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Abstract

1.Overgrazing-induced grassland degradation has become a severe ecological problem worldwide. The diversity and composition

of soil microbial communities are responsive to grazing disturbance. Yet, our understanding is limited with respect to the effects

of grazing intensity on bacterial and fungal communities, especially in plant rhizosphere. 2.Using a long-term (15 years) grazing

experiment, we evaluated the richness and composition of microbial communities in both rhizosphere and non-rhizosphere

regions, under light, moderate, and heavy intensities of grazing, in a semiarid grassland. We also examined the relative roles of

grazing-induced changes in some abiotic and biotic factors in affecting the richness and composition of microbial communities.

3.Our results showed that the responses of soil bacteria to grazing intensity differed greatly between rhizosphere and non-

rhizosphere, and so did soil fungi. Specifically, the bacterial richness decreased markedly under moderate and heavy grazing

in rhizosphere soil, whereas little impact on the fungal richness was observed. For microbial composition, with the increase

in grazing intensity, an increase in dissimilarity among bacterial communities was observed, and this trend also held true

for the fungal communities. Hierarchical partitioning analyses indicated that the bacterial composition in rhizosphere was

primarily driven by root nitrogen and soil nitrogen concentrations while that in non-rhizosphere by soil available phosphorus.

In addition, soil available phosphorus played an important role in affecting the fungal composition in both rhizosphere and

non-rhizosphere regions. 4.Synthesis: This study provides direct experimental evidence that the richness and composition of

microbial communities were severely altered by heavy grazing in a semiarid grassland. Thus, to restore the grazing-induced,

degraded grasslands, we should pay more attention to the conservation of soil microbe in addition to vegetation recovery.
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Abstract:

1. Overgrazing-induced grassland degradation has become a severe ecological problem worldwide. The
diversity and composition of soil microbial communities are responsive to grazing disturbance. Yet,
our understanding is limited with respect to the effects of grazing intensity on bacterial and fungal
communities, especially in plant rhizosphere.

2. Using a long-term (15 years) grazing experiment, we evaluated the richness and composition of micro-
bial communities in both rhizosphere and non-rhizosphere regions, under light, moderate, and heavy
intensities of grazing, in a semiarid grassland. We also examined the relative roles of grazing-induced
changes in some abiotic and biotic factors in affecting the richness and composition of microbial com-
munities.

3. Our results showed that the responses of soil bacteria to grazing intensity differed greatly between
rhizosphere and non-rhizosphere, and so did soil fungi. Specifically, the bacterial richness decreased
markedly under moderate and heavy grazing in rhizosphere soil, whereas little impact on the fungal
richness was observed. For microbial composition, with the increase in grazing intensity, an increase in
dissimilarity among bacterial communities was observed, and this trend also held true for the fungal
communities. Hierarchical partitioning analyses indicated that the bacterial composition in rhizosphere
was primarily driven by root nitrogen and soil nitrogen concentrations while that in non-rhizosphere by
soil available phosphorus. In addition, soil available phosphorus played an important role in affecting
the fungal composition in both rhizosphere and non-rhizosphere regions.

4. Synthesis : This study provides direct experimental evidence that the richness and composition of
microbial communities were severely altered by heavy grazing in a semiarid grassland. Thus, to restore
the grazing-induced, degraded grasslands, we should pay more attention to the conservation of soil
microbe in addition to vegetation recovery.

KEYWORDS:bacterial diversity, bacterial composition, fungal diversity, fungal composition, grassland
degradation, grazing intensity, non-rhizosphere, rhizosphere

1 | INTRODUCTION

Grasslands cover about 40% of Earth’s land surface and are mostly used for livestock grazing (Suttie,
Reynolds, & Batello, 2005). While light and/or moderate grazing can improve the diversity and productivity
of grasslands, heavy grazing usually causes severe grassland degradation (Kemp et al., 2013; McNaughton,
1979). By far, overgrazing-induced grassland degradation has become a major ecological problem worldwide
(Dlamini, Chivenge, & Chaplot, 2016; Eldridge et al., 2017; van de Koppel, Rietkerk, & Weissing, 1997).
This is especially the case in China, where more than 90% of grasslands are in a degraded status (Kemp et
al., 2013).

