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Abstract

The present paper is devoted to the group classification of magnetogasdynamics equations in which dependent
variables in Euler coordinates depend on time and two spatial coordinates. It is assumed that the continuum
is inviscid and nonthermal polytropic gas with infinite electrical conductivity. The equations are considered in
mass Lagrangian coordinates. Use of Lagrangian coordinates allows reducing number of dependent variables.
The analysis presented in this article gives complete group classification of the studied equations. This analysis
is necessary for constructing invariant solutions and conservation laws on the base of Noether’s theorem.
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The present paper is devoted to the group classification of magnetogasdynamics equations in which
dependent variables in Euler coordinates depend on time and two spatial coordinates. It is assumed
that the continuum is inviscid and nonthermal polytropic gas with infinite electrical conductivity.
The equations are considered in mass Lagrangian coordinates. Use of Lagrangian coordinates allows
reducing number of dependent variables. The analysis presented in this article gives complete group
classification of the studied equations. This analysis is necessary for constructing invariant solutions
and conservation laws on the base of Noether’s theorem.
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1. Introduction

The equations of magnetogasdynamics (MGD) describe motion of a gas under the action of the internal forces, which
consist of the pressure and magnetic forces. These equations describe phenomena related to plasma flows, for example,
in plasma confinement, as well as physical problems in astrophysics and fluid metals flows.

The present article considers MGD flows in which dependent variables in Euler coordinates depend on time and
two spatial coordinates. It is assumed that the continuum is inviscid and non-thermal polytropic gas with infinite
electrical conductivity. For the analysis of equations describing the behavior of such a continuum, the Lie group
analysis method is applied.

Lie point symmetries are an effective tool for analyzing nonlinear differential equations [IH5]. They are related with
the fundamental physical principles of the model under consideration and correspond to the important properties of
the differential equations. Finding an admitted Lie group is one of the first and necessary steps in application of the
group analysis method to partial differential equations. Using found symmetries one can construct a representation
of invariant or partially invariant solution. The representation of a solution reduces the number of the independent
variables. The group analysis method guarantees that the reduced system of equations for an invariant solution has
fewer independent variables and is involutive. Admitted symmetry of variational partial differential equations is a
necessary condition for application of Noether’s theorem, which is used for deriving conservation laws.

Applications of the group analysis method for different versions of MGD equations have been considered in many
publications. For example, the case of the finite conductivity was investigated in [0 [7]. The case of the infinite
conductivity was examined in [8, 9]. Invariant solutions were considered in [I0HI6]. Comprehensive analysis of MGD
equations in Eulerian and Lagrangian coordinates with plain and cylindrical symmetries were given in [I7, [I§].
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The present paper is devoted to the group classification of the MGD equations, where all dependent variables
in Eulerian coordinates depend on time and two spatial coordinateﬂ The study is performed in mass Lagrangian
coordinates. The transition to mass Lagrangian coordinates makes it possible to solve four MGD equations. As a
result of this solving, four arbitrary functions of the mass Lagrangian coordinates are obtained. In group analysis,
these functions are called arbitrary elements. The presence of arbitrary elements requires a group classification, which
consists of finding all Lie groups admitted by a system of partial differential equations [2H4]. In practice, groups are
represented by their generators. The generators admitted for all arbitrary elements form the kernel of the admitted
Lie algebras. The group classification represents all non-equivalent extensions of the kernel and the corresponding
concrete forms of arbitrary elements, where the equivalence is considered with respect to equivalence transformations
that preserve the structure of the equations, but can change arbitrary elements.

The paper is organized as follows. The next section provides MGD equations in mass Lagrangian coordinates.
Derivation of the equations in Lagrangian coordinates, when the dependent variables in Eulerian coordinates depend
on time and two independent space variables. Section [4] provides equivalence transformations, which are used for
simplification arbitrary elements. Sections [5| and [7] give the group classifications of nonisentropic and isentropic
solutions when b3, + b2, # 0. Sections B] and [8] are devoted to the group classifications of nonisentropic and isentropic
solutions when b3; + b2, = 0. Conclusions are stated in Section

2. Magnetogasdynamics equations in mass Lagrangian coordinates
The magnetogasdynamics equations of an ideal perfect polytropic gas can be written in the following form [I5] [19]

Dp+ pdiva =0,
Du+p 'V(p+ iH?) —p ' (H - V)H =0, (1)
DH+Hdivu— (H-V)u=0, divH=0,
DS =0,

where p, u, p, S, and H correspond to the gas density, fluid velocity, pressure, entropy and magnetic induction,
respectively, and + is the polytropic exponent,

D=0;+u-V, H= (Hi, Hs, H3), u= (u1,u2,u3), = (x1,2,23).

The magnetic field strength H and magnetic field induction B are related by the equation B = ,/noH, where po is the
magnetic permeability. The pressure p, the density p and the entropy S are related by the state equation p = A(S)p?,
where A(S) = Re(57%0)/¢v ' R is the gas constant, ¢, is the dimensionless specific heat capacity at constant volume,
and Sp is constant.

In coordinate form equations become

Pt + UiPe; + PUiz; = 0,
p(ujt + uithje;) + HiHiz; — HiHjo; + pe; =0, (j=1,2,3),
Hj +uiHjo, + Hjuiz, — Hiuje, =0, (j =1,2,3), (
Hiz, =0, (2d
St + uiSz; =0, (2e

where the energy equation is rewritten. Here summation with respect to a repeated index is assumed.
The mass Lagrangian coordinates are introduced by the relations

p=J" @it &) = uilt, p(t,€)), 3)
where
o b ®Y1,1 P2,1 P31
&= (61,6,83), o= (p1,92,93), J=det <((ng> , T = 0720 =1 Y12 @22 @32 |,
©1,3 2,3 3.3
0pi
and ¢, ; = 6?-'
J

In mass Lagrangian coordinates the conservation law of mass (2a)) becomes identical and equation gives that
S = S0(&), where So(€) is an arbitrary function.

TSuch solutions can also be three-dimensional.

