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Abstract

In the agricultural industry, an evolutionary effort has been made over the last two decades to achieve precise autonomous sys-

tems to perform typical in-field tasks including harvesting, mowing, and spraying. One of the main objectives of an autonomous

system in agriculture is to improve the efficiency while reducing the environmental impact and cost. Due to the nature of these

operations, complete coverage path planning approaches play an essential role to find an optimal path which covers the entire

field while taking into account land topography, operation requirements and robot characteristics. The aim of this paper is

to propose a complete coverage path planning approach defining the optimal movements of mobile robots over an agricultural

field. First, a method based on tree exploration is proposed to find all potential solutions satisfying some predefined constraints.

Second, a Similarity check and selection of optimal solutions method is proposed to eliminate similar solutions and find the best

solutions. The optimization goals are to maximize the coverage area and to minimize overlaps, non-working path length and

overall travel time. In order to explore a wide range of possible solutions, our approach is able to consider multiple entrances

for the robot. For fields with a complex shape, different dividing lines to split it into simple polygons are also considered. Our

approach also computes the headland zones and covers them automatically which leads to a high coverage rate of the field.

1



P R E P R I N T S U BM I T T ED TO JOURNA L O F F I E L D ROBOT I C S

Complete Coverage Path Planning for wheeledagricultural robots
Danial PourArab1,2* | Matthias Spisser2* | Caroline Essert1*

1ICube, Université de Strasbourg, CNRS
(UMR 7357), 300 Bd Sébastien Brant,
67400 Illkirch, France
2T&S - Technology and Strategy
Strasbourg, 4 Rue de Dublin, 67300
Schiltigheim, France
Correspondence
Danial PourArab, ICube, Université de
Strasbourg, CNRS (UMR 7357), 300 Bd
Sébastien Brant, 67400 Illkirch, France
Email: pourarab@etu.unistra.fr
Funding information
This work was funded by research grant
CIFRE 2019/1084 from Technology &
Strategy Group (T&S) and the French
National Association for Research and
Technology (ANRT)

In the agricultural industry, an evolutionary effort has been made
over the last two decades to achieve precise autonomous systems
to perform typical in-field tasks including harvesting, mowing, and
spraying. One of the main objectives of an autonomous system
in agriculture is to improve the efficiency while reducing the envi-
ronmental impact and cost. Due to the nature of these operations,
complete coverage path planning approaches play an essential role
to find an optimal path which covers the entire field while taking
into account land topography, operation requirements and robot
characteristics.

The aim of this paper is to propose a complete coverage path
planning approach defining the optimalmovements ofmobile robots
over an agricultural field. First, a method based on tree exploration
is proposed to find all potential solutions satisfying some prede-
fined constraints. Second, a Similarity check and selection of opti-
mal solutionsmethod is proposed to eliminate similar solutions and
find the best solutions. The optimization goals are to maximize the
coverage area and to minimize overlaps, non-working path length
and overall travel time.

In order to explore a wide range of possible solutions, our ap-
proach is able to consider multiple entrances for the robot. For
fields with a complex shape, different dividing lines to split it into
simple polygons are also considered. Our approach also computes
the headland zones and covers them automatically which leads to
a high coverage rate of the field.
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Complete Coverage Path Planning, Precision Agriculture,
Autonomous Agriculture, Vehicle Routing Problem, Wheeled
robots, Path Planning, Route Planning

*Equally contributing authors.

1



2 PourArab et al.

1 | INTRODUCTION
Robots are becoming more prevalent in our daily lives. Increasing the efficiency and reducing the costs makes them
both popular and trendy in many industries. They can perform a wide range of specialized and often risky tasks with
a remarkably high precision compared to humans. This transformation touches every domain, including agriculture.

On the one hand, a growing population necessitates more food and agricultural products (Marques et al. (2019)),
yet agriculture is also known for polluting the air and increasing mortality rates (Giannakis et al. (2019)). An abuse of
pesticides and herbicides also has a substantial impact on the environment, animals, plants, and humans, necessitating
the development of some practical solutions (Meftaul et al. (2020)). In this situation, the role of a precise autonomous
system capable of optimizing the cost and efficiency of field operations is more important than ever.

Finding a proper path that covers the entire field is a critical challenge for the majority of agricultural operations
such as tillage, seeding, harvesting and pulverization. This challenge is commonly referred to as Complete Coverage
Path Planning (CCPP). In general, the result of CCPP on a field is a set of back and forth trajectories connected by
smooth and continuous half-turns at areas along the edges of the field called headlands. The spacing between these
trajectories depend on the width of the implement connected to the robot. This spacing is generally referred to as
working width.

In order to perform CCPP on a field and to generate the best possible path, it is important to take into account the
topographical and geometrical characteristics of the field, the robot features and capabilities, as well as those of its
implements. The quality of CCPP outcome is generally ensured by satisfying and optimizing a set of constraints. These
constraints can either be hard constraints, where the conditionsmust be satisfied, or soft constraints, which have some
variable values that are optimized via a cost or reward function. In general the main objectives of constraints for most
of operations is to maximize the productivity, minimize the cost and environmental damages such as soil compaction
and erosion.

However, constraints vary depending on the operation and the kind of machinery needed for that particular oper-
ation. For instance, in a seeding operation the implement is in contact with the ground when it is activated, therefore
it can remain activated only in back and forth trajectories or slight turns. During half-turns it must be deactivated and
lifted to prevent machinery damages. This constraint, however, is completely irrelevant for pulverization where the
implement is not in contact with the ground. In both cases, the distance traveled while the implement is activated is
referred to as working path length, otherwise it is referred to as non-working path length.

In addition to awide range of constraints that may differ for each operation, the efficiency of some operationsmay
depend on the result of other operations. For instance, the path for pulverization is predefined based on a tramline
farming system which is usually done during tillage. Permanent parallel wheel tracks (tramlines) are created within
the field area in order to eliminate soil compaction from the wheels within the cropped area Bochtis et al. (2010a). In
this paper, we propose a generic solution based on a novel CCPP approach for operations in which the implement is
in contact with the ground when it is activated. The result of our approach is a sequence of moves that covers the
field and the headlands at best.

The remainder of this paper is organized as follows: related works are described in Section 2. The objectives and
main contributions of this paper are presented in Section 3. In Section 4, our novel approach is described in detail.
The results of an experimental study on real fields of various shapes and sizes, as well as a comparison to ground
truth, are reported in Section 5. A discussion follows, underlining the importance and effectiveness of the proposed
approach. Finally, Section 6 brings this study to a conclusion and provides new perspectives towards future works.
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2 | RELATED WORKS
To address this difficult problem and its numerous constraints, most of the time the CCPP problem is addressed in the
literature as two distinct tasks. The first task is to generate a set of parallel back and forth trajectories based on field
data. The second task is to connect the parallel tracks to form an optimal sequence of trajectories connected by half-
turns, and allocate them to a single or multiple robots. The first task is usually known as Coverage Path Planning (CPP),
while the second part is mainly known as Vehicle Routing Problem (VRP), or in this particular application Agricultural
Routing Problem (AVRP).

