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Abstract

The soil contact model (SCM) is widely used in practice for off-road wheeled vehicle mobility studies when simulation speed is

important and highly accurate results are not a main concern. In practice, the SCM parameters are obtained via a bevameter

test, which requires a complex apparatus and experimental procedure. Here, we advance the idea of running a virtual bevameter

test using a high-fidelity terramechanics simulation. The latter employs the “continuous representation model” (CRM), which

regards the deformable terrain as an elasto-plastic continuum that is spatially discretized using the smoothed particle hydrody-

namics (SPH) method. The approach embraced is as follows: a virtual bevameter test is run in simulation using CRM terrain

to generate “ground truth” data; in a Bayesian framework, this data is subsequently used to calibrate the SCM terrain. We

show that (i) the resulting SCM terrain, while leading to fast terramechanics simulations, serves as a good proxy for the more

complex CRM terrain; and (ii) the SCM-over-CRM simulation speedup is roughly one order of magnitude. These conclusions

are reached in conjunction with two tests: a single wheel test, and a full rover simulation. The SCM and CRM simulations

are run in an open-source software called Chrono. The calibration is performed using PyMC, which is a Python package that

interactively communicates with Chrono to calibrate SCM. The models and scripts used in this contribution are available as

open source for unfettered use and distribution in a public repository.
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The soil contact model (SCM) is widely used in practice for off-road wheeled vehicle mobil-
ity studies when simulation speed is important and highly accurate results are not a main
concern. In practice, the SCM parameters are obtained via a bevameter test, which requires
a complex apparatus and experimental procedure. Here, we advance the idea of running a
virtual bevameter test using a high-fidelity terramechanics simulation. The latter employs
the “continuous representation model” (CRM), which regards the deformable terrain as an
elasto-plastic continuum that is spatially discretized using the smoothed particle hydrody-
namics (SPH) method. The approach embraced is as follows: a virtual bevameter test is run
in simulation using CRM terrain to generate “ground truth” data; in a Bayesian framework,
this data is subsequently used to calibrate the SCM terrain. We show that (i) the resulting
SCM terrain, while leading to fast terramechanics simulations, serves as a good proxy for
the more complex CRM terrain; and (ii) the SCM-over-CRM simulation speedup is roughly
one order of magnitude. These conclusions are reached in conjunction with two tests: a
single wheel test, and a full rover simulation. The SCM and CRM simulations are run in
an open-source software called Chrono. The calibration is performed using PyMC, which
is a Python package that interactively communicates with Chrono to calibrate SCM. The
models and scripts used in this contribution are available as open source for unfettered use
and distribution in a public repository.
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1 Introduction

The golden standard in many terramechanics applications is the discrete element method (DEM) (Cundall
and Strack, 1979; Iwashita and Oda, 1999; Jensen et al., 1999). Since the DEM approach treats each indi-
vidual grain in the deformable terrain as a discrete body engaged in frictional contact with its neighbors, it
delivers a high fidelity numerical solution. For this reason, it has been used in many engineering terrame-
chanics applications that involved complex mechanical systems, e.g., (Johnson et al., 2015; Ucgul et al., 2015;
Zhao and Zang, 2017; Recuero et al., 2017; Negrut and Mazhar, 2017). However, the computational cost of a
fully resolved DEM simulation is typically prohibitively high since the method resolves the dynamics of each
individual grain. Fortunately, highly accurate terramechanics is not always necessary. For instance, if the
goal is to test the path planning module of an autonomy stack, or a state estimation algorithm, resolving the
terrain with high fidelity is not mandatory. As such, over the last decade there has been increased interest
in homogenizing the terrain and employing a continuum representation method (CRM) in an attempt to
reduce simulation times. In CRM, the continuum representation is spatially discretized using either a finite
element method (FEM) approach (Chauchat and Médale, 2014; Ionescu et al., 2015); or a particle-based
solution, see, for instance, the material point method (Sulsky et al., 1994; Bardenhagen et al., 2000; Soga
et al., 2016; Baumgarten and Kamrin, 2019), and the smoothed particle hydrodynamics (SPH) method (Bui
et al., 2008; Chen and Qiu, 2012; Nguyen et al., 2017; Hurley and Andrade, 2017; Hu et al., 2021a; Hu et al.,
2022b). Going from a discrete to a continuum representation of the terrain leads to a significant reduction
in the degree-of-freedom (DOF) count, which in our experience leads to a one to two order of magnitude
reduction in simulation times (Chen et al., 2020; Xu et al., 2019; Hu et al., 2021a). This has led, for in-
stance, to mobility simulations of the VIPER Moon and Curiosity Mars rovers in different testing scenarios
(uphill, downhill, and tilted deformable terrain) (Hu et al., 2021b; Hu et al., 2022b). The real-time factor
(RTF) for CRM can be as low as 30-150, where the RTF indicates how many seconds of run time it takes to
simulate one second of vehicle locomotion over a deformable terrain. By comparison, DEM terramechanics
simulations display RTFs in the range 3000 to 15 000 (Recuero et al., 2017).