Copyright (© 2023 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2023, 00 [1]
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For the sake of completeness we provide here the transition of equations to mass Lagrangian coordinates [15].
Let A= JT™!, then

ATy = Jbu.
Noting that i = ; i the operators
g 853 - @’L:J 6x7;7 p
9 0
o 351 o 351
m | w et )
dx3 E3
can be represented as follows
0 0 0 1, 0
— =T, —=J A—.
o€ ox’ Ox o€
Gauss’ law gives
JHiz; = AixHie, = 0. (4)
Direct calculations show that 5
—(Aix) =0, Vi. 5
e (Au) = 0. Vi (%)

The latter leads to the relations
AirHje, = (AiHj)e,, Awpe, = (Airp)e,, Vi, J.
Using these relations, the part of momentum equations (2b)) in Lagrangian coordinates become

HiHiz; — HiHjo, + po; = J N (HiAjiHie, — HiAuwHje, + Ajrpe,) =

41 OH?
=J 1(§Ajk78§k — Hi(AinHj)e,, + Ajrpe,) =
—1 8 1 2
=J (5 (5AH" + Ajxp) — Hi(AixHj)e,,)-
98, 2

By virtue of Gauss’ law , one derives that
Hi(AixHj)e, = (HiAiHj)e, — AixHig, H; = (HiAipHj)e,,

Hence,
_1 0 1
HiHin — Hisz,; +pzj =J 1@ (Ajk(iHQ +p) — HzAzkH]> =

0

_ 1
=J 18751;; <(5”Alk(§H2 +p) — HlAlkHJ) =

1 0 1
=J'  (Au (0 (s H? — H;H;
aEn ( k < i( 2 +p) J) )
Then the momentum equations in Lagrangian coordinates have the form

82@]' 0 1 2 _
52 + o6, (Alk (5”(§H +p) — HZHJ)) =0.

Faraday’s equations (2d) in Lagrangian coordinates reduces as follows. Let b = p~'H, then using the conservation
law of mass and Faraday’s equations, one obtains

db, od _
L= —p? P H, 4 p

db; 1dH;
dt dt

—1
7 =P Hitge; = bita,.

Introducing the vector by such that b = T'by, one derives

8b]- 8b0@

abOa

5 J b Aikuje, = o P + boatje, — boa(J TaiAix)uje, = ot Fre = 0.
The latter gives that
82(;& =0, Va.
Math. Meth. Appl. Sci. 2023, OO Copyright (© 2023 John Wiley & Sons, Ltd.
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Hence, similar to the entropy, one integrates the Faraday’s equation by = b (&), where bo (&) = (bo1(&), bo2(€), bos(£))
is an arbitrary vector function of £. Gauss’s equation reduces as follows

Hiz, = (pbi)e; = (pboaia)z; = J_lAik(pbOatpi,a)gk = J_l(J_lAikbOa(Pi,a)gk
= J N (J " TaiAikboa)e, = I~ (bor)e, = 0.
Therefore, in mass Lagrangian coordinates equations reduce to the equations

Pp; 0 Lo — P O o =
12 + 876]@ (Azk (513(§H +p) - HZHJ - 07 (.7 - 11273)7 Té.kb()k - 07 (6)

S =5(), bo=0bo(),

where
H; = J_lbo(x%:,a, H? = J_Qbo(xbo@%,a%ﬁ.

3. Equations with two independent space variables in Lagrangian coordinates

We study the case, where all dependent functions in Eulerian coordinates only depend on two space variables x; and
2. From equations one obtains the Cauchy proble

(¢1,3)¢ = U1z, 01,3 + UtanP2,3, ¢1,3(0,&1,82,&3) =0,

(2,3)t = Uza; 1,3 + Uzaa 2,3, ©2,3(0,&1,62,€3) = 0.

For sufficiently smooth functions w(t, ) the latter Cauchy problem has unique solution ;3 =0, (i =1,2) that
means

01 = p(t, &1, 82), w2 =((t, &1, 82).

In this case the transition from Lagrangian coordinates to the mass Lagrangian coordinates can be done such that
©3(0,&1,&2,&3) = &3. Hence, because of the uniqueness of a solution of the Cauchy problem

(¢3,3)¢ = Uza, Peg + U322 Cey = 0, 93,3(0,81,82,83) = 1,

on gets @3 = &3 + x(t, &1,&2). Further we use the notations & = ¢, & =n. Thus, one has

Dy ve G Xe G —Ce xnCe — XxeCn
T = €= on G oxn | A== o0 we  Xepn—Xnpe |, J=peln— onle,
0 0 1 0 0 ©eGn — ‘Pn(&

b1 = bo1pe + bo2pn, b2 = bo1(e + bo2(y,

b3 = bo1xe + bo2 Xy + bos.

The latter relations provide that bo; = boi(§,7), (¢ =1,2,3). As all functions only depend on £ and 7, and the
coefficients As; = 0 and As2 = 0, then equations @ become

Pe; RNy 1.2 .
I (A (6;:H ~HH;)) =0, (j=1,2),
o 22 g, (A (0 GH +p) — iy ) ) =0, (G=1,2) (Ta)
XY == 0
gx_ 9 (AuH:H5) =0, b
where
Hy = J (borpe + boaipn), Hz = J " (bo1le + bo2ty),
Hs = J ' (borxe + boaxn + bos), H* = H} + H3 + H3,
and

S = 5(57 77)7 by = (bol (5, 77)7 b02(£7 77)7 b03(£7 77))

are arbitrary functions such that
0 0
afgb(n + 8771)02 =0. (8)

tHere the Lagrangian space variables §; are considered before the transition to the mass Lagrangian coordinates.

Copyright (© 2023 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2023, 00 [1]
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4. Equivalence transformations

The class of equations is parameterized by arbitrary elements S(&,7), boi(&,n), (i = 1,2,3). The first step of the
group classification of the class of equations of form consists of describing the equivalence among the equations
of this class. The group classification is considered with respect to these equivalence transformations.