Soil microbes play important roles in regulating grassland structure and functioning (Bardgett & van der
Putten, 2014). However, soil microbial communities are prone to be affected by heavy grazing (Hu et al.,
2017; Lame, Kennedy, & Siciliano, 2011; Wang et al., 2021a; Zhang et al., 2020). Grazing can influence the
soil microbe through several mechanisms. First, herbivory on plants can have dual effects on soil microbial
communities. On the one hand, removal of above-ground biomass decreases the litter input into the soil,
which reduces the supply of carbon resource to soil microbe, and thus causes reduction in soil microbial
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richness (Dwivedi et al., 2017). On the other hand, removal of above-ground parts may also stimulate the
allocation of organic nutrients to belowground organs (Mueller et al., 2017), resulting in enrichment of root
exudates (Hamilton & Frank, 2001), which in turn affects the structure of microbial community (Hu et al.,
2018). Second, manure from livestock may affect soil pH values (Wang et al., 2021a; Yang et al., 2018) and
improve the available soil nitrogen (Han et al., 2008). As a result, the relative abundance of copiotrophic taxa
were enhanced while that of oligotrophic taxa was reduced (Nie et al., 2018). Finally, livestock trampling
decreases soil moisture due to increased soil compactness (Kobayashi, Hori, & Nomoto, 1997), which in turn
affects the soil microbial properties (Chen et al., 2019). These studies provide important insights into grazing
impacts on soil microbial communities, however, most studies did not distinguish the microbial responses
between non-rhizosphere and rhizosphere regions. Given that plant rhizosphere is a micro-region that plant-
soil-microbe interacts directly (Curl & Truelove, 1986), the influence of grazing on microbial communities in
this region is likely stronger than those in non-rhizosphere.

Here we examined the impacts of grazing intensity on the richness and composition of microbial communities
in rhizosphere vs. non-rhizosphere by a 15-year grazing intensity experiment in a semiarid grassland. We
focused on three specific questions: i) How do microbial communities differ in richness and composition
between rhizosphere and non-rhizosphere? ii) How do bacterial and fungal communities respond to grazing
intensities? iii) What are the relative roles of abiotic and biotic factors in affecting bacterial and fungal
responses to grazing intensity?

2 | MATERIALS AND METHODS

2.1 | Study site

This study was conducted in a semiarid grassland on the Inner Mongolia Plateau (41°46’43.6” N,
111deg53’41.7” E; elevation 1456 m). This area has a temperate continental grassland climate, with an-
nual mean temperature and precipitation of 3.6 degC and 214 mm, respectively (Wang et al., 2014). About
80% of precipitation occurs during the growing season (May to September). The vegetation in the experi-
ment site was dominated byStipa breviflora and Cleistogenes songorica . The soil is a Kastanozem soil (FAO
soil classification) with a sandy loam texture. This area is traditionally used as pastures for free grazing and
90 % of them have been degraded due to overgrazing (Kemp et al., 2013).

2.2 | Experimental design

A long-term grazing intensity experiment was established in 2004. We had four grazing intensities: control
(zero sheep-unit ha-1 month-1, G0), light (0.15 sheep-unit ha-1 month-1, G0.15), moderate (0.30 sheep-unit
ha-1month-1, G0.30), and heavy grazing (0.45 sheep-unit ha-1 month-1, G0.45) (Zhang et al., 2021). Each
treatment had three replicates. Under a complete randomized block design, 12 plots, each with an area of
4.4 ha, were separated by fences. Sheep with similar size were selected in advance and the grazing period
lasted from June 1 to November 30 every year.

2.3 | Field sampling and laboratory analysis

We randomly harvested 30 bunches of C. songorica in each plot in late August of 2018, corresponding to
peak biomass time. Each bunch of plants with soil were dug out to a depth of 15 cm, with approximately
90% of the roots harvested. The non-rhizosphere soil was defined as those shaken off from the roots while
the rhizosphere soil as those that adhere to the roots tightly and cannot be shaken off (Chaudhary et al.,
2015). Plants of C. songorica were separated into shoots and roots, and oven-dried at 65degC for 72 h and
weighed. Soil samples from the same plot were mixed to form a composite sample, thus, we obtained 12
rhizosphere and 12 non-rhizosphere composite soil samples (4 treatments x 3 replications).

Each composite soil sample was equally separated into three portions: one air-dried, one kept fresh at
4degC, and one stored at -80 degC. The fresh sample was used to determine the soil moisture and inorganic
nitrogen concentration. Concentrations of ammonium nitrogen and nitrate nitrogen were measured using a
continuous flow analyzer (Auto Analyzer III, Bran+Luebbe, Germany), and the inorganic nitrogen was their
sum. The air-dried samples were used to determine the concentrations of total carbon, total nitrogen, total
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phosphorus, available phosphorus, and the pH values. Concentrations of total carbon and total nitrogen
in soil/root samples were determined by an element analyzer (Elementar Vario Micro Cube, Germany),
whereas soil total phosphorus and available phosphorus by a spectrophotometer. Soil pH was measured by
a pH meter. The frozen samples were used to extract DNA for evaluating the richness and composition of
microbial communities.

