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Abstract

From decomposition method for operators, we consider Newton-like iterative
processes for approximating solutions of nonlinear operators in Banach spaces.
These iterative processes maintain the quadratic convergence of Newton’s method.
Since the operator decomposition method has its highest degree of application in
non-differentiable situations, we construct Newton-type methods using symmetric
divided differences, which allow us to improve the accessibility of the methods.
Experimentally, by studying the basins of attraction of these methods, observe an
improvement in the accessibility of derivative-free iterative processes that are nor-
mally used in these non-differentiable situations, such as the classic Steffensen’s
method. In addition, we study both the local and semi-local convergence of the
Newton-type methods considered.
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1 INTRODUCTION

In this paper, we study the problem of approximating a solution of a nonlinear equation

𝐻(𝑥) = 0, (1)

where 𝐻 ∶ Ω ⊆ 𝑋 → 𝑋 is an operator defined on a nonempty convex subset Ω of a Banach space 𝑋. If 𝐻 is a Fréchet
differentiable operator, Newton’s method5 is the most used point-to-point iterative process to solve (1), due to its computational
efficiency, and it is given by

𝑥𝑛+1 = 𝑥𝑛 −
[

𝐻 ′(𝑥𝑛)
]−1𝐻(𝑥𝑛), 𝑛 ≥ 0; 𝑥0 ∈ Ω is given. (2)

In addition, this method has good accessibility, so that the domain of starting points of the method is large, but this method needs
the existence of 𝐻 ′(𝑥). For this reason, Newton’s method cannot be applied when 𝐻 is non-differentiable. In this situation,
point-to-point derivative-free iterative processes are usually considered . Our main goal in this work is to consider an iterative
process that has the characteristics of Newton’s method, for 𝐻 differentiable, but it is also applicable in situations where the
operator 𝐻 is not differentiable, maintaining, in the non-differentiable situation, the important properties that the considered
iterative process verifies in the differentiable case. To achieve this goal, the first step is to approximate the operator 𝐻 ′ when
the operator 𝐻 is non-differentiable. It is common to approximate the derivatives by divided differences using a numerical
derivation formula, and as a consequence, iterative processes that use divided differences instead of derivatives are obtained.
We shall use, as in11, the following well known definition for the divided differences of an operator. Let us denote by (𝑋,𝑋)
the space of bounded linear operators from 𝑋 to𝑋. An operator [𝑥, 𝑦;𝐷] ∈ (𝑋,𝑋) is called a first-order divided difference
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for the operator 𝐷 ∶ Ω ⊆ 𝑋 → 𝑋, on the points 𝑥 and 𝑦 (𝑥 ≠ 𝑦), if the following equality holds

[𝑥, 𝑦;𝐷](𝑥 − 𝑦) = 𝐷(𝑥) −𝐷(𝑦). (3)

In16, Kung and Traub presented a class of point-to-point derivative-free iterative processes which are as simple as Newton’s
method, having quadratic convergence and the same computational efficiency as Newton’s method but, in contrast, this class
of iterative processes does not use 𝐻 ′(𝑥). These iterative processes contain Steffensen’s method as a special case, where the
evaluation of 𝐻 ′(𝑥) in each step of Newton’s method is approximated by the first-order divided difference [𝑥, 𝑥 + 𝐻(𝑥);𝐻].
Steffensen’s method has been widely studied (1,3,4) and their algorithm is

{

𝑥0 given in Ω,
𝑥𝑛+1 = 𝑥𝑛 − [𝑥𝑛, 𝑥𝑛 +𝐻(𝑥𝑛);𝐻]−1𝐻(𝑥𝑛), 𝑛 ≥ 0.

(4)

This method has quadratic convergence and the same computational efficiency as Newton’s method.

Other types of approximations to the derivative of the operator have been also considered and Newton-like methods are obtained:

𝑥𝑛+1 = 𝑥𝑛 −
[

𝐴(𝑥𝑛)
]−1𝐻(𝑥𝑛), 𝑛 ≥ 0, 𝑥0 ∈ Ω.

where 𝐴(𝑥) ∈ (𝑋,𝑋) is an approximation of 𝐻 ′(𝑥) for each 𝑥 ∈ 𝑋. The convergence analysis has been given by several
authors (5,7).