Although CRM has achieved a significant performance improvement when compared with the DEM approach,
it still remains too costly for human-in-the-loop simulation (Chiang et al., 2010; DeDonato et al., 2015), or
when one needs to run multiple simulations to test in the loop, for instance, new autonomy stack algorithms,
e.g., state estimators, path planners, control policies. Should simulation speed be the prevailing concern,
the semi-empirical soil contact model (SCM) (Krenn and Hirzinger, 2009; Krenn and Gibbesch, 2011) that
draws on the Bekker-Wong (Bekker, 1956; Wong, 2001) and Janosi-Hanamoto (Janosi and Hanamoto, 1961)
models is a more suitable candidate since it has an RTF close to 1. The SCM model captures satisfactorily
the wheel-soil interactions in cases when slip is low, the sinkage is small, and the wheel geometry is close
to that of a cylinder (Smith et al., 2014; Meirion-Griffith and Spenko, 2011). Unlike DEM or CRM, which
are physics-based and draw on parameters that have engineering meaning, e.g., bulk density, friction angle,
Young’s modulus, SCM is an empirical method whose parameters cannot be directly obtained from physical
quantities associated with the terrain. In practice, the SCM parameters are obtained using a bevameter
test rig (Apfelbeck et al., 2011; Edwards et al., 2017; Mason et al., 2020), which is used to perform a plate
sinkage test and an annulus shear test. The former is performed to calibrate the parameters associated with
the Bekker-Wong formula; the latter test is performed to calibrate the Janosi-Hanamoto parameters. Note
that once the terrain proprieties change, the tests should be performed yet again to get a new set of SCM
parameters. This is time consuming and expensive if not outright impractical.

This contribution proposes an alternate strategy for obtaining SCM parameters. Instead of carrying ex-
pensive bevameter tests, one leverages the fact that CRM is a physics-based method. Specifically, using
known physical properties of the terrain, we use a virtual bevameter in conjunction with a CRM terrain to
carry out the sinkage and annulus shear tests in simulation. The virtual bevameter is set up in a multibody
dynamics code (Tasora et al., 2016), and the CRM solution is as described in (Hu et al., 2021a). Since the
CRM approach is more accurate than the SCM approach, the “experimental” data produced by the virtual
bevameter is used in lieu of the real experimental data to calibrate the SCM parameters. For calibration,
we employ a Bayesian inference framework (Gelman et al., 1995; Robert, 2015) and a third-party package



called PyMC (Salvatier et al., 2016). A posterior distribution is obtained for the likelihood of the SCM
parameters. Herein, we chose the maximum likelihood set of SCM parameters, and show that this choice
leads to an SCM model that serves as a good proxy for the CRM terrain at a fraction of the cost.

This contribution is organized as follows. Section 2 outlines: (i) the SCM and CRM approaches for modeling
deformable terrain; and (ii) the Bayesian inference framework employed to calibrate the SCM parameters
via PyMC. In Section 3, a virtual bevameter rig is introduced to explain how the “experimental” data is
generated in conjunction with the CRM model. In Section 4, both single wheel and VIPER rover simulations
are performed using the SCM model. Therein, the SCM results are compared with the results obtained
when the single wheel and rover simulations employ the CRM terrain used in the SCM calibration. Section 5
summarizes concluding remarks and directions of future work. All simulations carried out in this contribution
draw on models available in a public repository for reproducibility studies, as well as unfettered use and
distribution (Hu et al., 2022a).

2 Prerequisites

The proposed calibration methodology, which uses a virtual bevameter test, relies on two terramechanics
models – SCM and CRM, and draws on a Bayesian calibration framework implemented in a software package
called PyMC. This section covers these prerequisites – SCM, CRM, Bayesian inference, and PyMC-anchored
framework – before detailing the overall calibration methodology in Section 3.

2.1 Overview of the SCM method

The SCM approach embraced draws on work reported in (Krenn and Hirzinger, 2009; Krenn and Gibbesch,
2011). It is a generalization of the Bekker formula, which relates the normal pressure p to the sinkage z
for a wheel of width b using a semi-empirical, experiment-based curve fitting with parameters Kc, Kφ, and
n (Bekker, 1956):

p = (
Kc

b
+Kφ)z

n . (1)

SCM generalizes this formula to arbitrary collision shapes and terrain topologies. The overlap between
collision shapes and terrain is found by casting rays from multiple terrain nodes and doing ray intersection
tests with all collision shapes present in the simulation. Disjoint contact patches are identified and Eq. (1)

is subsequently applied for each one, using an approximation b ≈ 1
2
Ppatch

Apatch
based on the contact patch area

Apatch, and perimeter Ppatch. The Bekker-Wong formula is combined with the Janosi-Hanamoto formula,
the latter used to evaluate the shear stress between the wheel and terrain (Janosi and Hanamoto, 1961):

τ = τmax(1− e−Js/Ks) , (2)

where

τmax = c+ p tanϕ , (3)

and Js is the accumulated shear displacement, c is the cohesion coefficient, ϕ the internal friction angle, and
Ks the so-called Janosi parameter. Together, Eqs. (1) and (2) can be used to apply normal and tangential
contact forces on the impactor object, all while keeping track of the soil deformation (which is assumed to
be only along the SCM normal direction). The Chrono implementation of SCM (Tasora et al., 2019; Serban
et al., 2022) provides real-time vehicle-terrain simulation capabilities for deformable terrains in the presence
of low to medium wheel slip ratios. For more details on the core principles of SCM, the reader is directed to
(Krenn and Hirzinger, 2009; Krenn and Gibbesch, 2011; Tasora et al., 2019).