2.4 | DNA extraction, PCR amplification, and sequencing

For each sample, DNA was extracted from 0.25 g thawed soil by a DNeasy(r) PowerSoil(r) DNA Isolation
Kit (Qiagen, Germany). The quality of isolated DNA was determined by electrophoresis on 1% agarose gel.
The purity was examined using NanoDrop. In total, 12 rhizosphere and 12 non-rhizosphere DNA samples
were prepared, respectively.

The 16S rRNA gene was amplified to estimate the relative abundance of soil bacteria while internal tran-
scribed spacer (ITS) region for the fungi. The paired primers, 341F and 806R, were used to target the
hypervariable V3+V4 region of the 16S rRNA gene; while the paired primers, ITS5-1737F and ITS2-2043R,
for the ITS1 regions of fungi. The primers in each sample were tagged with unique barcodes. All PCRs
were carried out in 30-μL reactions with10 ng of template DNA, 0.2 μM of forward and reverse primers, and
15 μL of Phusion® High-Fidelity PCR Master Mix (New England Biolabs). For thermal cycles, the initial
denaturation was at 98 °C for 1 min, followed by 30 cycles of denaturation at 98 °C for 10 s. Then annealing
was at 55 °C for 30 s, and elongation at 72 °C for 30 s. Finally, an extension was at 72 °C for 5 min.

The PCR products of each sample and 1X loading buffer (with SYBR green) were mixed with equal volu-
mes and then electrophoresed on a 2% agarose gel to examine the successful amplification of target DNA
fragments. The PCR products for each sample were quantified, and mixed with 80ng of DNA in equal pro-
portions. The resultant mixed PCR products were electrophoresed by 2% agarose gel, and the fragments
of DNA ranging from 400 - 450bp were excised and then purified with a GeneJETTM Gel Extraction Kit
(Thermo Scientific).

Following the manufacturer’s recommendation, Ion Plus Fragment Library Kit 48 rxns (Thermo Scientific)
was used for sequencing libraries preparation. Qubit@ 2.0 fluorometer (Thermo Scientific) and Agilent Bio-
analyser 2100 system (Agilent, USA) were used to evaluate the library quality. The libraries were sequenced
on IonS5TMXL platform, generating 400-bp/600-bp single-end reads.

2.5 | Bioinformatics analyses

Based on the unique barcode of each sample, single-end reads were identified and truncated by shearing off
the barcode and primer sequences. The Cutadapt (Martin, 2011) quality controlled process was used to filter
the raw reads under specific filtering conditions, we obtained the high-quality clean reads. The reads were
compare with the reference database (Silva and Unite database) (Kõljalg et al., 2013; Quast et al., 2013) using
UCHIME (Edgar, et al., 2011) algorithm to detect chimera sequences, and removed them. Then final clean
reads were generated. We did sequence analysis using Uparse software (Uparse v7.0.1001) (Edgar, 2013).
Sequences with a similarity higher than 97% were assigned to the same operational taxonomic unit (OTU).
Representative sequence for each OTU was screened for further annotation. The taxonomic information
of bacterial representative sequences was annotated using the Silva132 SSUrRNA database (Quast et al.,
2013) based on Mothur algorithm. For fungal representative sequences, we annotated taxonomic information
using the Unite (v7.2) database (Kõljalg et al., 2013) based Blast algorithm which was calculated by QIIME
software (Version 1.9.1).

In total, we obtained 947,987 and 958,264 bacterial high-quality sequences from rhizosphere and non-
rhizosphere samples, respectively. These reads were clustered into 23,160 and 37,278 OTU. For fungi, we
obtained 961,649 and 928,290 high-quality sequences from rhizosphere and non-rhizosphere samples, respec-
tively, which were clustered into 11,695 and 17,424 OTU (Table S1).