One common CPP approach is to generate trajectories parallel to the longest edge of the field, with a spacing
equal to the working width, or to simply take a direction as input (Cariou et al. (2017); Hameed et al. (2011); Hameed
(2017); Jeon et al. (2021); Nilsson and Zhou (2020); Zhou and Bochtis (2015); Zuo et al. (2010)). Extending this
approach, Hameed et al. (2010); Jensen et al. (2012); Plessen (2019a); Zhou et al. (2020) proposed to generate parallel
trajectories along a curved reference line as well. After this step, the parallel trajectories are usually simply connected
sequentially by half-turns. Instead of choosing the longest boundary, Edwards et al. (2017) proposed to align the
parallel trajectories to the boundary that minimized the number of necessary half-turns. Cao et al. (2019a,b) proposed
an approach based on the rotating calipers algorithm (first proposed by O’Rourke et al. (1986)) to determine a reference
line that minimizes the number of half-turns.

Most studies, however, entirely ignored the coverage of headlands. Only the approaches proposed by Edwards
et al. (2017); Jeon et al. (2021); Nilsson and Zhou (2020) were able to cover the headlands automatically. To cover all
corners of the field, Edwards et al. (2017) and Jeon et al. (2021) considered also reverse moves for trajectories inside
the headlands. In case of a complex field, none of the approaches described in the literature can handle both headland
coverage and field decomposition.

In the more complex case of concave fields, some authors have opted for a subdivision of the field into smaller
convex sub-fields. Jin and Tang (2010) applied a decomposition method, identified a reference line for each resulting
sub-field, and generated trajectories parallel to the reference line. Finally an optimal sequence of sub-fields was
determined. Oksanen et al. (2007); Oksanen and Visala (2009) proposed a trapezoidal decomposition approach and a
heuristic algorithm to select the best driving direction among 0, 30, 60, 90, 120, and 150 degree. They applied aweighted
average cost function to optimize some metrics: 1) operated area divided by total time, including turning time, 2) area
of the sub-field per remaining area and 3) distance operated in the sub-field.

Hameed (2014) applied a genetic algorithm to obtain the best possible reference line thatminimizes the number of
trajectories as well as the turning cost. Finally, They took the inclination of each trajectory into account to determine
the optimal sequence of trajectories that minimizes fuel consumption. Dogru and Marques (2015a,b); Shen et al.
(2020) applied a decomposition method considering inclination across the field, followed by a genetic algorithm to
determine an optimal driving direction for each sub-field as well as an optimal sequence of sub-fields that minimizes
energy consumption. Hameed et al. (2016) also considered inclination in their approach to find an optimal driving
direction that simply minimizes the skips and/or overlaps. Jin and Tang (2011) proposed a decomposition method to
classify the field into flat and slope areas, then a reference direction that leads to the minimum coverage cost (the
weighted average of headland turning cost, soil erosion cost and curved trajectory cost) was chosen from field edge
segments and the slope contours.

Numerous studies have exclusively investigated AVRP, considering the parallel lines as a given input. Some of
them focused only on one single robot. Bochtis et al. (2013) presented an approach based on the Clarke-Wright
algorithm. Plessen (2018, 2019b) proposed a pattern-based routing algorithm. Considering one stationary service
unit Jensen et al. (2015a,b) proposed an approach based on the state-space search technique. Vahdanjoo et al. (2020)
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proposed an approach based on simulated annealing while considering several stationary service units. Evans IV et al.
(2020) applied genetic algorithms to their approach while considering a mobile service unit.

Some other studies addressed multi-robot AVRP. Burger et al. (2013) represented an approach based on mixed-
integer linear programming. Seyyedhasani andDvorak (2017, 2018a,b); Seyyedhasani et al. (2019) proposed an heuris-
tic approach based on the Clarke-Wright algorithm and Tabu search. Cariou et al. (2020) proposed an approach to
solve AVRP for a convoy of homogeneous robots. Conesa-Muñoz et al. (2015, 2016b,a) applied simulated anneal-
ing to their approach. Utamima et al. (2019a,b) presented an evolutionary approach enhanced by a neighborhood
search. Khajepour et al. (2020) applied an adaptive large neighborhood search in their approach. Conesa-Muñoz et al.
(2015, 2016b,a); Khajepour et al. (2020); Utamima et al. (2019a,b) also considered one stationary service unit in their
approaches. Jensen et al. (2012) represented an approach based on Dijkstra algorithm while considering a mobile
service unit cooperating with a primary service unit. Bochtis and Sørensen (2009); Bochtis et al. (2010b); Bochtis
and Sørensen (2010) proposed an approach based on breadth-first search algorithm modified by additional heuristics
while considering one or two stationary service units or mobile service unit was.

All of these methods considered the two tasks, CCP and AVRP, as two separate problems. This approach can
however have some limitations and possibly miss some interesting solutions. We think that browsing the solution
space in one single exploration/generation step has the potential to find more exhaustively the interesting solutions.
The approach we propose in this paper is based on this assumption, and includes many benefits that are highlighted
in the next section.

3 | MOTIVATIONS AND CONTRIBUTIONS
Performing a CCPP while respecting all constraints is a complex and difficult challenge. As previously mentioned, the
novelty of the approach we propose is to generate the parallel tracks and the turns in one process, with the objective
of allowing more possible alternatives.

Moreover, various simplifications of the problem and prior assumptions have been made in the literature. Most
of these simplifications helped to find a good feasible solution in a reasonable time for a category of fields, even if it
may not be the most optimal. In this work, we are aiming at considering a maximal range of possible field shapes and
configurations.

Using simplifications could also lead to a risk of oversimplification and ultimately to unfeasible solutions. For
instance, assuming that a field can be accessed from all of its edges, which is not the case for most of the fields where
crossing some edges may damage the robot or even the neighboring field, could lead to a solution that the farmer
can’t apply in practice. A common solution to solve this problem was to consider an inner offset for a field polygon as
headlands and doing the headland coverage manually. The automatic coverage of the headlands was only considered
by Edwards et al. (2017); Jeon et al. (2021); Nilsson and Zhou (2020). However Edwards et al. (2017); Jeon et al. (2021)
considered all field edges as accessible. Conversely, another simplification could be to consider as a possible entry or
exit only one or two separate points, which would strongly limit the possible solutions. This is the approach followed
by Nilsson and Zhou (2020), who considered only one point for both entering and exiting the field.

Other oversimplification for operations in which the implement is in contact with the ground while in use, in-
clude considering that tight turns can be made with the implement on, or considering that lowering and raising the
implement could be done instantly. However in practice, it is not the case. Such simplifications would lead to an
overestimation of the coverage rate.

The aim of our study is to provide a complete and realistic solution using a progressive CCPP approach for fields
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of various shapes and sizes, while avoiding oversimplification as much as possible to prevent inappropriate solutions.
We aim at considering several possible entrances and authorizing the robot to finish its task anywhere on an accessible
edge of the field, to increase the possibility of finding the optimum solution. We also propose an approach that can
be parameterized and customized for different type of machinery and operations. Our approach is capable of dealing
with both headland coverage and field decomposition.