Direct calculations show that the transformations corresponding to the generators

Xi=gp Xi=gn Xi= o, Xi=gn Xi= gL Xi= g,
X;:t%, ngta%, ngt%, Xf():C%fang,
Xi=t a+£a§+n§n+ 9 +CE)C+X%’

X7y = g+2£f§+2n2+4( )S% 2b038§03,
Xi3=—t 88 +25%+b0185 +bozabao +b038%17

e 0
X7 =f(& 77)&~
do not change the structure of equations and . Here the generators X7, (i =3,4,...11) are inherited by
equations in Eulerian coordinates , where X5, X{, X§ correspond to the shifts with respect to z;, (1 =1,2,3);
X¢, X7, X5 correspond to the Galilean boosts; X1, correspond to the rotation. The generator X} allows adding a
function f(&,n) to x. In particular, for given bo;(£,7), (i = 1,2,3) such that b3; + b3y # 0, choosing a function f(&,n)
satisfying the condition

bo1 fe + bo2 fr, + boz = 0,

one can assume that after the transformation bps = 0. Indeed, for x = x + f one derives that
b3 = bo1Xe + bo2Xn + bo1 fe + boa fy + bos = bo1Xe + bo2Xn-
There are also two involutions

Ei: t— —t,
E;: (577]79074:)()_>_(f:7]»<P7C7X)7

where only changeable variables are presented.
The admitted generator X is sought in the form

¢ +§"—+§ +<‘P—+<‘ +<X

9 a¢

where all coefficients of the generator X depend on (¢,&,7,¢,(,x). The determining equations [2] are obtained by
applying the prolongation of the generator X to the left-hand side of equations @:

X =¢

XE =0

where F is the left-hand side of equations (7)), and \ means to consider X I’ on the manifold defined by equations

The analysis of the determining equations depend on the relations between the entropy S(&,7n) and the vector
bo (&, 7). It breaks down into several cases. Globally, according to the equivalence transformations corresponding to the
generator X%, it decomposes into b2, + b2, # 0 and b2, + b2, = 0, and each of these cases is divided into non-isentropic
and isentropic solutions.

- - - 2 2
5. Nonisentropic case with bj, + b5, # 0
The general solution of Gauss’ equation can be written as

bor = ¥y, bo2 = —¢,

where ¢ = ¥(£,n). One also can assume that ¢, # 0. By virtue of the equivalence transformation corresponding to
the generator X§ it can be considered that bos = 0.
Partially solving the determining equations one derives that &5 = £5(£,7), €7 = £7(€,n), and

.  ______________________________________________________________________________________ |
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= ks + k1{ + ket + kr, (¢ = ksC — k1 + ki1t + ki,
= ksx + kot + k1o, -ft = —2kot 4 2kst + ks,

where k; are constant. The remaining equations are

55+ € (95(Smton = Sn) — G S (Sug + 1) + Stoniny)

_ )
€7 (S(Sumton — VunSy) — SRS, P, ) + Halei=Sha gy, 5, — g,
fé (nglwnn + Si1¢ngn + SPnjie — %]11/]77( ng +j1)) (10)
+€7 (S (s + Jinn) = 0 Sytpyr ) — 221D G5, = 0,
m r 4 S j
€ = 065 — €5 (2090 + 2226 + genthy + 4250 "
" S.
_571 (gn 2 wnyg + 95777/)77 + (:g,lgs) + 2(.71_1& (2k2 - k8)g7
& = —g&; — & (g + g+ 5255 (Sng +j1)) 12)
Yy 2(v+4)ko—5k
—&n ( w;/ + 2(7—1)SSW) + (v w)—i 8
§§ = 95157 + 55 (gn wn"g + 2(v-1)5 1)5 (Sng +j1)> (13)
Ten <7wi’pnln + 2(751)5577) — 204Dk @r4 ks
where v
=S¢ — g5y, gz—g. (14)

Yn

As a solution of equations @D- determines an admitted Lie group of equations , they are called the defining
equations.

The generators admitted for any functions S, bo1 and bo2, composes a Lie algebra, called the kernel of admitted
Lie algebras. A basis of this Lie algebra consists of the generators

xi= 2 x=2 x,-2 x, =2
X5=t%7 XGZta*C, X7=t&7 X8=C%—<P8*C~

The kernel extensions are discussed next.

5.1. Case j1 #0
Introducing
ha = €59 + My, ha = £55¢ + €75y,
one finds
€ = (ngn) T (=Soha +Yyha), € = (Ynjr) " (Sehr — Pngha).
From equation one obtains

2S5 [ hi,
hz:—( 17(1—’}/)4—2]{,‘2(’)/-{-4)—5](18) (16)
5 \ ¥y
Finding hi¢, from equation (13)), equation (11]) becomes
hlg — hlng = 0. (17)

Hence, h1 = hi1(¢)), and equation reduces to

hinj2 4 5h1 (—(27 2 = 9% _ Jn _ M)

‘ 2(v-1)8 Ji Yy (18)
— _"1 (2k2(j2(y +4) — 5(y + 2)) + 5ks(2y — j2 + 1)) = 0,
where
g2 = ji 7 (2(v = 1)S(jre — gin + jrgn) — (27 —5)47) - (19)
Notice that from the notation one has
)
Jie = gjin — J1gn + 2(7%1)5(” + (27 - 5)) (20)
B Copyright © 2023 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2023, 00 [1H{20

Prepared using mmaauth.cls



Mathematical
Methods in the
S. V. Meleshko, E. I. Kaptsov, S. Moyo and G. M. Webb Applied Sciences

5.1.1. Case j2 # 0 From equation one finds hi,. Introducing the function

J3 = Jog = GJzm, (21)
the compatibility condition (hig¢)y = (hiy)e becomes

hip — 44 Sjrjska(y +2) =0, (22)
where 12‘2 = ko + kg 22(3 I ;) , and
w= 73 (2(y = 1)S(in¥n + ¥unit) — Sypnjr(2y = 5)) — j2n¢'njfj2- (23)
Let jsp # 0. Introducing the function
ja = A(y + 2)u~ Y7 S s, (24)

equation gives that hy = jaka. As for ke = 0 there is no an extension of the kernel of admitted Lie algebras, and
because h1 = hi(%)), then

Ja = ja().