2.6 | Statistical analysis

4
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All statistical analyses were conducted in R 4.0.2 (R Core Team, 2020). We used microbial OTU richness as
an index of microbial diversity. A t-test was used to evaluate the differences in microbial richness between
rhizosphere and non-rhizosphere. Differences in microbial community composition between the two regions
were evaluated using permutational multivariate analysis of variance (PERMANOVA) with the function
“adonis” in the package “vegan” with 999 permutations (Oksanen et al., 2020), and visualized by the principal
coordinate analysis (PCoA). One-way ANOVA followed by Tukey-Test was used to assess the effects of
grazing intensity on microbial richness, composition (i.e., the relative abundance of main microbial taxa),
biotic variables (shoot biomass, root biomass, root total carbon, and root total nitrogen of C. songorica ),
and abiotic variables (concentrations of total carbon, nitrogen, and phosphorus, concentrations of available
nitrogen and phosphorus, soil pH and soil moisture). Prior to analyses, Shapiro-Wilks was used for normal
distribution evaluation, while Bartlett’s test for homogeneity of the data. The dissimilarity in microbial
community composition was determined by the Bray-Curtis distance among treatments, performed with the
“vegdist” function in package “vegan” (Oksanen et al., 2020).

A Mantel test was used to evaluate how changes in microbial community diversity or composition are
related to biotic and abiotic variables by the “mantel test” function in the package “vegan”, and visualized
by the package “linkET” (Huang et al., 2021). The multicollinearity of variables was assessed based on
variance inflation factors (VIF), and those with a VIF value less than 10 were regarded as variables with
low collinearity. The relative importance of variables in affecting microbial richness and composition was
evaluated with the package of “rdacca.hp” (Lai et al., 2021).

3 | Results

3.1 |Microbial richness and composition in rhizosphere vs. non-rhizosphere

Microbial communities differed markedly between rhizosphere and non-rhizosphere regions in OTU richness
(Figure 1). The bacterial richness was significantly lower in rhizosphere than in non-rhizosphere (Figure 1a),
and so was the fungal richness (Figure 1b).

The bacterial community composition differed greatly between the two regions (Figure 1c). This was more
evident in the relative abundances of three dominant bacterial phyla, Proteobacteria ,Acidobacteria, and Ac-
tinobacteria . For example, the relative abundance of Proteobacteria was 74.4% in rhizosphere, but decreased
to 23.6% in non-rhizosphere (Figure 1e, Table S2). In contrast, the relative abundances of Acidobacteriaand
Actinobacteria were 6.4 % and 5.9 % in rhizosphere, but increased to 21.2% and 26.7 % in non-rhizosphere,
respectively (Figure 1e, Table S2). The fungal community composition also differed between the two regions
(Figure 1 d). For example, the relative abundance ofAscomycota was 48.8% in rhizosphere but decreased to
38.6% in non-rhizosphere (Figure 1f, Table S2).

3.2 | Effects of grazing intensity on microbial richness and composition

Grazing intensity had significant impacts on rhizosphere bacterial richness but not on that in non-rhizosphere
(Figure 2a, b). However, grazing intensity had little impact on fungal richness in both regions (Figure 2c, d).

For microbial composition, the dissimilarity in bacterial community exhibited an increasing trend with the in-
crease in grazing intensity in both regions (Figure 3a). In rhizosphere, the relative abundance ofProteobacteria
increased significantly under moderate and heavy grazing while that of Acidobacteria decreased (Figure 3b;
Table S3). In non-rhizosphere, the relative abundances ofProteobacteria and Acidobacteria declined with
the heavy grazing while that ofActinobacteriaincreased (Figure 3c; Table S3). The dissimilarity in fungal
community also displayed an increasing trend with the increase in grazing intensity in both regions (Figure
3d). Specifically, the dominant taxa,Ascomycota , displayed a marked increase in relative abundance under
moderate and heavy grazing (Figure 3e, f; Table S3).

3.3 | Biotic and abiotic drivers for microbial richness

In general, all examined biotic and abiotic variables, except for soil total phosphorus and soil pH, significantly
affected soil bacterial richness in rhizosphere, whereas that in non-rhizosphere was not affected by these

5
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variables (Figure 4). The fungal richness in both regions was not affected by examined biotic and abiotic
variables (Figure 4).

3.4 | Biotic and abiotic drivers for microbial community composition

In general, all examined biotic and abiotic variables, except for soil total phosphorus and soil pH, affected the
composition of bacterial or fungal communities in both regions (Figure 5a). Moreover, among six variables
with low collinearity, the rhizosphere bacterial composition was mainly affected by root total nitrogen and
soil total nitrogen, whereas that in non-rhizosphere by soil available phosphorus (Figure 5b, c). In addition,
soil available phosphorus was consistently the primary variable affecting the fungal composition in both
rhizosphere and non-rhizosphere (Figure 5d, e).