2.2 Overview of the CRM method

For CRM, we employ a homogenization of the granular material and use an elasto-plastic continuum model to
capture the dynamics of the deformable terrain (Dunatunga and Kamrin, 2015). Herein, the CRM solution is
obtained using the SPH method, which is a Lagrangian particle-based solution that requires no background
grid (Lucy, 1977; Gingold and Monaghan, 1977). The state information is advected with the SPH particles,
and the dynamics equations are enforced at the location of the SPH particles. The particles move based on
the interactions among neighbor particles and the external forces, e.g. gravity. The SPH method has proven
effective and efficient in simulating granular material problems with large deformation (Nguyen et al., 2017;
Hurley and Andrade, 2017; Hu et al., 2021a; Hu et al., 2022b).

In CRM, the problem unknowns, i.e., field velocity vector u and the Cauchy stress tensor σ, enter the mass
and momentum balance equations as







du
dt = ∇σ

ρ + fb

dρ
dt = −ρ∇ · u

, (4)

where ρ is the density of the deformable terrain, and fb represents external forces, e.g., the gravity force. The
total stress tensor σ ∈ R

3×3 is split in two components expressed as σ ≡ −pI+ τ , where τ is the deviatoric
component of the total stress tensor and p is the pressure which can be calculated from the trace of the total
stress tensor as p = − 1

3 tr(σ) = − 1
3 (σxx + σyy + σzz).

For closure, a stress rate tensor formula is employed. We use Hooke’s law as well as the work described in
(Monaghan, 2000; Gray et al., 2001; Yue et al., 2015; Dunatunga and Kamrin, 2015) to express the objective
total stress rate tensor as

dσ

dt
= φ̇ · σ − σ · φ̇+ 2G[ε̇− 1

3
tr(ε̇)I] +

1

3
Ktr(ε̇)I . (5)

In Eq. (5), when the material is not subject to plastic flow, the elastic strain rate tensor ε̇ of the granular
material is defined as ε̇ = 1

2 [∇u + (∇u)T ]; the rotation rate tensor is expressed as φ̇ = 1
2 [∇u − (∇u)T ].

Herein, G and K denote the shear modulus and bulk modulus of the granular material-like deformable
terrain, respectively, and I is the identity matrix. It is noted that the expression of the elastic strain rate
tensor given above only works in cases without a plastic flow. Once the granular material starts to flow, the
elastic strain rate tensor is defined as

ε̇ =
1

2
[∇u+ (∇u)T ]− λ̇√

2

τ

τ̄
, (6)

in which the second term on the right-hand side comes from the contribution of the plastic flow of the
continuum representation of the granular material. Therein, λ̇ and τ̄ are the plastic strain rate and equivalent
shear stress, respectively (Dunatunga and Kamrin, 2015).

We use the SPH method to spatially discretize the mass and momentum balance equations in Eq. (4) and the
expression of total stress rate tensor in Eq. (5). In SPH, the simulation domain (including the deformable
granular material terrain, solid bodies, and wall boundaries) is discretized using SPH and BCE particles. The
former are used in conjunction with the deformable granular material terrain, with which they advect. The
motion of the SPH particles is obtained by solving the governing equations, see Eqs. (4) and (5). Conversely,
the motion of the BCE particles is tied to that of the solid bodies, to which they are rigidly attached. Their
role is to couple the motion of the SPH particles to the motion of the solid bodies (Hu et al., 2021a).

According to the SPH method, the value of a function f at the position of particle i can be approximated
as (Monaghan, 2005):

fi =
∑

j
fjWijVj , (7)



where Wij is a kernel function, and Vi is the volume of particle i, defined as Vi = (
∑

j Wij)
−1. Thus, the

mass associated with particle i can be obtained as mi = ρiVi. Herein, we use a cubic spline kernel function:

Wij = W (rij) = αd ·











2
3 −R2 + 1

2R
3, 0 ≤ R < 1

1
6 (2−R)3, 1 ≤ R < 2

0, R ≥ 2

, (8)

for which the relative position between particles i and j is defined as rij = xi − xj , with xi and xj being
the positions of particle i and j, respectively. For a three-dimensional problem, αd = 3/(2πh3). The scaled
length parameter R is defined as R = rij/h, where rij is the length of the vector rij , and h the characteristic
smoothing length (one to two times the initial particle spacing ∆x). In the light of Eq. (8), a field variable
(e.g., velocity u or density ρ) at the position of particle i receives contributions from the values at all neighbor
particles j according to Eq. (7) as long as j ∈ Nh,i ≡ {xj : rij < 2h}.

For the gradient ∇f evaluated at the position of SPH particle i, both consistent and inconsistent discretiza-
tions are available (Fatehi and Manzari, 2011). While computationally slightly more expensive, the consistent
SPH discretization

∇fi =
∑

j
(fj − fi) (Gi · ∇iWij)Vj , (9)

gives higher accuracy and is used herein. The gradient of the kernel function Wij with respect to the position
of particle i is expressed as

∇iWij =
αd

h

rij

rij











−2R+ 3
2R

2, 0 ≤ R < 1

− 1
2 (2−R)2, 1 ≤ R < 2

0, R ≥ 2

.