From definition of js4 one finds

ty ((27 —5)Sy o (v = Djin
(-1 '

The compatibility condition (¢ny)e = (V¥e)ny gives

Yyy =

+ Jjeden  2(v + 2)1%)
25 J1 QSjg j4 '

. Ji,. . . J1 Jtjan ((J1(j2 — 3) )
Jin = =5 (Janj2e — Jaejon) + Sy + — (7 —9gn - 25
n ]5 ( nJ2¢ 1S 1) g on Js 2(7 — l)S ( ( )

The relation (ji¢)y, = (jin)e provides the condition

35 (anGen — JoeGnn) + Ja(Jsedzn — Jonjze)

+Jsgn(Janjs — Jands) + 2j5 (jsjan — janjs) = 0. )
Substituting hi into one derives
ks = —152% (2(7 - 1)%’ + 5Mjs + 4(y + 4)) : (27)
where e Sujs — jomit o9
YySjs
Direct calculations show that M satisfies the relation
Mg — gM, =0,

which means that M = M (v)). y
For the existence of an extension of the kernel of admitted Lie algebras one needs to assume that ks /k2 is constant.
Thus,

2(y — 1) 4 5Mja = k, (29)
Py
where k is some constant.
Equation @ becomes
M k
M, = UM <5M - ,f) . (30)
2(v-1) J4
The extension of the kernel of admitted Lie algebras is defined by the generator
W _ .9 ) 3k+4(27+3)(v+2) , 8
Xo =55 (—J%a? +J2£%) + G s tar

31)
(k+4(v+4))(v+2) o) Iéj ) (
L CEVieE=) ((‘0350 +lo + Xax)

Summarizing, one can state that if the functions (&, n) and S(£,n) satisfy the conditions 7 and ,
where j;, (1 =1,2,3,4) are defined by the formulas , , and , then the extension of the kernel of

Math. Meth. Appl. Sci. 2023, 00 1} Copyright © 2023 John Wiley & Sons, Ltd.
Prepared using mmaauth.cls



Mathematical
Methods in the
Applied Sciences S. V. Meleshko, E. I. Kaptsov, S. Moyo and G. M. Webb

admitted Lie algebras is defined by the generator (31). Here condition guarantees the existence of the functions

(&, n), S(& n) satisfying conditions and (29). }
Case j; #0, (i=1,2,3) and p = O Equatlon 2|) provides that k2 = 0. From p = 0 one finds that

Yy = —Jﬂlﬁn ﬁ ((2y = 5)Syton + Jontnjijegs ') (32)

The compatibility relation (ng)e = (¥e)ny is

‘7;@({7252)) +j3(%j3+jsn)) , (33)

where j5 = js¢ — gjan. The compatibility condition (jin)e = (jie)y also coincides with (26)).
Equation becomes

. g1 (. . .
=" (Jzn(—gnjs —Js +
3

5 2(y+3)

h‘177 + mth'l/}n - ks fy + 2 Q/}n = 0 (34)

Equation provides that
Mg — gM,, =0, (35)
which also means that M = M (). Equation () reduces to

+3)( -1 _
hiv + 4ksg ’Y+2 M"/}n—oa

where v = 2(y — 1)M,, — 5M?3,,.
Assuming that v # 0, one obtains
hi = ks,
where
Ay +3) (v = DMy
(v+2)v

For an existence of the extension of the kernel of admitted Lie algebras it is necessary that A is constant, say A = k:

A=—

h1 = kks.

Substituting the latter into ,
PR CECET)

36
5k(y+2) (36)
or ) '
Suj2e = janSe _ 4y = 1)(y +3) (37)
nSjs Sk(y+2)
and the extension of the kernel of admitted Lie algebras is defined by the generator
k 17} 0 3 0 0 0
x@ _ Y LA il 7, 38
2 = i (o + ey ) + Sty e+ + (%)
Let v =0, then ksM = 0.
Consider M = 0 or "
j1=Se—gSn, g=-1, js=jac — gion,
Py
S (J2g — gian) — Jan (Se — 9Sy) = Syjae — janSe =0
Snj2e — janSe = 0.
The latter means that jo = j2(S). Integrating (34), one obtains
2(y + 3)
hy = ks————= kia. 39
1 8 v t2 Y+ k12 (39)

The extension of the kernel of admitted Lie algebras is defined by the generators

2(y+3 .0 . 0 3 8 8 8

S (7 + 2) s MR g
1 9 B
X = (—' —4j 7)4 41
10 Un i3 J2n o€ J2¢ o (41)
B Copyright © 2023 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2023, 00 [1]
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If M # 0, then ks =0,
5 -1
M=(q- —w) :
( 2(y—1)
with some constant ¢, and equation reduces to

5

hig + 57—
My 1)

hi1 M, = 0. (42)
Hence, h1 = k/M and the extension of the kernel of admitted Lie algebras is defined by the generator

1 0 0
X = (—‘ — 4 —). 43
5 Mongs \J2nge Ty, (43)

Case j1j2 # 0 and j; = 0. The assumption j3 = 0 gives that j2 = j2(2)), and equation becomes hij2, = 0. If
jon # 0, then h1 = 0 and equation leads to the condition

(ka(y = 1) (v +3) + ks(y + 2)(v + 4))j2 — 5(v + 2)*k2 = 0.