4 | Discussion

4.1 | Differences in microbial richness and composition between rhizosphere and non-
rhizosphere

Our results demonstrated that the microbial communities differed markedly between rhizosphere and non-
rhizosphere in richness and composition in this grassland ecosystem. The rhizosphere microbial richness was
lower than that in non-rhizosphere (Figure 1), which is in line with previous findings that the microbial
diversity decreased with decreasing distance to plant roots (Donn et al., 2015; Fan et al., 2017). Such a
difference can be explained by a mechanism that rhizosphere microbiomes are derived from non-rhizosphere
microbiomes under selection effect of host plants (Hartmann et al., 2009; Nan et al., 2020).

The microbial composition also differed greatly between the two regions (Figure 1c,d). This was especially
evident for the relative abundances of dominant microbial taxa. The relative abundance ofProteobacteria ,
a dominant bacterial phylum, was 23.6% in non-rhizosphere, but increased to 74.4 % in rhizosphere (Fi-
gure 1e; Table S2), likely due to its strategy in nutrient use.Proteobacteria is a representative copiotrophic
bacteria phylum (Nie et al., 2018; Zhang et al., 2018; Zhang et al., 2020). Increased availability of nutrient
in rhizosphere due to the acid activation by root exudates (Cesco et al., 2010) fosters its growth, becau-
se more nutrients facilitate the copiotrophic bacteria but restrain the oligotrophic bacteria according to the
oligotroph-copiotroph hypothesis (Fierer, Bradford, & Jackson, 2007; Leff et al., 2015). Similarly,Ascomycota
is a dominant fungal phylum, and its relative abundance increased from 38.6% in non-rhizosphere to 48.8%
in rhizosphere (Figure 1f; Table S2). Such a difference in relative abundance of Ascomycota between two
regions has also been observed in an alpine grassland (Jiang et al., 2021). Collectively, these results suggest
that the plant rhizosphere microenvironment may facilitate the flourishing of certain bacterial and fungal
taxa.

4.2 | Responses of bacterial and fungal communities to grazing intensity

An intriguing result from our experiment was that the rhizosphere bacterial richness was more sensitive to
grazing intensity than that in non-rhizosphere (Zhang et al., 2019). As indicated in Figure 2, the rhizosphere
bacterial richness sharply declined under heavy grazing intensity, whereas that in non-rhizosphere remained
unchanged (Zhang et al., 2020). Two mechanisms may underlie grazing-induced decline in rhizosphere bacte-
rial richness. First, herbivory removes aboveground organs of a plant, resulting in a reduction in assimilated
carbon allocated to belowground organs, and thus a decline in the quantity of carbon sources available for
bacteria in plant rhizosphere (Aldezabal et al., 2015; Mueller et al., 2017; Byrnes et al., 2018), which in
turn reduces rhizosphere bacterial richness. In this study, the rhizosphere bacterial richness was significantly
affected by root carbon (Figure 4), providing support for this mechanism. Second, plant diversity is usually
coupled with microbial diversity in a community (De Deyn & van der Putten, 2005). Thus, grazing-induced
reduction in plant diversity may decrease the diversity of carbon sources for bacterial taxa (Dwivedi et al.,
2017), as a consequence, some bacterial taxa cannot grow well or disappear and the rhizosphere bacterial
diversity declines.

In contrast to the response of rhizosphere bacterial richness, the fungal richness was not significantly affected
by grazing intensity in both regions (Figure 2c,d), which is consistent with results from grazing experiments

6
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(Zhang & Fu, 2020; Yang et al., 2021). The weak response of fungal richness may be due to the fact that
fungi were more tolerant to environmental stresses than bacteria (Rousk & B̊åath, 2011). For example, fungi
often exhibit more resistance to soil drought or acidity than bacteria (Rousk & B̊åath, 2011). In this study,
the fungal richness was not significantly affected by examined biotic and abiotic factors (Figure 4), implying
that grazing-induced changes in these variables did not exert significant impact on fungal richness. Overall,
our results suggest that grazing in this grassland has little impact on soil fungal richness.