This paper describes our approach that includes the following contributions in one single integrated system:

• automatic selection of best entry and exit points among an accessible edge of the field
• one-step generation of tracks/turns optimizing coverage, overlaps, damage, and working time
• all types of field shapes considered: convex or non convex with various dividing lines
• output is several optimal alternative paths with a variety of properties
• intelligent coverage of the headlands
• geometry of the vehicle and the implement are taken into account:

– offset between the vehicle and the implement
– minimum turning radius of the vehicle when the implement is off
– minimum turning radius of the vehicle when the implement is on and in touch with the ground

• distance needed for activating/deactivating or lowering/raising the implement is taken into account
• reverse moves are allowed for performing turns and half-turns
• curved edges are taken into account

4 | METHODOLOGY
Our approach consists of three steps: 1) preprocessing 2) exploration 3) Similarity check and selection of optimal
solutions. The objective of the preprocessing step is to prepare the field. Its inputs are the field polygon (i.e. a
sequence of counterclockwise points), one or several dividing lines to decompose the field polygon if needed, the
access segments, the working width, and the minimum turning radius of the robot. The output of this step is a set of
entrances, a set of zones that might be used as headland and a set of turning spaces. Turning spaces are useful to take
a trajectory within a headland and/or perform a turn from one headland to another.

Finding every potential solution and creating a solution space are the goals of the second step which is referred
to as exploration algorithm. A solution found by the exploration algorithm is a path, i.e. a sequence of trajectories that
starts from an entrance, covers the field and the headlands at best, and ends on one of access segments.

These two steps could be repeated several times if several entrances and/or dividing lines are provided. For simple
fields for which no decomposition is required the number of exploration is the same as the number of entrances. For
a complex case, that d alternative dividing lines are provided and e entrances are detected, our approach performs
d ∗ e explorations. The approach perform also e more explorations while considering no dividing line. Since for some
concave fields the ideal solution could be identified without decomposing the field. For instance, providing three
possible entrances and three alternative dividing lines requires running the preprocessing step four times (one time
with no dividing line plus the number of dividing lines) and executing the exploration algorithm twelve times in total
(the product of four different preprocessing results and three entrances). Consequently, the final solution space is the
union of twelve solution spaces obtained from the exploration algorithm.

Finally during the similarity check and selection of optimal solutions, the cost of each solution is computed. Then,
similar solutions are extracted using a similarity function, and grouped into families of solutions. Only the lowest-cost
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solution is kept for each family. After similarity removal from the solution space, the best solutions that have the
lowest cost are selected. In the next sections, after giving a few definitions, we describe each of these steps in more
detail.

4.1 | Definitions
Let’s start by defining a few notions and notations. We definew as the width of the implement attached to the robot.
Our approach exclusively considers operations in which the implement is in contact with the ground while in use. As
a result, the implement is regarded as having two possible states: on and off. When on, the implement is completely in
contact with the ground, and when off it is completely raised. The surface covered when the implement is in contact
with the ground is called worked area or surface, and conversely the surface never in contact with the implement is
called unworked area or surface.

While the implement is in off state, it is possible to perform tight or half-turns respecting γof f as the minimum
turning radius of the robot. As the implement is elevated, the corresponding curved surface will not be worked. When
the implement is on, to avoid damaging it during turns, only slight turns respecting a minimum turning radius of γon
are authorized. In this case, the corresponding surface will be worked.

However, the robot cannot change the state abruptly from on to off or vice versa. It must be done gradually while
the robot moves in a straight line. Therefore the transition state is defined as a third state when changing from on
to off and conversely. The straight trajectories in transition state have a constant length of ℓt , and are referred to as
transition trajectories. ℓt represents the distance required on the straight trajectory before or after performing a tight
turn, where the surface will not be worked either. We refer to these unworked portions of straight trajectories as
gaps. They are represented in Fig. 1 with crossed out red segments. Therefore, each tight turn causes two gaps in the
trajectory.

4.2 | Preprocessing: definition of headlands and turning spaces
After acquiring the raw input data, and converting from the geographic coordinate system to the Cartesian coordinate
system, three preprocessing operations are performed: the generation of entrances, the generation of headlands, and
the generation of turning spaces. Both operations are detailed below.

4.2.1 | Entrances
Entrances are the locations where the robot can enter the field. Each entrance also contains the direction or heading
of the robot at the corresponding location. Given the field polygon and the access segments, our approach determines
the entrances on each corner of an access segment where its distance from the adjacent edge of the field polygon is
w/2. Its direction is the same as the direction of the adjacent edge. Once all candidate entrances are determined, an
expert must validate them or discard the entrances that seem irrelevant. Fig. 5 represents the selected entrances for
a sub-set of the evaluation dataset.

4.2.2 | Headlands
A headland is a space adjacent to the boundary of the field that can be used to perform half-turns. When half-turns
are performed in a headland, this space is not worked, and two gaps are also caused before and after it along the
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trajectories. Then, this space must be worked separately after the rest of the field is finished. Our method starts by
defining these headlands, and anticipating how they can be covered.

To be able to define these surfaces, for each boundary of the field a headland area is generated that contains:
• one outer border that corresponds to the field boundary
• one inner border that is generated parallel to the outer border inside the field at a distance of p ∗ w , where p is

either given as an input, or deduced from w and γof f

• p inner trajectories that are generated between the outer and inner borders and parallel to them, at a distance of
w/2 from the borders and w from each other

• one gap covering trajectory that is generated inside the field at a distance ofw/2 from the inner border and parallel
to it
These geometric elements are illustrated in Fig.1 for p = 2. If a dividing line is provided, another type of headland

is also defined: it is fully included within the field polygon with two inner borders, p inner trajectories, and two gap
covering trajectories centered around the dividing line, and it has no outer border. This is illustrated on Fig.1 where
the dividing line is represented in brown.

Therefore the inner trajectories are mainly useful for covering the unworked surfaces caused by the half-turns
and the gap covering trajectories are used to cover the unworked surfaces caused by gaps.

4.2.3 | Turning spaces
The third preprocessing operation is the computation of turning spaces. A turning space is defined at an angle between
two adjacent headlands, and ensures a safe and feasible turn to or between inner or gap covering trajectories of a
headland or switch between sub-fields, if a dividing line is provided. It is delimited by two turning lines parallel to the
angle bisector.

As illustrated in Figs. 2a 2c, for two adjacent headlands first their angle bisector is computed (black dashed line).
Finally the two turning lines (blue solid lines) are computed parallel to the angle bisector with a spacing of l /2 where
l = max(√2 ∗ ( (p − 1) ∗ w + ℓo ) , 2 ∗ (ℓo + γof f )

) , where ℓo is the length of the offset between the robot and the
implement. Before a tight turn, there is a straight gap trajectory. Consequently the robot is ℓo meters ahead of the
implement when the gap trajectory is performed. Therefore, ℓo must be taken into account while computing turning
spaces to provide the robot enough space to turn.

The intersection between turning lines and the inner/gap covering trajectories will be used as candidate start/end
point for turns from one headland to another. Therefore, regardless of the angle between two headlands, turning
spaces can ensure a proper space for turns in order to travel to inner and or gap covering trajectories of adjacent
headlands.

Let us note that not all of the headlands and turning spaces generated during the preprocessing step will neces-
sarily be used. The exploration algorithm will decide which ones will be used. Section 4.4 provides more detail on
how turning spaces are used to make turns and half-turns inside a headland.