In Eq. (9), Gi ≡ −
[

∑

j rij ⊗∇iWijVj

]−1

∈ R
3×3 is a symmetric correction matrix associated with particle

i. With Gi being involved in the discretization of the gradient operator, an exact gradient for a linear
function f can be guaranteed regardless of the ratio of h/∆x (Fatehi and Manzari, 2011), where ∆x is the
initial SPH discretization spacing. This higher accuracy allows one to use a relatively smaller h, thus saving
computational cost, see, for instance, (Hu et al., 2019).

2.3 Overview of the Bayesian inference framework

We express a measured/observed value y as the sum of two components

y = G(θ) + ε, ε ∼ N(0,Γ) , (10)

where G : X 7→ Y denotes a known computer model with unknown parameters θ ∈ X ; and ε is assumed
to follow a zero-mean normal distribution with a covariance matrix Γ. Moreover, X and Y denote normed
vector spaces where θ and y live in, respectively. The goal is to estimate the posterior distribution p(θ|y)
via Bayesian inference:

p(θ|y) ∝ exp

(

−1

2
‖y − G(θ)‖2Γ

)

p(θ) , (11)

where p(θ) is the prior distribution that captures existing knowledge (if any) about the unknown parameters
θ. Since a closed form expression for p(θ|y) is intractable, we fall back on the Metropolis-Hastings algorithm
to draw samples from the posterior distribution p(θ|y).

2.3.1 Metropolis-Hastings

The Metropolis-Hastings (MH) algorithm is a Markov Chain Monte Carlo (MCMC) method for sampling the
posterior distribution p(θ|y) by constructing a Markov chain that is stationary with respect to p(θ|y). It is



an adaptation of a random-walk with an acceptance/rejection rule to converge to the stationary distribution.
The algorithm proceeds by sampling a proposal θ∗ from a proposal distribution, Jt(θ

∗, θt−1) at step t (Gelman
et al., 1995; Robert, 2015). The proposal is evaluated using the ratio,

r =
p(θ∗|y)/Jt(θ∗|θt−1)

p(θt−1|y)/Jt(θt−1|θ∗) ,

and is accepted/rejected using the rule

θt =

{

θ∗, with probability min(r, 1)

θt−1, otherwise
.

It can be shown that: the Metropolis-Hastings produces a Markov chain with a unique stationary distribution;
and this stationary distribution is identical to the target distribution p(θ|y) (Andrieu et al., 2003).

2.3.2 Overview of the software framework for the calibration process

The Bayesian inference process described is well known and relatively straightforward. However, its imple-
mentation; i.e., the process of efficiently generating samples out of the posterior distribution, is non-trivial.
As such, it is left to third party software, in this case the Python package PyMC (Salvatier et al., 2016).

Pre-processing: The higher-fidelity CRM solver in Chrono is used to generate synthetic “experimental”
data in order to calibrate the parameters of the lower-fidelity SCM terrain. Details about the data generation
process are provided in the following section. The SCM array of unknown parameters is identified as θ. The
goal is to identify a choice of low-fidelity model parameters θ that makes SCM behave similarly to the CRM
terrain.

Sampling: In this probabilistic programming framework, the low-fidelity SCM model acts as a black-box
whose response G(θ), shaped by the model parameters calibrated, is made to match as well as possible the
synthetic data y generated with CRM. This approach is predicated on the existence of a likelihood function
that compares the response of the low-fidelity model with the data in the sampling stage of the Markov Chain.
Consistent with the assumption of a Gaussian statistical model (Eq. (10)), we use a Gaussian log likelihood
function; i.e., the logarithm of the exponential part in Eq. (11). PyMC offers the flexibility to incorporate
this custom log-likelihood function, which in our case takes as input the low-fidelity model response and
the “experimental” data. Next, one needs to define prior distributions over the model parameters using
standard PyMC functions. In many cases, in the absence of prior knowledge about the distribution of the
parameters, one can fall back on uniform distributions. Finally, one has to choose an MC sampler and
start running the Markov chain. The sampler then draws the set number of samples based on the defined
acceptance probability that is evaluated using the log-likelihood function (Gelman et al., 1995). PyMC
eventually returns these samples, along with various sampler stats, as an inference data object that can be
used with arviz (Kumar et al., 2019) to do exploratory analysis of the Bayesian model.

3 Calibration of the SCM model using a virtual bevameter

While the SPH-backed CRM approach posts RTF values of 30 and above (Hu et al., 2022b), the SCM
implementation in Chrono can achieve real-time or close (RTF ≈ 1). Moreover, the SCM approach in many
cases can adequately capture the wheel/implement-soil interaction. However, the parameters tied to the
SCM model are usually unknown and need to be first calibrated via a bevameter test (Apfelbeck et al., 2011;
Edwards et al., 2017; Mason et al., 2020). The actual bevameter is a self contained unit designed to take
in-situ soil strength measurements, usually in conjunction with vehicle mobility modeling and simulation.
The bevameter consists of two devices – a plate sinkage device, and an annulus shear device. Since the CRM



parameters are physics based, e.g., Young’s modulus, friction angle, we use these parameters to carry out
a virtual bevameter test that generates the “experimental” data y in Eq. (10). Using data obtained with
the virtual bevameter, we estimated the parameters θ of the SCM model in a two-step approach. First,
data obtained using a virtual bevameter sinkage test is used to calibrate Kc, Kφ, and n in Eq. (1); these
parameters affect the wheel-soil normal contact force. Subsequently, we calibrate the other three parameters
(c, ϕ, and Ks in Eqs. (2) and (3)) for the tangential force evaluation using data obtained from the annulus
shear test.