As jan # 0, then the latter equation provides that k2 = 0 and ks = 0. Hence, for Jj2n # 0 there is no an extension of
the kernel of admitted Lie algebras. Thus, one should assume that j2,, = 0, which gives that jo = k, where k # 0 is
constant. Equation reduces to

hiy — hidt, + B, =0, (44)

where

_ 5 (Y i (2y=5+K)S, _ o 5 +2) k(v +4) , 2(v+3)
A= : , B =2k ks .
ky \ ¥y J1 2(y-1)8 k(y—1) y+2
Finding 1y, from the latter notation of A, the condition (¢yy)e = (¥¢)nn provides that A = A(¢).
Equation @ becomes

hijs — A3 =0, (45)
where N
. n 2
J5 = — -+ A°.
Py

As A = A(v), then js = j5(¢).
Consider js5 # 0. Substituting h1 = ﬂ% into , one gets
5
B(Njsn + 245 (X* = js)im) = 0.
If Ajsy 4 255(A% — js)aby, # 0, then 8 =0 or

ke — By X E DGO +2) — k(Y +4))
k(y = 1)(v +3) '

The extension of the kernel of admitted Lie algebras is defined by the generator
(5) _ 48 (8 K3 k(2v+3)—15 , §
Xo" =55 ( o€ +g3n) T 2073 Lot (46)
E(y+4)—5(y+2) 3 fé) f5)
+ R G-D0+9) (@% + G5t X@) :

If Ajsy + 245(A% — js)tb, = 0, then the extension of the kernel of admitted Lie algebras is defined by the generator
XéG) = Xés) and one more generator

X{Q = 22 (58, + 2y — DASH,) & — (5S¢ +2(v — DASte) &) )
: 9 9 2] ]
+5tsta +eas T 05 T Xay

Considering js = 0, one obtains that A3 = 0.
If A # 0, then 8 = 0 and the extension of the kernel of admitted Lie algebras is defined by the generator X, 5(,7) =X 55)
and by one more generator

h11 0 0
x0 = : (75S7+2771/\S¢ — 4 (58 + 2(y — D)ASY 7)’ 48
10 51%]1 ( ( ( ) n)ag ( 3 ( ) 6)87] ( )
where hi11(¢) is the general solution of equation :
Math. Meth. Appl. Sci. 2023, 00[1]|20] Copyright © 2023 John Wiley & Sons, Ltd. [
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hiy = hii . (49)
If A = 0, then solving equation 7 one derives

h1 = =B + ko, (50)

where koo is an arbitrary constant. The extension of the kernel of admitted Lie algebras is defined by the generators

X(S)—M<_ 9 33) 3.0, 0 a (51)

O T e \ "o T ) T 2ter T Cac

X = 52 (WSa(k(y+4) = 5(y +2)) = 2y = D)7 +2)Sv,) &

(52)
— (WSe(k(y +4) = 5(y +2)) = 2(7 = (3 + 2Sve) &) + 2k(y - 1t
1 0 0
p I p— ( S—+S—>,
T i U aE T T
5.1.2. Case j1 # 0 and j» = 0. Equation becomes
2
PN + = (ha(y+2) = ks(29 + 1)) =0, (53)
where '
wet (9% g gm)
Yo \ 2(y—1)S J1 Pn
Conditions provide that N = N(v).
Assume that N = 0. Finding 1y, from the condition N = 0:
( 5)571 jln)
_ I 54
one checks that (¢¢)ny = (¥nn)e. Equation reduces to the equation
2v+1
ke =k
"2y +2)”

and equation @D becomes

As h1 = h1(¢), one finds that
h1 = k21¥ + k2o,

where k21 and koo are arbitrary constants. The extension of the kernel of admitted Lie algebras is defined by
the generators

0 3t 0

4(7—1)(74—3)5(8 8)
xO 2T AT )0 [ C =z L 55
=g (G ) et G %)
0 0
X1 = =(59Sy + 2(y = 1)Sn) gg + (5¥Se + 207 = DS¥e) 5. (56)
1 0 0
X© _ < 5.9 g ) 57
11 wnjl 18&- + §a F) ( )
Assuming that N # 0, one can introduce the function P(v) instead of the function N (1) by the formula
5
p=_2
(y=DN

or the function P is introduced by the formula

_ (2y - 5)571 _ ]1771 _ 29y >
1/]7171 _1/}71 ( 2(771)5 jl (’Y*l)P . (58)

As in the previous case the compatibility condition (9¢)ny, = (¢ny)e is also satisfied. Equations and (9) become

Copyright (© 2023 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2023, 00 [1]
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_2ha(r+2) — ks(2y+ 1)
2

P"(2ka(y +2) — ks(2y + 1)) =0,

h1

P,

where it is used the dependence P = P(v) that leads to the equality (f;’:) = P"y,,.
"/n

If P” # 0, then the extension of the kernel of admitted Lie algebras is defined by the generator Xélo) = Xég>,
and if P” = 0, then by two generators X§'" = X{” and X{{V) = x{9.

5.2. Case j1 =0
The condition j1 = 0 provides that S = S(¢), equation is satisfied, and equation @ becomes
(€" +€°9)S ng1 + 25 (2ka (7 +4) — 5ks) = 0, (59)

where g1 = 2(y —1)88" /8% — (2y + 3)
Assume that g1 # 0. From the latter equation one finds

€ =—¢bg— (2(v + 4)ka — 5ks).

25
g1n S’
Substituting £” into and ([12)), they reduce to the single equation

g1 (2(y + 4)ka — 5ks) = 0.

Let g7 # 0, then ks = 2(vy + 4)k2/5, and equation reduces to the quasilinear first-order partial differential
equation for the single function £%:
4(y+3
€ — 965 = gn€* + k27@5 )

The general solution of the latter equation can be written as follows

€£ =Py (hu + kzwhm) s

where h11 = hi11(¢)) is an arbitrary function and h12(€,n) is an arbitrary solution of the linear equation
hize — ghizy = ¥y "

The extension of the kernel of admitted Lie algebras is defined by the generators

9 o
X2 Z by (a*g _ g%) 7 (60)

a2 _ 2(0+3) 9 9 9,0 9 29430
X' = S hiz 1/}7785 1&5877 +go&p+§8<+xax+w+4tat. (61)