4.3 | Trajectory types and metrics
To facilitate understanding of the proposed approach, it is essential to introduce some useful concepts and metrics.
Dubins trajectories (Dubins (1957)) and Reeds–Shepp curves (Reeds and Shepp (1990)) were employed to generate
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(a) Preprocessing result for a field

(b) A close-up on a preprocessing result

-

F IGURE 1 Preprocessing result for p = 2. The field polygon is represented by blue points and black and green
solid segments

continuous and smooth turns. Taking as input a minimum turning radius, the starting and destination coordinates, and
the direction of the robot at at these coordinates, both methods compute the shortest curve from the starting point
to the destination point, with the difference that the Reeds-Shepp method also considers reverse moves while all
turns generated by the Dubins method contain only forward moves. Therefore a turn generated by the Reeds-Shepp
method is optimal in terms of trajectory length, but in terms of travel time a turn generated by the Dubins method
may be better, as a reverse move requires the robot to stop, change the direction and accelerate to reach again its
target speed. Moreover, the Dubins method may be used with the implement on during a slight turn when the radius
is wide, whereas if a reverse move is needed then the implement must always be off. Consequently, in our approach
turns with no reverse moves are preferred. However if performing a turn with no reverse moves is not possible, then
a turn with reverse moves is also examined. Considering these two types of turns as well as the three different states
of the implement (on, off, and transition), five different types of trajectories were defined as follows:

• STRAIGHT_ON: straight trajectory while the implement is on
• DUBINS_ON: turn computed via Dubins method in which the implement is on
• DUBINS_OFF: turn computed via Dubins method in which the implement is off
• REEDS_OFF: turn computed via Reeds-shepp method in which the implement is off
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F IGURE 2 Trajectory (a,c) and tree (b) representations of turns inside the turning spaces. Sub-figure (b) is the
tree representation of trajectories of (c)

• GAP_OFF_ON: transition trajectory of length ℓt during which the implement is transitioning from off to on
• GAP_ON_OFF: transition trajectory of length ℓt during which the implement is transitioning from on to off

A few rules apply when defining a sequence of trajectories of the above types. As a first rule, a GAP_OFF_ON
trajectory must always be followed by a STRAIGHT_ON trajectory, where both trajectories have the same direction.
The second rule is that a STRAIGHT_ON trajectory only can be followed by aDUBINS_ON or aGAP_ON_OFF trajectory.
Consequently the third rule says that a GAP_ON_OFF trajectory can be either used for exiting the field or it must be
followed by a DUBINS_OFF or a REEDS_OFF trajectory. According to the fourth rule, a DUBINS_OFF or a REEDS_OFF
trajectory can be either used for exiting the field or it must be followed by a GAP_OFF_ON trajectory. We refer to
these rules as the trajectory sequence rules. Let us note that a trajectory used for exiting the field must end up on an
access segment.

A path is a sequence of k trajectories with a variety of these five types. Therefore, a trajectory Λi with a length
of ℓi where {i ∈ Î |i ⩽ k } is represented as ( (Pi , ϑi ), (P ′

i
, ϑ ′

i
), Γi

) where (Pi , ϑi ) represents its start point and direction,
(P ′

i
, ϑ ′

i
) represents its destination point and direction, and Γi precises its trajectory type. Assuming that the directions

of the robot and its implement are the same, Pi and P ′
i
represent the location of the implement. It is relatively straight-

forward to compute the location of the robot on the path when the distance between the implement and the robot
is known.

A DUBINS_ON trajectory can only be used to travel from one headland to another using a slight turn. The angle
between these two headlands must be between π −α and π+α where α = arcsin (

l
2∗γon

) , and l is the spacing between
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the turning lines.
Finally, we define the four following metrics that are used to check the suitability of the candidate solutions in

our approach.
Worked area: the worked area is the first of the key metrics in this approach. This metric is only computed for

STRAIGHT_ON and DUBINS_ON. For all the other types of trajectories, the worked area is zero. For a trajectory Λi , if
Γi is STRAIGHT_ON, then the worked area is given by w ∗ ℓi . If Γi is DUBINS_ON, the curve between Pi and P ′

i
is first

sampled to a set of points with a spacing of 0.5m between two consecutive points. Then for each pair of consecutive
samples and having the direction at each sample, the two lateral ends of the implement is computed and a trapezoid
is constructed. Finally the worked area is computed as the sum of areas of all trapezoids.

Overlap area: this metric, that measures the overlap area of two trajectories, is only computed for two trajecto-
ries of types STRAIGHT_ON, two DUBINS_ON, or one STRAIGHT_ON and one DUBINS_ON. Otherwise it is equal to
zero. Once the worked areas of the two trajectories are computed, the overlap area is deduced by calculating their
intersection.

Damage: this Boolean metric verifies whether the robot is crossing a trajectory that was previously worked
(types STRAIGHT_ON or DUBINS_ON), with a new trajectory while its implement is off (DUBINS_OFF, REEDS_OFF,
GAP_OFF_ON or GAP_ON_OFF). This avoids to unnecessarily damage the previously worked zones with the wheels
of the robot without working it again.

Inside: The last metric, named inside, is also Boolean. For a trajectory Λi if the robot and its implement remain
inside the metric is true, otherwise it is false.

4.4 | Exploration algorithm
The overall concept of the exploration algorithm is to take as input the result of the preprocessing, the access segments,
a set of hard constraints, γon , γof f , ℓt , and the coverage threshold, to progressively build a tree of nodes representing
possible sequences of trajectories (locations, directions, and trajectory types) satisfying the hard constraints. The
following sections detail the notion of node, the hard constraints, and the method used to build the tree.

4.4.1 | Nodes
Each node of the tree represents a possible candidate for the next step of the trajectory. It contains a flag representing
one of the five possible trajectory types, and a corresponding destination point and direction. A set of parent and child
nodes Np and Nc are represented respectively by (Pp , ϑp , Γp ) and (Pc , ϑc , Γc ) . Consequently, a trajectory Λc from Np

to Nc is represented as (
(Pp , ϑp ), (Pc , ϑc ), Γc

) .
The root of the tree is a specific node containing the entrance location and direction, and a default trajectory

type with the implement off. A leaf node is a specific node containing an exit point located on an access segment, a
direction, and a trajectory type with the implement off.

A solution is a path represented by a branch of the tree, i.e. a sequence of trajectories from the root to a leaf
node.

4.4.2 | Hard constraints
The hard constraints are Boolean constraints that must be satisfied by a solution to be valid. We defined five hard
constraints, most of them linked to one of the previously defined metrics: inside constraint, limited overlap constraint
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global overlap constraint, local loop constraint, damage constraint, switch constraint and minimum working distance con-
straint. A node Nc = (Pc , ϑc , Γc ) can be added to the tree as a child of Np = (Pp , ϑp , Γp ) only if the candidate trajectory
Λc

(
(Pp , ϑp ), (Pc , ϑc ), Γc

) satisfies all the hard constraints.
Inside constraint: according to the inside constraint, the inside metric of Λc must be true.
Damage constraint: the damage constraint ensures that the damage metric of Λc over trajectories constructed

for all ancestor nodes of Np remains false.
Limited overlap constraint: this constraint forbids overlaps in the center of the field, i.e. outside the headlands

and the gap covering trajectories.
Global overlap constraint: the global overlap constraint limits the overall overlap, within authorized zones, to a

certain threshold. When adding a new node, the overlap between Λc and all its ancestors is computed, and added
to a cumulative sum. When the cumulative overlap exceeds a global overlap threshold ∆g l obal over the surface of the
field, the branch is discarded. If a dividing line is provided, this metric is applied on each sub-field separately.