3.1 Plate sinkage test

In this test, the plate was pressed down into the soil with a constant vertical velocity, see snapshot shown in
Fig. 1. The plate and connecting bar were modeled as a rigid multibody system which interacted with the
CRM soil. The density and frictional coefficient of the deformable soil were 1700 kg/m3 and 0.7, respectively.
The cohesion coefficient of the soil was set as 1000 Pa. There were two different rigid plates used in this test,
of radii 20 cm and 30 cm. For the smaller plate, the size of the soil bin was 1.0 m × 1.0 m × 0.6 m; for the
larger plate, the soil bin’s size was increased to 1.2 m × 1.2 m × 0.6 m to avoid wall boundary effects. Each
plate was pressed down with three constant velocities: 0.5 cm/s, 1.0 cm/s, and 2.0 cm/s, in three separate
simulations.

Figures 2 (a) and (b) report pressing force versus sinkage curves for three plate vertical velocities. It is noted
that the three curves are almost identical regardless of the plate enforced speed. To obtain the calibration
data from these experiments, we selected eight points corresponding to different plate sinkages, see red
squares in Fig. 2 and results in Table 1. The data in Table 1 was treated as “experimental” data in the
subsequent calibration of Kc, Kφ, and n.

Table 1: Pressing force vs. sinkage data collected from the high-fidelity CRM simulations.

Sinkage (m) 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2

Force (N) - Small plate 3799 7071 10279 13684 17196 21147 25217 30017

Force (N) - Large plate 7699 15174 23344 31774 41468 52260 63791 77502

The likelihood function of the Markov chain process was evaluated as follows: given a set of Kc, Kφ, and
n, an SCM simulation was run and the force-vs-sinkage values were recorded at the eight chosen sinkages.
These force values were compared against the CRM values associated with the eight sinkages. Specifically,
the likelihood function was defined as

L = − 1

2σ2

N
∑

k=1

[

F obs(k)− F (k)
]2

N
, (12)

where N is the total number of observed data for each plate, which is 16 here – eight for each plate; F obs(k)
is the observed force at each sinkage shown in Table 1; F (k) is the evaluated force using the sampled Kc, Kφ,
and n parameters at sinkage k; and σ2 is the variance we would like to see between data and our model output
(herein set to 0.01). To obtain a converged distribution of Kc, Kφ, and n, the total number of samples varied
from 10 000 to 500 000 in four separate cases. In each of the four cases, we also run four Metropolis-Hastings
chains in parallel. It must also be noted that we sample more than the stated number of samples and discard

nsteps

nchains+1 samples where nsteps is the number of samples required, and nchains is the number of chains run
in parallel. This is a standard approach used to reduce the influence of our starting points in prior space
and is called warm-up (Gelman et al., 1995). We assess the convergence of the posterior distributions by
visual inspection of the trace of the four chains combined with a reading of the split-R̂ metric, which is a
commonly used convergence diagnostic procedure (Vehtari et al., 2021). Figures 3, 5, 7 show the posterior
distributions of Kc, Kφ, and n after different numbers of samples. The more points sampled, the smoother



(a) 20 cm plate with plate on (b) 20 cm plate with plate off

(c) 30 cm plate with plate on (d) 30 cm plate with plate off

Figure 1: Plate sinkage tests using the virtual bevameter with different plate sizes; the vertical speed was
constant during each test.

the posterior. In the 500 000 samples case, i.e. Figs. 3, 5, 7 (d), the mean values of Kc, Kφ, and n exponent
are -1.1e5, 2.2e6, and 1.2, respectively. Figures 4, 6, 8 show the posterior distribution and trace plot in four
different Metropolis-Hastings chains. It can be seen that the four chains that start from random points in
the prior parameter space all converge to a similar posterior. Table 2 provides the split-R̂ for Kc, Kφ, and
n. Given that all three values are less than 1.01, the calibration process is deemed as converged (Vehtari
et al., 2021). Note that the Monte Carlo Standard Error (normalized with the posterior mean), which helps
one quantify the sampler error (Flegal et al., 2008; Vehtari et al., 2021), is sufficiently small.

To test the goodness of the parameters obtained, we ran a pressing force experiment again using the mean
values of the three parameters and Eq. (1) for the two plates at each sinkage. The results were compared
against the original observed data obtained from the simulations using the CRM method. Figures 9 (a) and
(b) show the comparison for the plates with different size. The results evaluated using the SCM model and
the calibrated parameters match well with the original high-fidelity simulation results.



(a) Small plate (r = 20 cm) (b) Large plate (r = 30 cm)

Figure 2: Pressing force vs. plate sinkage curves with different plate vertical velocity. The selected values
(in red boxes) provide average data used in calibration.

Table 2: Normalized error and convergence metrics for calibration of Kc, Kφ, and n – 500 000 samples.

Parameters µMCSE σMCSE R̂

Kc 1.31e-3 8.33e-4 1.00039

Kφ 4.8e-4 3.4e-4 1.00072

n 1.49e-4 1.08e-4 1.00076

(a) 10 000 samples (b) 50 000 samples

(c) 100 000 samples (d) 500 000 samples

Figure 3: Averaged posterior probability distribution and its kernel density estimation (KDE) of four chains
for the parameter Kc with different number of samples.



