qo1 the following polynomial functions (¢ € [0, 1])

2t + 8)(t — 8)? Ht — 8)?
00(1) = % Oo(r) = (5—)
(36 — 21) (1t - 5)
Q](t) = 6—3’ Q ( ) - 5 5
_ 61t =0) _12t—66
P@t) = = Rm_ 5 )
Note that PO) (1)
0, (N=0,6-1, O)=-0y6-1, Qyn)= — (=9, 0,(=—=
dQ, . 6t(t— 5) 1 do, = 6t6—1) 1
o= "5 =50 0= = ZP),
a0, _a—&@wﬁ)_l 5—1 dg, = 1(31-28) 1 t
q a = 82 = PO+ a V=T e TPy
et

A= (Ao,o’ Ajg Ay AO,I)’ B= (Bo,o’ By, By Bo,1)’ C=
We define the polynomial function @, g « € W*®(8Y) by

(Co,o’ Cio Ciys CO,])'

Dy pc(x15x7) =Ag 0Py o(x1,x7) + Ay 1 By 1 (X1, x0) + Ay o Py o(xy, x0) + Ay Py (x5 x5)
+ B od Poo(x1,x5) + By od Py o(x1,x5) + By, dy Py (X1, %) + By 1dy Py (X, X;)
+Co0dr By o(x1, %) + Co 1dr By 1 (X1, X5) + € ody Pyo(x1, x5) + Cy 1dy Py (x4, X5)

where for all (x,, x,) € [0, 5)?

Py o(x1,%3) = Qp(x1)Q(x,), Py (x1,%3) = Qp(x)Q(x,),
Py y(x1,x3) = Q1(x1)Q(x3), Py (xy, %) = Q1(x)Q(x,),

di Pyo(xy,x,) = Oy (x)Q(x,). d Py (xy,x;) = 00(x))0;(x,),

di Py o(x,x;) = Qol(xl)QO(x2)7 di Py (xp,xy) = Qol(xl)Ql(XZ)’

dy Pyg(x1: %) = Qo(xDQo(x0),  dyPy (X1, %) = Qo(x)0;(x,),

dy Py (%1, %) = Q,(x)0y(x,). dy Py (xy,x,) = 0,(x)O, (xy).

By construction, we have
@y g c(kd, pd) = Ay 0, @y p.c(kd, pd) = By, 0y, Papc(kd, pd) = Cy ), (k.p) € {0,1}%.

Moreover, (k, p) € {0,1}?

e @, g (x, pd) only depends on A(),p’ Alyp, Bo,p and B]’p,

@, .c(ké, x,) only depends on A, , A; 1, Cppand Cy g,

d, D4 g c(xy, pd) only depends on A, A; ,, B, , and B, ,

0y P4 pc(ké, x,) only depends on B, ; and By ;,

0., @ p.c(x;, pd) only depends on C; , and C, ,



20 |

e 0d, D, g c(ké,x,) only depends on Ay o, Ay ;, Cy g and Cy ;.

Now, observe that @, ¢ can be rewritten as
Dy (X1, x7) =(A0,0Q0(x1) + A ,0,(x) + Bo,oéo(x1) + B1,oé1(x1))Qo(x2)
+( A0, Qp(x)) + A; 10, (x)) + By, Op(x) + Bl,lQol(xl))Ql(x2)
(Co0Qo(x2) + €01 01(x2)) Co(xp) + (€1 000(xy) + €110, (%)) @, (x))
=(A00Q0(x2) + 4410, (x,) + Cy 0Qy(x1) + Cy 10, (x,)) Oy (/)
(
(

+

A nOQy(xy) + A 0,(xy) + Cl,oéo(xz) + C1,1é1(x2))Q1(x1)
Bo,oQoo(xl) + Bl,oQol(xl))Qo(xz) + (Bo,lQoo(xO + B“Qol(xl))Ql(xz).

+
+

We have
Apo— A

6 —
O, Papc(x),xy) = < 5 + (Boo+Blo)>P(x1)+Boo 5 +B10 5 ]Qo(xz)
Ay, — A 6 —
+ (%+ S(Boy + By ) ) PGey) + By, =+ By, 2|0, x0)
P(x 2)P( %)

and
Ao — Ap

6 —
0y, Pap (X, xy) = <T+ (C00+C01)>P(x2)+C00 5 +C01 5 ]Qo(x1)

<A10 A
o

+<(Bo,0 = By )(x; —68)+ (B — B1,1)x1>

Now, since Q,(?) + Q,(¢) = 1 we obtain

5 —
+ (C10+C11)>P(x2)+C10 240, 5]Q (x))

(xl)

0
—P(xy).

|
|
+<(C00 Cro)(x; = 8) +(Coy — C1,1)x2>
|
|

Al 0 1
Oy, Pppc(x, %) — By —[( E(Bo,o + B1,0)>P(x1) +(Byo— Byo)— ]Qo(xz)
Ao — Ay 1 — X
+[(T + 3 (Boy + B ) PGx) + (B - Byt

X1
+ ((Bl,l - BI,O) + (Bl 0~ BO,O))_]Ql(xz)

P(x,)

+((Cop = CLo)xs = )+ (Coy = €)%, ) —2 Px).

The second order partial derivatives are

1A~ Ao 1 B,y — Byy
a)zclxl D@y p.c(x1:X2) :[_ (—5 + E(Bo,o + BI,O))R(XI) + — ]Qo(xz)

0

174 — A 1 By, — By,
+[E(T + E(BO,I + Bl,l))R(xl) + T]QI(XZ)

Coo—Cip Cox —Ciy P(x )

. . . 2
and a similar expression for dxzxz @, g c(xy,x,) and

q)ABC(xl’xz)

Ao,o —A Byy—By16—-x, Bio—Bx

= <—5 (Boo +Blo)>P(X1)P(x2)+ < 5 5 + 5 5 )P( x;)
Ap1— Ay

(— + 3By, + B, 1)>P(x1)P(x2)

R(xz)

Coo—Cio  Co1—Cip\ P(xy)
+ =)

X, =6 0
+( (Coo - CI,O)T + (G, — C1,1)3> P(x)) + ( 5 5

R(x;).

(48)
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We also have

é / D, g.c(x1, X)dx dx,
3y (49)
_AgptAg + A+ Ay + Byo— B+ By — By, 54 Coo+Cro—Coy —Cy 5
4 24 24 '
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