Local loop constraint: at a more local level, to avoid undesirable local loops, when adding a new node the overlap
between Λc and the ancestors is computed. If an overlap is found that exceeds ∆l ocal , which is a percentage of the
area of Λc named local loop threshold, then the branch is discarded. An exception is made to the local loop constraint
when the objective in terms of coverage rate is satisfied, in order to let the robot reach an access segment to exit the
field.

Switch constraint: in case a dividing line is provided, this constraint ensures that a switch between sub-fields is
authorized: it is if the worked area since the last switch is more than a threshold ∆swi t ch called switch threshold, or if
the objective in terms of coverage rate is already satisfied for the current sub-field.

The minimum working distance constraint: ensures that the sum of the lengths of consecutive trajectories of
type STRAIGHT_ON or DUBINS_ON is not lower than a threshold ∆min_d i st namedminimumworking distance threshold.
The main reason behind this constraint is that it is inconvenient and expensive to activate the implement over a
short distance. Therefore, after a trajectory of type STRAIGHT_ON or DUBINS_ON, only another STRAIGHT_ON or
DUBINS_ON trajectory is authorized if the minimum working distance constraint is not respected yet.

4.4.3 | Construction of the tree and its trajectories
The construction of the tree and its trajectories can be detailed at two different levels: the initialization, that defines
how the initial trajectories are created, and the node generation and exploration, that describes how back and forth
trajectories are created and added to the tree. In this section we also describe how and in which conditions a turning
space is used for the generation of turns that lead the robot to an inner or gap covering trajectory of a headland.

Initialization: The first step consists of initializing the tree by adding an entrance N0 = (P0, ϑ0, Γ0 ) to the tree and
generating the first branches of the tree. As illustrated in Fig. 3, three options can be followed to start working:
• go straight and start working immediately: in this case, the first trajectory will be of type GAP_OFF_ON to point

N1. After this, the next trajectory will have to be of type STRAIGHT_ON.
• cross the headland to point N2 with implement off. After this, the next trajectory has to be of type GAP_OFF_ON

then STRAIGHT_ON.
• turn immediately in the headland to points N3 or N4. After this, the next trajectory has to be of typeGAP_OFF_ON

then STRAIGHT_ON.
After being validated by the hard constraints, these nodes are added to the tree as children of N0 and further
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exploration is conducted on each leaf of the tree. In Fig. 3 gap covering trajectories are not illustrated because gap
covering trajectories are mostly for covering the unworked areas caused by transition trajectories, therefore they are
not used for initialization.
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F IGURE 3 Trajectory and tree representation of the initialization. The entrance and root of the tree N0 arerepresented by a red triangle. N1, N2, N3 and N4 are the first nodes that might be added to the tree as children of N0.Orange dashed lines represent trajectories from N0 toward its children

Node generation and exploration: after initializing the tree, a depth first exploration is performed. In general for
each unvisited leaf of the tree, new nodes are generated respecting the trajectory sequence rules. The nodes that
satisfy the hard constraints are added to the tree as the new children of the leaf. One of these children is then selected
for further node generation and exploration. If all of the generated nodes for a leaf violate at least one hard constraint,
the leaf is removed from the tree and the exploration continues on its siblings.

For each unvisited node Np = (Pp , ϑp , Γp ) , a ray rp that starts from Pp with the direction ϑp is generated. The
intersection of rp with inner borders of all headlands and all turning spaces is then calculated. The intersection of rp
with a headland inner border leads to the generation of a cycle of traversals and half-turns while an intersection with a
turning space leads to a headland switch. In case that the field polygon is divided into sub-polygons by a dividing line,
only the inner borders and turning spaces that are inside the same sub-polygon as Pp are considered for intersection
computation with rp . This is useful for limiting the unnecessary switches between sub-polygons.

Cycles of traversals and half-turns: a cycle of traversal and half-turn is a sequence of trajectories of types:
GAP_OFF_ON, STRAIGHT_ON, GAP_ON_OFF and DUBINS_OFF. They can be made either in the main part of the field
or within a headland along the boundary of the field.

As illustrated in Fig. 4, ray rp hits the vertical headland’s inner border on the right, called destination inner border,
at the position of Nc3. As a result, trajectories from Np to Nc3 with two intermediate nodes Nc1 and Nc3 are straight
trajectories of types GAP_OFF_ON, STRAIGHT_ON and GAP_ON_OFF respectively. To complete the cycle the possible
turns from Nc3 are calculated. The positions of Nc4 and Nc5 are determined by computing the intersection of rays
rr and r l with the destination inner border. These two rays are parallel to rp with a spacing of w . The direction at
Nc4 and Nc5 is the opposite direction of ϑp . In the particular case where we are close to a neighbor headland and the
trajectory is oblique to it, point Nc6 is also computed as the intersection of rays rr or r l and the inner border of the
neighbor headland. This allows for more options for the algorithm in terms of satisfaction of the various overlap and
damage constraints.

Note that in exceptional cases where the typical cycle does not satisfy the hard constraints, type REEDS_OFF is
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also examined for the last trajectory.
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F IGURE 4 trajectory and tree representation of a cycle of traversal and half-turn. Np is the selected leaf for
which the node generation is conducted. The purple point represents an exit node. For readability purposes, turning

spaces, inner and gap covering trajectories of headlands are not represented in this figure

headland switch: The process of traveling from one headland to an adjacent headland via a turning space is
referred to as headland switch. It is used to cover the headlands that were not worked due to the half-turns. It is also
useful for going from one sub-field to another, if a dividing line was provided to decompose the field polygon. Fig. 2a
and 2c illustrate a trajectory representation of different possibilities of headland switch and Fig. 2b demonstrates a
tree representation of Fig. 2c.

As illustrated in Figs. 2a and 2c, the position of Nc3 is the intersection of rp and a turning space referred to as
selected turning space. Sub-figure a illustrates the intersection of rp with a turning line. Sub-figure c represents a
complex case in which all possible ways to switch from the right headland to two possible neighbor headlands are
shown. In general complex cases happen only around a dividing line.

A headland switch is also a sequence of a GAP_OFF_ON, STRAIGHT_ON, GAP_ON_OFF and DUBINS_OFF trajec-
tories. The first three trajectories (trajectories from Np to Nc3 )), that are straight trajectories of types GAP_OFF_ON,
STRAIGHT_ON and GAP_ON_OFF, are used to arrive at the selected turning space. Afterwards, all possible turns from
Nc3 to other headlands at destination nodes (Nc4, ..., Nc10) are determined by computing the intersection of the inner
and gap covering trajectories of the target headlands with the corresponding turning spaces. The direction of a desti-
nation node corresponds to the direction of the target inner or gap covering trajectory. Their trajectory type is set to
DUBINS_OFF, therefore turns are generated by the Dubins method. If they do not satisfy the hard constraints, their
trajectory type is modified to REEDS_OFF and a turn generation with the Reeds-Shepp method is also examined.

The number of nodes generated to switch from one headland to another depends on the number of inner and
gap covering trajectories of the target headland. It also depends on whether an inner or gap covering trajectory of
the target headland intersects with an access segment or not.

Exiting the field: during the cycles of traversals and half-turns, if ray rp intersects with an access segment (green
solid line segment), a sequence of trajectories of type GAP_OFF_ON, STRAIGHT_ON and GAP_ON_OFF (illustrated by
Np → Nc1 → Nc7 → Nc8 in Fig. 4) is also generated to examine the possibility of exiting the field.