For bacterial composition, previous studies have almost exclusively concentrated on non-rhizosphere bacteria
(Hu et al., 2017; Zhang et al., 2020; Wang et al., 2021a). Our results suggest that grazing intensity has
stronger impacts on bacterial composition in rhizosphere than that in non-rhizosphere. For example, heavy
grazing resulted in a 6.55-fold increase in community dissimilarity in rhizosphere while a 1.89-fold increase
in non-rhizosphere (Figure 3a). An impressive result from this experiment was that, with the increase of
grazing intensity, the relative abundance of a dominant bacterial phylum,Proteobacteria , decreased in non-
rhizosphere but increased in rhizosphere (Figure 3b, c). Such opposite responses to grazing intensity were
likely due to its copiotrophic strategy in nutrient use (Leff et al., 2015). Increased grazing intensity led to a
relatively higher plant root nutrient (Tables S4, S5), which facilitates the growth of copiotrophic bacteria.
This is supported by our results that the relative abundance of Proteobacteria in rhizosphere was positively
related to plant root nitrogen (Figure S1a). By contrast, grazing-induced decrease in the relative abundance
ofProteobacteria in non-rhizosphere was related to the reduction in soil total nitrogen (Figure S1b; Tables
S4, S5).

Our results also demonstrated strong impacts of grazing intensity on fungal composition in this grassland. As
indicated by the increased dissimilarity of fungal community with grazing intensities (Figure 3d), the fungal
composition was dramatically altered by heavy grazing in both regions. A significant increase in relative
abundance was observed for a dominant taxon, Ascomycota , under heavy grazing intensity (Figure 3e,f).
This phenomenon could be explained by its oligotrophic strategy, which facilitates its growth in relatively low
carbon environment (Sterkenburg et al., 2015). As indicated in this experiment, heavy grazing resulted in a
great reduction in carbon concentrations in plant roots and soils (Tables S4, S5), and the relative abundance
ofAscomycota was negatively related to these carbon concentrations (Figure S2a, b).

4.3 | The roles of biotic and abiotic factors in affecting microbial responses to grazing intensity

In this experiment, grazing-induced decrease in rhizosphere bacterial richness was related to changes in 9
of 11 variables (Figure 4), consistent with a previous study in alpine meadow finding that soil microbial
richness was affected by multiple biotic and abiotic factors (Zhang & Fu, 2020). Moreover, we found that all
examined biotic variables were closely related to rhizosphere bacterial richness (Figure 4), highlighting the
impacts of plant selection effect on rhizosphere bacterial richness (Hartmann et al., 2009; Nan et al., 2020).
However, the examined variables had little effect on fungal richness in both regions (Figure 4), consistent
with previous results (Yang et a., 2018). This may be due to the fact that fungal are more resistant to
environmental variability relative to bacteria (Rousk & B̊åath, 2011).

Previous studies have highlighted the role of soil pH in affecting microbial richness (Qu et al., 2016; Yang et
al., 2018; Zhang & Fu, 2020). However, in this study, the changes in bacterial and fungal richness were not
affected by soil pH in both regions. The weak effect of soil pH in our study could be explained by the results
that the soil pH in this experiment was not significantly altered by grazing intensity (Table S4, S5).

Our results indicated that the bacterial and fungal community compositions in both regions were co-affected
by several biotic and abiotic variables (Figure 5a). For bacteria, the rhizosphere community composition was
primarily affected by plant root biomass and root carbon concentration, highlighting the importance of plant-
related resources in affecting rhizosphere bacterial communities (Costa et al., 2006; Berg & Smalla, 2009).
In contrast, the bacterial community composition in non-rhizosphere was primarily affected by soil available
phosphorus, highlighting the role of abiotic factors in affecting non-rhizosphere bacterial composition (Tian
et al., 2017; Schöps et al., 2018). Moreover, soil available phosphorus was also the primary factor affecting the
fungal composition in both regions (Figure 5d,e). The important role of soil available phosphorus in affecting
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microbial composition may be due to the fact that the grasslands in northern China have a relatively lower soil
phosphorus than other grasslands (Han et al., 2005). For example, the soil total phosphorus concentration
(515 mg kg-1) in this experiment site (Table S5) was much lower than the mean value (699 mg kg-1) in
grasslands of Northern America (US Geological Survey, 2001). Also, soils in this region are rich in Ca2+ and
Mg2+, and phosphorus is usually bounded to these metal ions, further constraining the available phosphorus
for soil fungi (Wang et al., 2021b). Importantly, the lack of soil available phosphorus was exacerbated by
heavy grazing in this experiment (Table S4, S5). This is likely due to the grazing-induced strong wind erosion
that the nutrient-rich, top-layer soils were removed from the grassland (Giese et al., 2013). Given that some
arbuscular mycorrhizal fungi can help plants efficiently exploit and absorb soil phosphorus (van der Heijden
et al., 1998), the strong relationship between soil available phosphorus and fungal community composition
also suggests that some fungal taxa may play important roles in mediating the availability of soil phosphorus
in this grassland. Overall, our study provides experimental evidence that grazing intensity caused changes
in abiotic and biotic factors, and these changes in turn altered the soil microbial composition.