(a) 10 000 samples (b) 50 000 samples

(c) 100 000 samples (d) 500 000 samples

Figure 4: Posterior probability distribution and trace plot of parameter Kc in four different Metropolis-
Hastings chains.

(a) 10 000 samples (b) 50 000 samples

(c) 100 000 samples (d) 500 000 samples

Figure 5: Averaged posterior probability distribution and its kernel density estimation (KDE) of four chains
for the parameter Kφ with different number of samples.



(a) 10 000 samples (b) 50 000 samples

(c) 100 000 samples (d) 500 000 samples

Figure 6: Posterior probability distribution and trace plot of parameter Kφ in four different Metropolis-
Hastings chains.

(a) 10 000 samples (b) 50 000 samples

(c) 100 000 samples (d) 500 000 samples

Figure 7: Averaged posterior probability distribution and its kernel density estimation (KDE) of four chains
for the parameter n with different number of samples.



(a) 10 000 samples (b) 50 000 samples

(c) 100 000 samples (d) 500 000 samples

Figure 8: Posterior probability distribution and trace plot of parameter n in four different Metropolis-
Hastings chains.

(a) Small plate (r = 20 cm) (b) Large plate (r = 30 cm)

Figure 9: A comparison between selected points using CRM model and SCM model. The SCM results are
calculated using calibrated values of Kc, Kφ, and n and the Bekker-Wong formulation in Eq. (1).



3.2 Annulus shear test

The annulus shear test is performed to calibrate the cohesion coefficient c, frictional coefficient ϕ, and the
Janosi coefficient Ks, see Eqs. (2) and (3). To that end, the annulus was first pressed down into the CRM soil
with a constant load in the vertical direction, and then rotated with a constant angular velocity (1 deg/s),
see snapshot in Fig. 10. The inner and outer radii of the annulus were 15 cm and 20 cm. The density and
frictional coefficient of the soil were those from the plate sinkage tests, i.e., 1700 kg/m3 and 0.7, respectively.
The size of the soil bin was 1.0 m × 1.0 m × 0.2 m. To generate sufficient “experimental” data from the
simulations, the annulus was rotated under different loads (varied from 25 kg to 200 kg with Earth gravity)
in eight separate tests.

(a) 20 cm annulus with annulus on (b) 20 cm annulus with annulus off

Figure 10: Annulus shear test using virtual bevameter. Rotation speed was fixed at 1 deg/s; normal load
varied from 25 kg to 200 kg.

Figure 11 reports the amount of torque that needed to be applied over time to maintain, under different
loads, an annulus angular velocity of 1 deg/s. All simulations were 12 s long to ensure that a steady state was
reached. The results indicate that the higher the load, the larger the torque needed to rotate the annulus
with a fixed angular velocity. The “experimental” data was collected for different loads at several time
instances. First, we measured the torque when the steady states were reached, see Table 3. This data was
used to calibrate the parameters c and ϕ of Eq. (3). Then, we measured the torque before the steady state
and used them to calibrate the Janosi coefficient Ks. Using Fig. 11 for reference, the data was collected at
t = 1s, 2s, and 3s, and reported in Table 4.

Figure 11: Time histories of the total torque applied on the annulus under different loads.

The SCM parameters c, ϕ, and Ks were sampled using the approach described in Sections 2.3.1 and 2.3.2.
However, unlike in the previous section, the three parameters were calibrated in two steps. First, c and ϕ



Table 3: Vertical load vs. rotation torque data collected from the CRM simulations.

Load (kg) 25 50 75 100 125 150 175 200

Torque (N·m) 36 62 84 105 124 141 157 170

Table 4: Vertical load vs. rotation torque data collected from the CRM simulations.

Load (kg) 25 50 75 100 125 150 175 200

Torque at 1 s (N·m) 34 52 68 82 92 98 101 104

Torque at 2 s (N·m) 35 59 79 96 111 120 129 139

Torque at 3 s (N·m) 36 62 82 102 116 129 142 157

were calibrated using the data in Table 3. Subsequently, Ks was calibrated using the data in Table 4. During
the calibration process, for each parameter sample, the torque was evaluated using Eqs. (2) and (3). The
likelihood function was defined as

L = − 1

2σ2

N
∑

k=1

[

T obs(k)− T (k)
]2

N
, (13)

where N is the number of data points; T obs(k) is the observed torque under each load shown in Tables 3 and
4; T (k) is the evaluated torque using the sampled parameters; and σ2 was set to 0.01. The total number of
iterations varied from 10 000 to 500 000 in four separate cases, with each case using four different Metropolis-
Hastings chains running in parallel. Figures 12, 14, and 16 show the posterior distribution of c, ϕ, and Ks

after different number of iterations. As expected, the more points sampled, the smoother the curves. In the
case with 500 000 samples, i.e. Figs. 12, 14, and 16 (d), the mean values of c, ϕ, and Ks were 2495, 24, and
2.95e-3, respectively. Figures 13, 15, and 17 show the posterior distribution and trace plot of four different
Metropolis-Hastings chains. Table 5 shows the split-R̂ for c and ϕ; Table 6 does the same for Ks. In both
cases, the calibration processes are deemed as converged.