Another way of exiting the field is when working the headlands. If the current direction crosses a turning space,
and this turning space is adjacent to an access segment, then the possibility of turning to exit the field with a node of
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type DUBINS_OFF is examined. This situation is illustrated in Fig. 2c with the sequence of nodes Np → Nc1 → Nc2 →
Nc3 → Nc11.

In these two cases, a leaf node is generated to finish the branch. Then the sum of the worked areas of all the
trajectories in the branch is computed. The branch is kept only if this sum is greater or equal to a predefined coverage
threshold ∆cov . We say that a branch satisfying this criterion and the hard constraints is valid. The output of the
exploration algorithm is a set of valid solutions (tree of valid branches) that is referred to as the solution space.

4.5 | Similarity check and selection of optimal solutions
Once the solution space is generated, it is usually wide and browsing all the solutions would be a tedious task for the
user. In order to present to the user only a few of the most relevant solutions, we first define a cost function based
on the metrics, then we explain how we group the solutions into families based on a similarity criterion and select the
optimal solution of each family.

In order to compute and compare the solutions found by the exploration method, we propose a cost function
to minimize, built as a weighted average of four soft constraints: 1) Scov : maximizing the coverage rate, 2) Sov l :
minimizing the overlaps, 3) Snwd : minimizing the non-working distance and 4) Sotm : minimizing the operation time.

Maximizing the coverage rate: the first soft constraint Scov is calculated as follows:

Scov = 1 − Ci − Cmin

Cmax − Cmin
(1)

where Ci is the area covered by solution i , and Cmin and Cmax are respectively the minimum and the maximum
worked area over the entire solution space. Therefore minimizing Scov leads to maximizing the coverage rate.

Minimizing the overlaps: the second soft constraint Sov l is calculated as follows:

Sov l =
O i − Omin

Omax − Omin
(2)

where O i is the overlap area of solution i , and Omin and Omax are respectively the minimum and the maximum
overlap area over the entire solution space.

Minimizing the operation time: the total time required to travel all trajectories of a solution i , denoted Ti , is
computed as follows:

Ti =
Lon
i

Von
+
Lof f
i

Vof f
+
L
g ap
i

Vg ap
(3)

where Lon
i

is the length of all STRAIGHT_ON and DUBINS_ON trajectories, Lof f
i

is the length of all DUBINS_OFF
and REEDS_OFF trajectories, and L

g ap
i

is the length of all GAP_OFF_ON and GAP_ON_OFF trajectories and for solution
i . Von , Vof f andVg ap are respectively the average speed of the robot when its implement is in on, off and transition
modes. Therefore, the fourth constraint Sotm is defined as follows:
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Sotm =
Ti − Tmin

Tmax − Tmin
(4)

whereTmin andTmax are respectively the minimum and the maximum traveled time over solutions of the solution
space.

Minimizing the non-working distance: the third constraint Snwd is the sum of the lengths of all trajectories when
the implement is not on, i.e. allDUBINS_OFF, REEDS_OFF,GAP_OFF_ON andGAP_ON_OFF trajectories. It is calculated
as follows:

Snwd =
Lnw
i

− Lnw
mi n

Lnw
max − Lnw

mi n

(5)

where Lnw
i

= Lof f
i

+ L
g ap
i

, and Lnw
mi n

and Lnw
max are respectively defined in a similar fashion as the minimum and

the maximum non-working distances over the entire solution space.
Final cost function: the final cost function f is defined as follows:

f =
(Scov ∗Wcov ) + (Sov l ∗Wov l ) + (Sotm ∗Wotm ) + (Snwd ∗Wnwd )

Wcov +Wov l +Wotm +Wnwd
(6)

whereWcov ,Wov l ,Wotm , andWnwd are weights given as input for the corresponding cost functions.
The generated solution space may contain several very similar solutions where their differences could be only one

turn or two. To eliminate sub-optimal solutions while still preserving a variety of propositions, they are grouped into
families of solutions based on a similarity criterion, and only the solution with the lowest cost within each family is
kept. The similarity criterion is based on the general direction of the solutions, which corresponds to the main direction
of the back and forth trajectories, i.e. the ones most frequently used inside the field polygon. If the field polygon is
divided into sub-polygons, the general direction is computed for each sub-polygon. Therefore, two solutions are
considered similar, and belonging to the same family, if they have the same general direction(s). After applying the
similarity criterion and keeping only one optimal trajectory per family, the best solution of each family is presented to
the user, and the most optimal solution among them is highlighted. The number of families is limited to the number of
possible general directions, which corresponds to the number of borders of the field.

5 | RESULTS AND DISCUSSION
5.1 | Experiment
This approach was implemented in a program written in C++, that includes a GUI to set the input variables and vi-
sualize the generated solutions. To accelerate the computations, all the processes can run in parallel thanks to an
implementation using OpenMP. The program was run on an Intel Xeon(R) W-2135 CPU @ 3.70GHz × 12 with 32GB
RAM.

A collection of thirty fields from the real world were chosen to evaluate the proposed approach. These fields
range in area from 1.83 to 13.20 hectares. Twenty fields have a simple shape for which no field decomposition was
required, while ten fields have a complex shape for which at least two different dividing lines were provided to try
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different field decompositions. To extract the data of these fields, the annotation tool of Géoportail was used. At least
one access segment and two entrances were considered for each field.

The algorithm was run on each field with the variety of given dividing lines and entrances. For each field, we
obtained several families of solutions, one best path for each family, one of them being the most optimal solution
overall. All the best paths were compared to the ground truth, by visually comparing the results with the reference
satellite image of the field, where the tracks are visible. Among the best solutions, the one found as having the best
visual similarity with the reference satellite image is referred to as the most similar solution. The general directions
of back and forth moves as well as how a field is divided into sub-fields were used as the similarity criterion. We
assumed the path was chosen by the farmer who is an expert and is completely familiar with the field. Although it
was relatively straightforward to delineate the headlands and the general directions of back and forth moves from the
satellite images, determining the parameters of the vehicle and the implement, or the maximum coverage rate and
overlap from these images only was almost impossible. These parameters were guessed at best, as average settings,
and similar for all fields. The parameters of our approach are given in Table 1.

Parameter Description Value
w working width 3m

γon minimum turning radius - implement on 15m

γof f minimum turning radius - implement off 1.5m

Von average speed - implement on 3.5m/s

Vg ap average speed - implement transition 2.5m/s

Vof f average speed - implement off 1.5m/s

ℓt transition trajectory length 2m

ℓo robot-implement offset 2m

p number of inner trajectories of headlands 2

Parameter Description Value
∆cov coverage threshold 97%

∆g l obal global overlap threshold 5%
∆l ocal local loop threshold 95%
∆swi t ch switch threshold 93%
∆min_d i st minimum working distance threshold 8m

Wcov weight of Scov 0.6

Wov l weight of Sov l 0.1

Wnwd weight of Snwd 0.2

Wotm weight of Sotm 0.1

TABLE 1 The input and parameters of the proposed approach

To avoid weighing down the article, we give the information about the complete dataset and detailed results as
Supplementary Materials. In this paper, we present the average results and illustrate them with a subset of fields to
highlight some interesting properties. The Supplementary Materials contain for each field of the complete dataset a
link to the field data in the web application of Géoportail, the coordinates of a point inside the field, figures illustrating
the shape and the results, entrances and access segments, and the full results in a table.