Let gi =0, say g1 = k, where k # 0 is constant. Equation becomes

€ — 065 "+ (~ 235855, + 200
2(k(y=2)—=5
s (2 S + 2250
The general solution of the latter equation is written in the form
56 = Yy (h11 + k2hi2 + kshais),

where hi1 = h11(¢) is an arbitrary function, hi2(§,n) and hi3(€,n) are arbitrary solutions of the linear equations

Ay +4)S
ES"24p3

4(y(y+4) + k)
k(y — D)aby ’

105 n 2(k(y —2) — 57)
kS 2p3 k(y = 1hy

hige — ghi2g = Son +

hise — ghisy =

The extension of the kernel of admitted Lie algebras is defined by the generators Xéw) = Xélz) and

. |
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0 0 4 4)S 0 0
X0 = ity (L =g Ly 2O NSO 5,0

o o kS'p, On ot’

0 9 105 8 ] 9 G,

(13) _ o _9J o o
x4 = h13¢n(a§ gf?nHkS’wn@nJr a¢+<ag +2t8t

Case g1 = 0. Equation gives that ks = 2ka(y + 4)/5, and equation (13) takes the form

€ 965 = (92 + 9)€ + 08" + 1 O FY, (62

where
w"] n + 3 S”’]

g2 = 215"

Yy 200 -1)S

Case g2 # 0. Finding ¢" from equation , and substituting it into equations and , one obtains two
second-order equations for £5. These equations can be simplified by the substitution

(63)

€ = 965 + 6" + 4l 50 + 57O g,
where h(&,n) is some unknown function. Equations and become, respectively,
he = =h(gn + 992), hn = —hg. (64)
For compatibility of these equations one needs to satisfy the condition (he)yn = (hy)e:
hgs = 0, (65)

where g3 = goe — 9920 — 9290 — Gnn-
Case g3 # 0. Hence, h = 0 and then

+3
€8 = g€§ + 9ot + Ak T 7 i

The general solution of the latter equation is presented in the form

€ =ty + k20T Dy,

where h11 = hi11(¢) is arbitrary function, and h12(€,n) is an arbitrary solution of the linear equation
hize — ghizy = 9, (66)

The extension of the kernel of admitted Lie algebras is defined by the generators and :

0 0
X5 = huy, <a*§ - gyﬁ) ,

2v+3. 0

Ny+4 ot

2(v+3) 0 0
) h12¢n(6£ 98 )+ 5 +<8C

Case g3 = 0. From equations and the representation (63)), one derives that

14 1o}
X£O): a—F

h = k211/];1s*3/(2(’Y*1))’

where k21 1s constant.
The extension of the kernel of admitted Lie algebras is defined by the generators and :
5 o ) 5 e~3/2(v=1) g
X5 = by, (— ) xX47 =

ac on) TN T Ty, oy
20y +3), ) B} Bl & 2y+3.0
X(15) _ v +Z
10 y+4 W”(ag 9ot e, Yot oy T a tar
Let g2 = 0.
Yan 35n 3/(2(v—1)
+ =0= (9,577 =0.
oy T2 =15 (n )n
Copyright (© 2023 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2023, 00 [1]
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The compatibility condition (¢n,)e = (Y¢)ny gives that g(&,n) is a linear function with respect to 7, say

g=- M1n+uzu1,

where p1(€) and p2(€) are some functions such that pj # 0. Here the representation for g is chosen for convenience
of further integration. In particular, solving the equation ¢¢ = gy, one finds

¥=1(:), 2=+ pa.
251

The relation g2 = 0 provides that
Y = qe*72<ws—1) ,
where ¢ is constant.
Introducing hy = €7 + g€¢, one derives
"= h1 — g€*.
Then equation reduces to
(hlsl/("/*l)) =0

n
which gives

o ussfl/(7*1)7

where us3(€) is an arbitrary function. Substituting hq into equation |i one obtains that pz = kgo,u'l with constant
k2o. Equation (13) takes the form

7 +3
€6+ (L s ) 6 =~ 4 1o 10D,

The general solution of the latter equation is

where F(z) is an arbitrary function.
The extension of the kernel of admitted Lie algebras is defined by the generators

1 8 8 1 —1 —1 6
6 6 0%
)(9( ) =F (Zni — Z{i) 5 X ](0 ) — I,L/]e /( )7177

2(y+3) 0 0 0 0  2y+3,0
X6 _ 9 _,.9 2 t=.
1 R P TR BT +C8§ Xox T 5+
6. Nonisentropic case with b2, + b2, =0
In this case H; = 0 and H2 = 0, and equation is integrated
X = tx1 + Xo,
where xo0(&,n) and x1(§,n) are arbitrary functions. Then the variable x(¢,&,n) is excluded from the consideration. It

is also assumed that S, # 0. Partially solving the determining equations, one derives that g =¢f (& m), " =¢£"(&,n),
and

=k
¢ = 5 + ko,
The remaining equations are
S(e§Se — €550) + € (850 - Sgsn) (850 - —2753)
Y- - (67)
258, (2K + 252 ha) = 0.
Math. Meth. Appl. Sci. 2023, 00[1]|20] Copyright © 2023 John Wiley & Sons, Ltd.
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S*(&5bose — Egboan) + " (b03nn82 - ﬁbwsﬁ)

+£5 (b03§US + 2@ ) S(BognSE — Bognsn) 1)2 bogSgS ) (68)
+4k2$ 1)0377 + 3/(:4 (’Yfl)z (Sbo?ﬂl(?”:;;)(”*l) _ %b03sn) _
&" fin + € fre + 2kafr = 0, (69)
S(E7Sy + E5S¢)e — Se(£75y + £55¢) =0, (70)
€14+ €5 = 2 (€ + € + dka + — s (71)
K €7 3bos +277
where
fl — bgé"/—l)/3$"
Let hy = 5S¢ + €75y, ha = &8 fie + €7 f1y, and fa = bose Sy — bosy Se.
6.1. Case fo #0
One can derive
_ _ 2(v—1
€= A7 (hafi — haSy), €= A7 (aSe —hufie), A=-20"Ypp,
03
Equation (69) gives
ho = —2ky4 f1.
From equation one finds
h1 = h1oS,

where hig = h1o(n) is an arbitrary function.
The linear combination of equations (67) and (71) gives that hio is constant, say hio = kao.
Equation @ provides

= faka + bkag (72)
where
_ 3 bos 3y +2 _ 7 +6
f3_4( )<f2(5f2£ S-Ef?n) ,y+2> b= fa+ f3+ A(y +2)
and
_ Sb0377 Y — 1 3’y -2 ) _ Sf277
f4 - Snbos < 3 f3 + 4("}/ + 2) 4Snf2 ’

Differentiating k2 with respect to £ and 7, one derives that it is necessary to study the cases (a) f3 # const and
(b) fs = const.