Table 5: Normalized error and convergence metrics for c and ϕ calibration – 500 000 samples

Parameters µMCSE σMCSE R̂

c 4.14e-4 2.93e-4 1.0001

ϕ 9.1e-5 6.5e-5 1.0001

To test the goodness the calibrated parameters, we evaluated the torque again using the mean values of
the three parameters and Eq. (3) for the annulus under different loads. The results were compared against
the original observed data obtained from the simulations using the CRM method. Figure 18 shows the
comparison between the CRM simulations and the SCM model with calibrated parameters.

Table 7 reports values for all six SCM parameters calibrated via Bayesian inference using data generated
by a virtual bevameter test with CRM terrain. The approach used is summarized in Fig. 19. From a high
vantage point, the methodology has three steps: (i) generate “experimental” data through simulation using
a virtual bevameter in conjunction with CRM terrain; (ii) calibrate the SCM parameters using Bayesian
inference; (iii) validate the calibrated parameters using simulations of single wheel and full VIPER rover
using both SCM and CRM terrains. The latter point is discussed in the next section.



Table 6: Normalized error and convergence metrics for Ks calibration – 500 000 samples.

Parameters µMCSE σMCSE R̂

Ks 1e-6 5e-7 1.00001

(a) 10 000 samples (b) 50 000 samples

(c) 100 000 samples (d) 500 000 samples

Figure 12: Averaged posterior probability distribution and its kernel density estimation (KDE) of four chains
for the parameter c with different number of samples.

(a) 10 000 samples (b) 50 000 samples

(c) 100 000 samples (d) 500 000 samples

Figure 13: Posterior probability distribution and trace plot of parameter c in four different Metropolis-
Hastings chains.

Table 7: Calibrated values of the SCM parameters using data generated from CRM simulations.

SCM parameter Kc (N/mn + 1) Kφ (N/mn + 2) n c (Pa) ϕ (deg) Ks (m)

Calibrated value -1.1e5 2.2e6 1.2 2495 24 2.95e-3



(a) 10 000 samples (b) 50 000 samples

(c) 100 000 samples (d) 500 000 samples

Figure 14: Averaged posterior probability distribution and its kernel density estimation (KDE) of four chains
for the parameter ϕ with different number of samples.

(a) 10 000 samples (b) 50 000 samples

(c) 100 000 samples (d) 500 000 samples

Figure 15: Posterior probability distribution and trace plot of parameter ϕ in four different Metropolis-
Hastings chains.



(a) 10 000 samples (b) 50 000 samples

(c) 100 000 samples (d) 500 000 samples

Figure 16: Averaged posterior probability distribution and its kernel density estimation (KDE) of four chains
for the parameter Ks with different number of samples.

(a) 10 000 samples (b) 50 000 samples

(c) 100 000 samples (d) 500 000 samples

Figure 17: Posterior probability distribution and trace plot of parameter Ks in four different Metropolis-
Hastings chains.



Figure 18: A comparison between selected points using CRM model and SCM model. The SCM results are
calculated using calibrated values of c, ϕ, and Ks and the Janosi formulation in Eq. (3).



Figure 19: Flowchart of the approach proposed that draws on three stages: (i) data generation using a
virtual bevameter; (ii) parameter calibration using Bayesian inference; (iii) validation using single wheel
and full rover simulations.



4 Validation of the calibrated SCM model

The SCM parameters obtained using the virtual bevameter test are used in this section to conduct single
wheel and full VIPER rover simulations. The SCM and CRM simulation results compared are the DrawBar-
Pull force and terrain slope that the wheel/rover is able to negotiate.

4.1 Single wheel validation

The single wheel was moved under a controlled slip and normal loading conditions within a confined soil bin,
see Fig. 20. The wheel, which has no grousers or other features, moved with a constant velocity v = 0.25 m/s.
Given a slip ratio s, the wheel angular velocity is obtained as ω = v

r(1−s) , where r is the radius of the wheel.

In the first test, a rigid HMMWV wheel was used with a width of w = 0.25 m and a radius of r = 0.47 m.
The SCM parameters are as in Table 7. The single wheel test was run with slip ratios from 0 to 0.8. The
simulations were long enough to reach steady state. The SCM DrawBar-Pull force and the equivalent terrain
slope that the wheel can climb were measured and compared with the high-fidelity CRM simulations, see
Fig. 21. It is noted that all simulation were performed on a flat terrain although a slope is reported. The
equivalent terrain slope was calculated as slope = arctan(dbp/load), where dbp is the DrawBar-Pull force at
a given slip ratio, and load is 108 kg; the experiment was conducted under Earth gravity. Figure 22 shows
the time histories of the DrawBar-Pull force with different slip ratios. Both SCM and CRM simulations
reached a steady state; the SCM results were noted as more noisy. Figure 23 shows the simulation results
obtained using the CRM approach with wheel position and the particle distributions of the terrain. It is
noted that the higher the slip ratio, the more wheel sinkage is observed. A higher slip ratio also led to more
soil stick to the wheel surface due to cohesion.

The same test on the same terrain was run with a rover wheel with geometry similar but not identical to that
of VIPER’s (grouser size of 7 mm). The width of the wheel was w = 0.29 m and the radius was r = 0.25 m.
The SCM and CRM DrawBar-Pull force and equivalent terrain slope are shown in Fig. 24. The results
indicate good agreement despite the presence of the shallow grousers. The time histories of the DrawBar-
Pull force obtained from SCM are more noisy than those previously obtained for the rigid HMMWV wheel,
see Fig. 25. Finally, Fig. 26 shows snapshots of the CRM simulation.