5.2 | Analysis of the results
The average results of the evaluation are summarized in Table 2. According to these statistics, for simple fields our
approach was able to achieve a coverage rate of 98.69% while limiting the overlap to 3.00% in average. For complex
fields the average coverage rate was 98.23% while the average overlap was limited to 3.09%. This accomplishment is
mainly due to the capability of our approach to cover the headlands and deal with curved edges.

For 85% of simple fields, the most optimal solutions and the solution most similar to the satellite images were the
same. For the other 15% of cases, the most similar solution was found by our approach, but not considered as being
the most optimal according to the predefined criteria.

For complex fields, 70% of the most optimal solutions were identical to the most similar to the satellite images.
In 10% of the cases, the most similar solution was also found by our approach, but not considered as being the most
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optimal. For the remaining 20%, no similar solution was found. We identified two possible reasons. First, as previ-
ously mentioned, we guessed the parameters at best. Perhaps the different values we imposed for the thresholds and
the vehicle parameters were not the ones used by the farmer. Adjusting them, for instance decreasing the coverage
threshold ∆cov and/or increasing the global overlap threshold ∆g l obal , may lead to more solutions and consequently
increase the possibility of finding the most similar solution. Second, some constraints or preferences may be consid-
ered by the farmer that were not applied in our approach. For instance, the farmer may have used visual clues to help
working the land which may have had an influence on the choice of the trajectories, while we did not consider this as
a useful factor for a robot.

As previouslymentioned, the total number of explorations for a field depends on the number of selected entrances
and the number of provided dividing lines. Therefor, for each field several explorationswere performed. Consequently,
in Table 2, single exploration time contains the average and standard deviation over all explorations performed on all
simple and complex fields.

Area (ha) Coverage Overlap Single exploration time (s) Selection time (s)
Mean STD Mean STD Mean STD Mean STD Mean STD
4.87 2.82 98.69% 0.62% 3.00% 1.39% 64.70 81.21 1.71 2.71

(a) Simple fields
Area (ha) Coverage Overlap Single exploration time (s) Selection time (s)
Mean STD Mean STD Mean STD Mean STD Mean STD
4.69 2.41 98.23% 0.58% 3.09% 1.17% 617.20 610.02 10.60 15.73

(b) Complex fields
TABLE 2 Numerical results of the evaluation

In the following, we illustrate the results on a sample of six fields extracted from the dataset: four simple and two
complex fields. The name of each sample correspond to their original name in the dataset provided in Supplementary
Materials. The shapes and input data of the six fields are shown in Fig. 5. Each field is represented by a set of
counterclockwise ordered points. For the complex fields, respectively two and three dividing lines are provided and
shown in brown. Table 3 contains a link to the data of these fields in the web application of Géoportail as well as the
coordinates of a point inside the field.

Field S6 S7 S8 S9 C4 C2
Link bit.ly/3WGTfER bit.ly/3DP8vqG bit.ly/3NLmQJf bit.ly/3EeTvUo bit.ly/3E3l8OK bit.ly/3zZK1dg

Lon / Lat 7.4311◦ / 48.8245◦ 2.4845◦ / 50.3106◦ 7.5924◦ / 48.831◦ 7.4641◦ / 48.8146◦ 3.1021◦ / 48.2449◦ 2.7067◦ / 50.3336◦
TABLE 3 Links to the sample fields from the dataset in Géoportail and coordinates of a point inside the field

Fig. 6 illustrates the results obtained on the six fields, and Table 4 summarizes the numerical results. As illustrated
in the figure, our approach not only successfully covered unworked area caused by half-turns and gaps, but also
intelligently selected the headlands to perform half-turns. Fig. 6g illustrate the capacity of our approach to deal with
curved trajectories within headlands.

For complex fields, our approach was not only capable of finding the most optimal solution but also determined

https://bit.ly/3WGTfER
https://bit.ly/3DP8vqG
https://bit.ly/3NLmQJf
https://bit.ly/3EeTvUo
http://bit.ly/3E3l8OK
https://bit.ly/3zZK1dg
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(a) Field S6 - 2.24ha (b) Field S7 -
4.58ha

(c) Field S8 -
4.22ha

(d) Field S9 - 2.55ha

(e) Field C4 - 6.25ha (f) Field C2 - 2.21ha
F IGURE 5 Sample of six fields from the dataset. A field polygon is represented by green and black line segments

where green segments are accessible edges of the field. Dividing lines are represented in brown. Entrances are
represented by red arrows

Field Exploration Similarity check and selection of optimal solutions
total Solutions time (s ) time (s ) Scov ∗Wcov Sov l ∗Wov l Snwd ∗Wnwd Sotm ∗Wotm f Coverage Overlap

S6 2 9459 147.30 0.24 0.000 0.081 0.038 0.049 0.168 98.43% 4.42%
S7 2 2511 22.32 0.07 0.000 0.036 0.022 0.044 0.101 98.58% 1.80%
S8 2 1258 42.16 0.06 0.000 0.048 0.012 0.023 0.083 98.35% 2.66%
S9 2 186 75.482 0.01 0.000 0.099 0.073 0.085 0.256 97.77% 4.87%
C4 9 280782 2848.74 12.32 0.056 0.036 0.011 0.017 0.121 98.91% 2.01%
C2 12 82 599.12 0.00 0.000 0.048 0.010 0.014 0.072 97.64% 3.61%

(a) Most optimal solution

Field Exploration Similarity check and selection of optimal solutions
total Solutions time (s ) time (s ) Scov ∗Wcov Sov l ∗Wov l Snwd ∗Wnwd Sotm ∗Wotm f Coverage Overlap

S6 2 9459 147.30 0.24 0.083 0.050 0.059 0.045 0.237 98.23% 3.48%
C2 12 82 599.12 0.00 0.398 0.038 0.013 0.012 0.461 97.22% 3.35%

(b) Most similar solution
TABLE 4 Numerical results of the illustration dataset. Scov , Sov l , Snwd , Sotm and f are computed by equations 1,
2, 5, 4 and 6 respectively. The most optimal and most similar solutions are the same for Fields S7, S8, S9 and C4
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(a) S6 - most optimal solution (b) S6 - most similar solution (c) S6 - satellite image

(d) S7 - most optimal & similar
solution

(e) S7 - satellite image

(g) S8 - most optimal & similar solution (h) S8 - satellite image
F IGURE 6 Obtained results on illustration dataset and reference satellite image. The black arrows indicate

where the robot enters and exits
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(i) S9 - most optimal & similar solution (j) S9 - satellite image

(l) C4 - most optimal solution (m) C4 - satellite image

(n) C2 - most optimal solution (o) C2 - most similar solution (p) C2 - satellite image
F IGURE 6 Obtained results on illustration dataset and reference satellite image. The black arrows indicate

where the robot enters and exits. (cont.)
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which dividing line leads to a better field decomposition. The results generated for the complex fields are represented
in Figs. 6l, 6n and 6o.