If f3 # const, then one can assume that f3 # 0. Hence, from equation one obtains that there exist constants
k and ¢ such that b = kfs + ¢ and I~C4 = —kkoo.

Thus, the extension of the kernel of admitted Lie algebras is defined by the generator

X§17):—(%72q)( ai“ g) 2(%*Q)t%
3bo3S 0 0 3kbos 0 0
+2<w—1>f2f1< fl”a?”“a*n) Foly — )(S 2 oy )

Notice that as S, # 0, then from the definition of f3 one can find fs¢. Finding f2, from the equation b = kf3 + ¢,
the compatibility condition (fae)r, — (f2n)e = 0 gives

S(finfse = frefsn) = 2kf1(Snfse — Sefan) = 0.
Let f4 be constant, say fas = m. In this case fo = ¢/(Bg3.5%), where ¢ is an arbitrary constant and

3y —2

4
=" fy(y—1)— = 4m.
2 3f3(7 ) S B=A4m
Thus,
bose = (bosnSe + f2)/Sy
Copyright (© 2023 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2023, 00 [1]
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and the extension of admitted Lie algebras occurs by the generators

as) _ ¥y+6 0 0
b ‘(f” (wz)“’”)( *“a?*t*)

OJS
+2(V -1 fof1 (_flna? * fls(‘Tﬂ

v+2

3 4mqa _ g g
WCEDR b°3( ae 5, )

Xio? = (2fs +i)< 6+ca§ 2fs+ iz)t(;)

where

4 ¥—2
== —1)—21—2
qa 3f3(7 1) o

If f4 is not constant, then koo = 0, fa = fa(S), and
bose = (boanSe + f2)/Sn

The extension of the kernel of admitted Lie algebras consists of the generator

(19 _ 3 (L0 0 0N, B (o0 0
Xy ' =(2f3 +7+2)<@3tp+43§+t8t +f2(7*1) Sn3§+S§8n .

6.2. Case fo =0
In this case bos = bo3(.S). From one finds that h1 = h1oS, where hio = hio(n) is an arbitrary function. Equation

becomes

fshio + ks = 0,

where

b0377 3

f5=2(’Y—1)S 5

Notice that f5 = f5(S5).
If fs =0, then k4 = 0, and excluding 55 by taklng a linear combination with , one finds hig = k2o, where
k2o is constant. The general solution of equation (67]) can be presented in the form

¢ = Sy (11 + ake + Pskao).
Substituting the latter into , one finds that

1/’15577 - 1/117758 =0, ¢2€Sn - anSE =4,

V3 Sy — Y3y Se — 5571_257777 = _ﬁ~
The extension of the kernel of admitted Lie algebras occurs by the generators
17} 0 0 S 0
(20 _ _g CxC0 _ 9 g9\, 509
o Y1 ag Son 10 = ¥s a TS o

) _o(,90 .9 .,9 9 _4 9
X1 —2(8 +C§+ )Jr'lﬁz( "€ 56877 .
If f5 # 0, then hig = 76f571124, equations and give
foka =0, (73)

and equation become
6555 - §§Sn +¢* (Sin Sgsm,) + 4k2 Sy,
~6k: (52 ~ S ~ anets) =0

(v=1)fs (v=1)(v+2)

Substituting in the latter equation the representation

€5 = Sy (Y1 + Yaka + Pska),

|
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one finds
Snwlf - S€¢1n =0, Snw% - SEU’ZW =4,

o eq@(SSm v y=2
Spthse — Sethsy = 6377( fs (vy=1)fs (7—1)(7+2)>

The extension of the kernel of admitted Lie algebras is defined by the generators

o} o}
Xé21) = 7701 (Snafg - 55%) 5
9] 1o} 1o} 1o}
X1<§1>_2< ?*gag )+w2( " 9 sga)

@y 3 ) 0 9 9\ .S o
Hi _v+2( Haq )WS(”@& o) s on

where if ff # 0, then the generator X11 is not admitted.

7. Isentropic case with b3, + b3, # 0

For the isentropic case, equations (9)-(13) reduce to the following

€0 = —g%€5 — € (299, + 252" + gentin )

(74)
€7 (g + 252 + geythy ) + 2052 (2ks — ks)g,
& + & =22t Dks (75)
55 = g&§ + ¢ (g77 + wnn ) Jrfn#ﬁ; _ 2(v+2)ki_(2v+1)ks (76)

Assume that ¢y, # 0. Substituting £”, found from equation , into and , one can integrate them

55 _ gén + gn€£ + k2 w;bm, 4 k: + Koy 7/)7171 (77)
n 71

where k21 is the constant of integration, and

1 . .
ky = ———— (k2(2v + 1) + 3ks), ks =

4(y+3) (ka(y +2) + 3ks(y + 4)).

2(y+3)
As the latter equation is linear with respect to £%, then one can look for a solution in the form

€8 = by (1 + katha + ksibs + ko1ts).