Figure 20: Single rigid wheel test setup.



(a) DrawBar-Pull force (b) Terrain slope

Figure 21: Single wheel test (rigid HMMWV wheel): DrawBar-Pull force and terrain slope vs. slip ratio
curves for a normal load associated with 108 kg under Earth gravitational pull. The SCM simulation was
run with parameters from Table 7.

(a) CRM (b) SCM

Figure 22: Single wheel test (rigid HMMWV wheel): Time histories of DrawBar-Pull force with different
wheel slip ratio.



(a) slip = 0

(b) slip = 0.8

Figure 23: Wheel (rigid HMMWV wheel) positions and SPH particle distributions of the CRM terrain with
different wheel slips.

(a) DrawBar-Pull force (b) Terrain slope

Figure 24: Single wheel test (VIPER wheel): DrawBar-Pull force, terrain slope vs. slip ratio curves for a
normal load of 108 kg under Earth gravitational pull. The SCM simulation was run with mean value of the
parameters from the posterior distribution.



(a) CRM (b) SCM

Figure 25: Single wheel test (VIPER wheel): Time histories of DrawBar-Pull force with different wheel slip
ratio.

(a) slip = 0

(b) slip = 0.8

Figure 26: VIPER wheel: SPH particle distributions of the CRM terrain for different wheel slips.



4.2 Full vehicle validation

In this last test, the calibrated SCM terrain was used for a full rover simulation and the results were compared
against the ones obtained with a CRM terrain. There are two reasons why this experiment was run: (i) the
mechanical system was more complicated; (ii) the front wheels moved on undisturbed terrain, while the rear
ones experienced terrain that was disturbed by the front wheels. The vehicle used was a replica of the Moon
VIPER rover with the wheel tested above. The total mass of the rover was 430 kg, which was roughly four
times the load of the single wheel in the previous section. We used the mean values of the six parameters
(shown in Table 7) obtained using the virtual bevameter-based calibration.

The vehicle was initially placed on the flat deformable terrain with a carriage connected to the chassis of
the rover. The carriage can move in the horizontal direction with constant velocity v = 0.25 m/s. The four
wheels were also driven with a constant angular velocity. By adjusting the angular velocity ω, the slip ratio
of the wheel can be controlled from 0 to 0.8. We measured the DrawBar-Pull force and the equivalent terrain
slope that the rover can climb under a given wheel slip (see Fig. 27 (a) and (b)). The low-fidelity SCM results
match well the higher-fidelity CRM ones. Figure 28 gives the time histories of the DrawBar-Pull force that
are applied on the full rover; the results are noisy, as observed in the single wheel test. Comparing the results
in Figs. 24 and 27, we conclude that the DrawBar-Pull force in the full rover simulation is roughly four times
that in the single wheel test. Figure 29 shows several snapshots of the rover position and the corresponding
particle distributions for the CRM terrain.

The terrain in the CRM simulations was made up of 3 million SPH particles. To simulate one second of the
motion of the rover, CRM required 90 s of compute time; the SCM took about 4 s. In other words, the RTF
gap between SCM and CRM is approximately 20, although the results for this simple test are comparable.
In other words, when SCM represents a viable terramechanics alternative; i.e., for simple wheel geometry,
low to moderate shear, and low sinkage, it runs one order of magnitude faster than CRM.

(a) DrawBar-Pull force (b) Terrain slope

Figure 27: Full vehicle simulation: DrawBar-Pull force, terrain slope vs. slip ratio curves. The SCM
simulation was running with mean value of the parameters from the posterior distribution.



(a) CRM (b) SCM

Figure 28: Full VIPER rover simulation: Time histories of DrawBar-Pull force with different wheel slip ratio.

(a) slip = 0

(b) slip = 0.8

Figure 29: Rover positions and SPH particle distributions of the terrain with different wheel slips modeled
using CRM approach.



5 Conclusion

This contribution promotes the idea of using terramechanics virtual tests to calibrate lower fidelity terrain
models that can be subsequently used for mobility analysis purposes. In this context, we outline a Bayesian
calibration approach that produces the model parameters associated with a deformable SCM terrain. The
highlight of the proposed methodology is tied to the observation that since a bevameter test necessary for
SCM calibration is not straightforward to carry out, we employ a high-fidelity deformable terrain model
to carry out the bevameter test in simulation. To that end, a CRM terrain is used to produce calibration
“experimental data”. Upon model calibration, the SCM terrain yields results similar to the ones obtained
with a CRM terrain for single wheel and full rover simulations. Specifically, the SCM and CRM DrawBar-
Pull force and terrain slope vs. wheel slip curves match well, which indicates that the most likely set of
parameters calibrated via the virtual bevameter and Bayesian framework leads to a predictive SCM model.
When its use is granted, i.e., for simple wheel geometry, low to moderate shear, and low sinkage, SCM runs
one order of magnitude faster than CRM. It is noted that when an actual bevameter testing rig can be used
to produce experimental data, the Bayesian framework described herein continues to serve its calibration
purpose. Ongoing work seeks to: (i) investigate how rover wheel grousers affect the accuracy of the SCM
simulations; (ii) further validate the SCM method against experimental data. All simulations carried out
in this contribution draw on scripts and models available in a public repository (Hu et al., 2022a) for
reproducibility studies, as well as for unfettered use and distribution.
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