The generation of the solution space for Fields C4 and C2 took almost 47 and 10 minutes respectively. Indeed
for these fields, respectively nine and twelve successive explorations had to be performed to take into account all the
combinations of entries and dividing lines. Computing in a preliminary step a smart polygon decomposition adapted
to the agricultural use case, that considers not only the geometry of the field but also for instance the inclination,
could avoid unnecessary explorations and speed up the process for complex fields.

As illustrated in Figs. 6l, 6n and 6m, after covering the main part and some parts of the headlands of the first
sub-field, the path goes to the second sub-field and covers it entirely. Finally it comes again in the first sub-field and
covers its remaining headlands and exits the field. This kind of solutions cannot be found in classic approaches that
consist of two sequential steps (CPP and AVRP). This highlights the interest of our one-step approach. The following
sections highlight some other interesting properties of the approach.

5.2.1 | Interest of grouping solutions into families
Fig. 7 illustrates the most optimal solution from three different families for Field S6. Table 5 summarizes the numerical
results for each solution. As can be observed, the difference between the results for these families is rather small.
However, as illustrated in Fig. 7 the solutions look completely different in terms of their general direction. Two of
them have similar entry and exit, while the first one uses a different exit. This illustrates the interest of clustering the
results into different families to identify and present a variety of good solutions to the farmer.

(a) S6 - first family (b) S6 - second family (c) S6 - third family
F IGURE 7 Most optimal solution for different families for Field S6. The black arrows indicate where the robot

enters and exits

5.2.2 | Benefit of multiple entrances
Table 6 summarizes the numerical result for each entrance of Field S9 separately. The most optimal solution was
through E1. Considering E2 as the entrance, our approach was also capable to find some acceptable results. However
they were not as good as the one found while considering E1. That means, taking into account more entrances
enhances the probability of finding a better result. However it also increases the exploration time. In this specific
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case, taking E1 into account in addition to E2 increased the coverage rate by 0.71% and nearly doubled the exploration
time.

5.2.3 | Impact of field accessibility
Fig. 8 illustrates the most optimal solutions for two scenarios on Field S7: in the first one the field is only accessible
from its upper edge, which corresponds to the real world scenario, and in the second one it is accessible from all its
edges, which is an oversimplification. Table 7 summarizes the numerical results for each scenario. With the second
scenario, we obtained a better solution according to the defined criteria. However, in the real world this solutionwould
not be feasible, as the robot would exit to the neighbor’s field at the bottom. Therefore, an inaccurate description of
the accessibility of a field may lead to an unfeasible result. In some cases, it may damage the robot or the neighbor’s
field.

(a) S7 - one accessible edge (b) S7 - all edges are accessible
F IGURE 8 Most optimal solutions for Field S7 while considering it is only accessible from its upper edge (a) or

from all its edges (b). The black arrows indicate where the robot enters and exits

5.2.4 | Forward and reverse half-turns
To demonstrate our method’s ability to perform half-turns other than U-turns, one last test was performed on Field
S7 where all parameters remained the same except γof f that was set to 2m. As illustrated in Fig. 9, our approach
chose to perform half-turns using reverse moves on the left side of the field, while in the right side no reverse moves
was required. Table 8 summarizes the numerical results for this test.
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Field Figure Scov ∗Wcov Sov l ∗Wov l Snwd ∗Wnwd Sotm ∗Wotm f Coverage Overlap
S6 7a 0.000 0.081 0.038 0.049 0.168 98.43% 4.42%
S6 7b 0.083 0.050 0.059 0.045 0.237 98.23% 3.48%
S6 7c 0.312 0.099 0.181 0.094 0.685 97.68% 4.95%

TABLE 5 Numerical results for different families for Field S6. Scov , Sov l , Snwd , Sotm and f are computed by
equations 1, 2, 5, 4 and 6 respectively

Field Entrance Exploration Similarity check and selection of optimal solutions
Solutions time (s ) Scov ∗Wcov Sov l ∗Wov l Snwd ∗Wnwd Sotm ∗Wotm f Coverage Overlap

S9 E1 168 39.79 0.000 0.099 0.073 0.085 0.256 97.77% 4.87%
S9 E2 18 35.69 0.558 0.022 0.000 0.000 0.580 97.06% 3.09%

TABLE 6 Numerical results on Field S9 for each of its entrances

Field accessible edges Exploration Similarity check and selection of optimal solutions
Solutions time (s ) time (s ) Cover age Over l ap

S7 1 edge 2511 22.32 0.07 98.58% 1.80%
S7 all edges 10137 35.4729 0.30 98.61% 0.88%

TABLE 7 Comparison of results over Field S7 while considering it is accessible only by its upper edge (real world
scenario) and all its edges

Field Exploration Similarity check and selection of optimal solutions
total Solutions time (s ) time (s ) Scov ∗Wcov Sov l ∗Wov l Snwd ∗Wnwd Sotm ∗Wotm f Coverage Overlap

S7 2 135 7.70 0.02 0.002 0.062 0.059 0.065 0.187 98.46% 2.96%
TABLE 8 Numerical results of Field S7 while γof f was set to 2m. Scov , Sov l , Snwd , Sotm and f are computed by

equations 1, 2, 5, 4 and 6 respectively

F IGURE 9 Most optimal solutions for Field S7 when γof f was set to 2m. The black arrows indicate where the
robot enters and exits
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5.2.5 | Ground truth and parameters
In this kind of study, it was difficult to compare our approach to previous approaches from the literature due to
the very different nature of the previous approaches, the variety of constraints taken into account or not, and the
lack of standardized dataset. We chose to visually compare our results to a ground truth made of satellite images.
However, this choice also has some limitations, mostly due to the variety of themachinery, and the difference between
the preferences and habits of a human operator and the constraints applicable to a robot. Nevertheless, we could
demonstrate in this paper that our approach can provide complete optimal paths including headlands, comparable to
the current practice, applicable to a large number of configurations and use cases, completely parameterizable, in a
reasonable time.

6 | CONCLUSION AND PERSPECTIVES
In this paper, a novel CCPP approach based on tree explorationwas proposed in order to generate an optimal path that
starts from an entrance location, covers the field and the headlands and ends on one of accessible edges of the field. To
accomplish this task, first, one or several explorations were conducted while considering multiple entrances and hard
constraints. If some dividing lines were also provided, a combination of entrances and dividing lines were considered in
the exploration. The result of this exploration was a solution space containing all possible solutions. Finally a similarity
check and selection of optimal solutions was applied to extract a variety of most optimal paths without redundancies,
by minimizing a weighted average cost function of the soft constraints. The goal of this approach was to maximize
the worked area while minimizing the overlaps, the non-working path length and the traveled time.

This study revealed that considering multiple entrances could lead to better solutions. It was also shown that
considering multiple dividing lines for fields with a complex shape increased the probability of finding a better solution.
It also showed how critical it was to consider the actual accessibility of the field.

Currently, the proposed approach does not account for inclination and obstacles. Most often, modern robots
include sensors to avoid moving obstacles, that could also be used to deal with static obstacles. However, this could
cause some unwanted overlaps. A first perspective can be to consider the static obstacles inside a field beforehand,
to avoid them with a more optimal route. The second perspective is to consider the inclination and the elevation
across the field to correct overlaps and skips caused by the projection of a 3D surface to a 2D plane. This information
could also be integrated as a new soft constraint to minimize the soil erosion and/or the energy consumption. Other
perspectives include considering one or several mobile service units on the accessible edges of the field, and extension
to a multi-robot approach.
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