5 | Conclusion

Our results demonstrated that rhizosphere bacterial richness was greatly reduced by heavy grazing. At the
same time, the bacterial and fungal compositions were greatly altered in both rhizosphere and non-rhizosphere
regions. These findings highlight that overgrazing not only causes severe vegetation degradation (Wang et
al., 2014; Zhang et al., 2021) but also great decrease in diversity and strong alteration in composition of
soil microbial communities, which may greatly demote the functioning of the whole ecosystem (Bardgett
& van der Putten, 2014). Given that soil microbes play an important role in the restoration of degraded
ecosystems (Averill et al., 2022; Coban, De Deyn, & van der Ploeg, 2022), we suggest that, along with
vegetation conservation, motoring and restoring microbial communities are important for the restoration of
extensive degraded grasslands in China.
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Schöps, R., Goldmann, K., Herz. K., Lentendu, G., Schöning, I., Bruelheide, H., . . . & Buscot, F. (2018).
Land-use intensity rather than plant functional identity shapes bacterial and fungal rhizosphere communities.
Frontiers in Microbiology,2711.

Sterkenburg, E., Bahr, A., Brandstrom Durling, M., Clemmensen, K. E., & Lindahl, B. D. (2015). Changes
in fungal communities along a boreal forest soil fertility gradient.New Phytologist, 207, 1145-1158.

Suttie, J. M., Reynolds, S. G., & Batello, C. (2005). Grasslands of the World. Food & Agriculture Organi-
zation of the United Nations, Plant Production and Protection Series (Food and Agriculture Organization,
Rome) No. 34.

Tian, Q., Taniguchi, T., Shi, W. Y., Li, G., Yamanaka, N., & Du, S. (2017). Land-use types and soil chemical
properties influence soil microbial communities in the semiarid Loess Plateau region in China. Scientific
Repports, 7, 1-9.

US Geological Survey (2001) National Geochemical Database: Soil Data from the PLUTO Geochemical
Database. http://minerals.usgs.gov/sddp/data/soilsPLUTO.zip

van de Koppel, J., Rietkerk, M., & Weissing, F. J. (1997). Catastrophic vegetation shifts and soil degradation
in terrestrial grazing systems.Trends in Ecology & Evolution, 12, 352-356.

van Der Heijden, M. G., Klironomos, J. N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., . . . &
Sanders, I. R. (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and
productivity. Nature, 396, 69-72.

Wang, Z., Ding, Y., Jin, K., Struik, P. C.,Sun, S., Ji, B., . . . & Li, X. (2021a) Soil bacterial and fungal
communities are linked with plant functional types and soil properties under different grazing intensities.
European Journal of Soil Science, 73, e13195.

11



P
os

te
d

on
25

D
ec

20
22

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
67

19
53

43
.3

84
85

90
6/

v
1

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Wang, R., Yang, J., Liu, H., Sardans, J., Zhang, Y., Wang, X., . . . & Jiang, Y. (2021b). Nitrogen enrichment
buffers phosphorus limitation by mobilizing mineral-bound soil phosphorus in grasslands.Ecology, 103, e3616.

Wang, Z., Jiao, S., Han, G., Zhao, M., Ding, H., Zhang, X., . . . & Liu, Y. (2014). Effects of stocking rate on
the variability of peak standing crop in a desert steppe of Eurasia grassland. Environmental Management,
53,266-273.

Yang, F., Niu, K., Collins, C. G., Yan, X., Ji, Y., Ling, N., . . . & Hu, S. (2018). Grazing practices affect
the soil microbial community composition in a Tibetan alpine meadow. Land Degradation & Development,
30, 49-59.

Yang, Y., Chen, S., Wu, X., Syed, S. I., Syed, I. U. S., Huang, B., . . . & Wang, D. (2021). Grazing affects
bacterial and fungal diversities and communities in the rhizosphere and endosphere compartments of Leymus
chinensisthrough regulating nutrient and ion distribution. Microorganisms, 9, 476.