Substituting this representation into (77) and splitting it, one derives

Ynh1e = Yein, Ynthae — ethan = %7
n
Ynthze — Yethan = 1, Ynthae = Yethay + qf;z"
n
The extension of the kernel of admitted Lie algebras is defined by the generators
(229 Y +2 (9 8 3 6 g _ 2 ig
X _z(wg)( Hac ax Tyr2tar) TV \Ynae " Vean ) T u an (78)
2 _ y+2 (0 .9 0  2y+3,0
X0 =505 (“Da¢+<a<+ Xox T 512 ta) TV %ag Wa (79)
X _ 19 x{0) _
= (g e ) + G X %w%¢%> %0
Case thyy = 0 or ¥ = ng1 + go, where g1(€) and go(§). Hence g = (96 + g9171)/91.
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Let €7 = —g&€ + &y, where £(&,7) some function. Then equation can be integrated

2ko(y +4) — 5k
= %n*’ﬁom

where &€po(€) is a function of integration. Equation (74) becomes

2ka(y+4) —5ks '
(50091— 2(’77—)1 890) =0

or
2]{:2(’}/ + 4) — b5ks
v—1

where k22 is an arbitrary constant. The remaining equation 1 is

&oog1 — go = ka2,

/ /
+ 2(y +2 27+1
¢ = (90 9191”55) — k2 (7_1) + ks J_ -
n

Seeking for a solution of the latter equation in the form

f§ = g1(¢1 + katp2 + ksibs),

/ / / /
+ + 2(y+2
bie (90 9177%) e (90 gmw) _2(y 1)7
g1 n g1 . V=

/ + / ) +1
e = (90 9177%) MRk
9 , Y1
and an extension of the kernel of admitted Lie algebras is defined by the generators

one derives that

(23) _ ’ ’ 2 (23) ig
Xy =11 (91 e — (90 + g1m) 377) , Xip = 91 on’
(v +4)(g1n +go) O

(23) o Y g_ / / ﬁ
X1o 2t +w2 <918§ (90+9“7)an) +2 (v—1Dag o’

6 0 o} 0 / 7] 5(g1m +go) O
X3 = — 2t — = — Ma | - S
=g, 8<<:+ X+ 2t + s 91 5¢ (g/(nLgl17)é,77 (v —1)gr On
8. Isentropic case with b, + b2, =0
The defining equations @— reduce to the equations
3bos
EMbosy + fgboag + T_Oglkél =0, (81)
&+ &= 2 (€"bosy + E°boze) + 4ka + ® . (82)
K € 3bos K v+ 2

Assume that bos is not constant, for example, bos, # 0. Finding ¢” from (81) and substituting it into (82), one
obtains a linear first-order partial differential equation for the function £°. Representing the general solution of this
equation in the form

fg = bosy (Y1 + Y2ka + 11131~€4)7

one derives

Y1ebozn — Y1nboze = 0, aebozy — Panbosze = 4,

3 3y —2  boznnbos
Y3¢bosy — Y3nbose = ( — .
3¢bosn 3nbo3¢ To1\r 52 b%gn

The extension of admitted Lie algebras occurs by the generators
1o} 0
(24) _ oo L pae O
Xy Y1 | bosn ¢ 03¢ o)

. |
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0 0 0 1o}
X{(2)4):2< 7+C?+t8t>+’l/}2<bogna£ bo;ga )

1o} 0 3bos 0 3 8 8
X3V = s (bosg g —bose - | — o + —— :
= Ys b ~ b g ) T G Dby on Ty +2 \Pap T o+
If bos is constant, then ks =0, &7 = Pie, €8 = —tb1,, + 4k2€, where 11(€,n) is an arbitrary function, and the
extension of admitted Lie algebras occurs by the generator

0 8

5 0 0
X5 =t ge — e, Xio) = —+< 3¢ gt 2%l

23

Conclusions

The transition to Lagrangian coordinates allows integrating four equations of magnetogasdynamics of an ideal perfect
polytropic gas: the entropy S(£,n) and the functions associated with the magnetic field (bo1(€, ), bo2(&,n), bos(E, 1))
are arbitrary functions of the integration. This leads to complications in the study of group classification: consideration
of the many possibilities of these functions. The analysis presented in this article gives a complete investigation of all
these possibilities. Figures provide the trees of the study of nonisentropic cases, where (7, j) means the following:
i is the number of the extension of the kernel of admitted Lie algebras , j is the number of the generators
XI(H)—& (k=1,2,...,7) in ith extension. Figure |4| presents the tree of the study for isentropic flows. The Lie algebras
corresponding to the extensions i (i = 1,2,...,19) are finite dimensional, the Lie algebras corresponding to other
extensions are infinite dimensional.

As mentioned above, finding an admitted Lie group is one of the first and necessary steps in application of the
group analysis method for constructing invariant and partially invariant solutions. Because the equations @ are
variational, the symmetries found can also be used to derive conservation laws using Noether’s theorem. The wide
variety of these symmetries allows us to expect the derivation of new conservation laws. The search for invariant
solutions, as well as the derivation of conservation laws, are the subject of further applications of the symmetries
obtained in the present work.
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J1#0
J2=0 J2#0
/ y / \
/N#O\ (973)/73#0\ ?0\
P’ 40 P'=0 3 w0 js £ 0 0
(10,1) (1,2 N7 \ (L) (5,1),(6,2) / \
; v#£0 A=0 A#£0
M#£0 M=0
(4,1) (3,2)
Figure 1. Tree of the study for j; # 0, b31 + bgz # 0 and S # const
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J1=0
g1 #0 g1=0
’ / /
g1 #0 g1=0 g2 =0
(12,2) (13,3) /92 # 0\ (16,3)
gs# 0 g3 =0
(14,2) (15,3)

Figure 2. Tree of the study for j; =0, bgl + bgz # 0 and S # const

bo1 = bo2 =0
f2 7é 0 f2 =0
f3 # const \_ fs=0 fs#0
(17.1) /f?’— Co< (20,3) (21,3)
fa = const fa # const
(18, 2) (197 1)
Figure 3. Tree of the study for bg1 = 0, bp2 = 0 and S # const
bo1 = bo2 =0
b(2)1b(2)2 7é 0 b(z)lb(%g =0
Yy # 0 Yny =0 bosy # 0 bos = const
(22, 3) (23, 4) (24, 3) (25, 2)
Figure 4. Tree of the study for isentropic flows S = const.
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