Zhang, H., & Fu, G. (2020). Responses of plant, soil bacterial and fungal communities to grazing vary with
pasture seasons and grassland types, northern Tibet. Land Degradation & Development, 32(4), 1821-1832.
https://doi.org/10.1002/ldr.3835

Zhang, G., Huang, J., Jia, M., Huang, W., Sui, X., Wang, Z., & Han, G. (2019). Effect of grazing intensities
on bacterial community composition and diversity in rhizosphere and non-rhizosphere soils in desert steppe
of China. Chilean Journal of Agriculture Research, 79, no.4.

Zhang, R., Wang, Z., Niu, S., Tian, D., Wu, Q., Gao, X., . . . & Han, G. (2021). Diversity of plant and
soil microbes mediates the response of ecosystem multifunctionality to grazing disturbance. Science of Total
Environment , 776 , 145730.

Zhang, Y., Gao, X., Hao, X., Alexander, T. W., Shi, X., Jin, L., & Thomas, B. W. (2020). Heavy grazing
over 64 years reduced soil bacterial diversity in the foothills of the Rocky Mountains, Canada. Applied Soil
Ecology, 147,103361.

Zhang, Y., Hao, X., Alexander, T., Thomas, B., Shi, X., & Lupwayi, N. Z. (2018). Long-term and legacy
effects of manure application on soil microbial community composition. Biology and Fertility of Soils, 54,
269-283.

Supplementary information includes Tables S1-S5 and Figs. S1-S2.

12



P
os

te
d

on
25

D
ec

20
22

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
67

19
53

43
.3

84
85

90
6/

v
1

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

FIGURE 1 Comparisons in microbial richness and composition between rhizosphere (Rs) and
non-rhizosphere (Non-Rs) regions . Notes: Bacterial (a) and fungal (b) richness; Difference in bacterial
(c) and fungal (d) community composition; Relative abundance of main bacterial (e) and fungal(f) taxa.
The taxa with a relative abundance < 1% were assigned into “Others”. *, **, and *** indicated significant
difference between two regions by t-test at p = 0.05, 0.01, and 0.001, respectively.

13



P
os

te
d

on
25

D
ec

20
22

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
67

19
53

43
.3

84
85

90
6/

v
1

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

FIGURE 2 Effects of grazing intensity on microbial richness in rhizosphere and non-
rhizosphere. Notes: rhizosphere (a) and non-rhizosphere (b) bacterial richness; Rhizosphere(c) and
non-rhizosphere (d) fungal richness. G0, G0.15, G0.30, and G0.45 refer to control, light, moderate, and
heavy grazing, respectively. Different letters indicate significant difference among treatments at p = 0.05,
while “n.s.” indicated no significant difference among treatments

14



P
os

te
d

on
25

D
ec

20
22

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
67

19
53

43
.3

84
85

90
6/

v
1

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

FIGURE 3 Effects of grazing intensity on dissimilarity of microbial community composition
and on relative abundance of microbial taxa in rhizosphere (Rs) and non-rhizosphere (Non-Rs)
regions . Notes: Bacterial (a) and fungal (d) community dissimilarity; Relative abundance of bacterial
phyla in rhizosphere (b) and non-rhizosphere (c) ; Relative abundance of fungal phyla in rhizosphere (e)
and non-rhizosphere(f) . Different letters indicate significant differences among treatments. G0, G0.15,
G0.30, and G0.45 are the same as in Figure 2.

FIGURE 4 Impacts of abiotic and biotic factors on bacterial and fungal richness in rhizosphere
(Rs) and non-rhizosphere (Non-Rs) . SBI, shoot biomass; RBI, root biomass; RTC, root total carbon;
RTN, root total nitrogen; STC, soil total carbon; STN, soil total nitrogen; STP, soil total phosphorus; SAN:
soil available nitrogen; SAP: soil available phosphorus; SM: soil moisture. Overall R 2indicates the total
explained fraction by the six variables.
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FIGURE 5 Impacts of abiotic and biotic factors on microbial compositions in rhizosphere
(Rs) and non-rhizosphere (Non-Rs) . Notes: Mantel results on the impacts of examined variables on
bacterial and fungal compositions (a) . Relative roles of six variables with low-collinearity on rhizosphere
(b) and non-rhizosphere bacterial compositions (c) . Relative roles of six variables with low-collinearity
on rhizosphere (d) and non-rhizosphere fungal compositions (e) . SBI, RBI, RTC, RTN, STC, STN, STP,
SAN, SAP, and SM are the same as in Figure 4. OverallR 2 indicates the total explained fraction by the six
variables.
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