Methods using divided differences in their algorithm have a drawback. As we discuss in Section 2, the accessibility of these
methods to the solution of the equation is poor, so that the domains of starting points are reduced. In contrast, this is one of the
favorable features of Newton’s method (2). So, in this work, we try to improve the accessibility of Steffensen’s method. We use
a new idea that is to perform a decomposition of the operator 𝐻 that defines the equation 𝐻(𝑥) = 0. So, we consider

𝐻(𝑥) = 𝐹 (𝑥) + 𝐺(𝑥),

where 𝐹 ,𝐺 ∶ Ω ⊆ 𝑋 → 𝑋 are nonlinear operators, 𝐹 is differentiable ang 𝐺 is continuous but non-differentiable.

Then, we consider
𝐴(𝑥𝑛) = 𝐹 ′(𝑥𝑛) +

[

𝑥𝑛 − 𝜀𝐻(𝑥𝑛), 𝑥𝑛 + 𝜀𝐻(𝑥𝑛);𝐺
]

, with 𝜀 > 0,
and obtain the following Newton-Steffensen-type iterative processes:

{

𝑥0 ∈ Ω and ε > 0 are given,
𝑥𝑛+1 = 𝑥𝑛 − (𝐹 ′(𝑥𝑛) +

[

𝑥𝑛 − 𝜀𝐻(𝑥𝑛), 𝑥𝑛 + 𝜀𝐻(𝑥𝑛);𝐺
]

)−1𝐻(𝑥𝑛), 𝑛 ≥ 0.
(5)

Notice that, if we consider the case in which the operator 𝐻 is continuous but non-differentiable, such that 𝐻(𝑥) = 𝐹 (𝑥)+𝐺(𝑥),
where 𝐹 is Fréchet differentiable and 𝐺 is continuous but non-differentiable, there are two advantages of process (5): first, the
differentiable part of the operator is considered in the optimal situation, namely 𝐹 ′(𝑥𝑛); and second, for the non-differentiable
part, the symmetric first-order divided difference

[

𝑥𝑛 − 𝜀𝐻(𝑥𝑛), 𝑥𝑛 + 𝜀𝐻(𝑥𝑛);𝐺
]

is considered, which improves the results
given by [𝑥𝑛, 𝑥𝑛 + 𝐻(𝑥𝑛);𝐻]. Thus, a more suitable situation for 𝐴(𝑥𝑛) is considered than the known ones until now. Notice
that if 𝐻 is Fréchet differentiable and 𝐺 = 0, Newton’s method (2) is obtained and if 𝐹 = 0, then we obtain a Steffensen-type
method with quadratic convergence2.

In this paper, we start in Section 2 by seeing that the iterative processes considered improve the accessibility of the classical
Steffensen’s method, one of the most widely used derivative-free methods. After this motivation of our work, we dedicate
Sections 3 and 4 to the study of local and semilocal convergence of methods (5) respectively. Finally, a numerical test is presented
where the application of methods (5) is justified.

Throughout the paper, we suppose that there exists a divided difference operator [𝑥, 𝑦;𝐺] for each pair of distinct points 𝑥, 𝑦 ∈ Ω.
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2 MOTIVATION

As we have already mentioned, Steffensen’s method is a version of Newton’s method in which the derivative is replaced by a
divided difference operator. This method is as simple as Newton’s, it has the same efficiency, the quadratic order of convergence
that characterizes Newton’s method, and it is also applicable to non-differentiable operators. A priori it seems a more useful
method than Newton’s. However, it has a major flaw, which is that the region of accessibility of this method is considerably
reduced with respect to Newton’s. Notice that method (5) is the Newton’s method when the operator 𝐻 is differentiable and we
consider 𝐺 = 0.

In practice, we estimate the accessibility of a method by depicting its basins of attraction (the set of points in space such that the
initial conditions chosen in the dynamic set evolve to a particular attractor15,18) when it is applied to solve a complex equation
𝐻(𝑧) = 0, where 𝐻 ∶ ℂ → ℂ and 𝑧 ∈ ℂ.

In this article we are going to show the accesibility of the Newton and Steffensen method that are generated by solving the com-
plex equation 𝐻(𝑧) = 𝑧3 + 𝑧2 − 2. We know that the solutions of this equation are 𝑧∗1 = 1, 𝑧∗2 = −1 + −𝑖 and 𝑧∗3 = −1 + 𝑖.

We are interested in showing the basins of attraction of the methods for comparison. We will choose the rectangle 𝐷 =
[−2.5, 2.5]× [−2.5, 2.5] that contains the three solutions. We will take a grid of 1000×1000 points in 𝐷 that will be the starting
points and we will begin to iterate in both methods. The initial points that are in the rectangle can converge to one of the solu-
tions or diverge according to the iterative method we use.

For both methods we choose the stopping criterion 10−3 and a maximum of 50 iterations. If the tolerance is not less than 10−3 in
50 iterations, we will say that the method does not converge starting from that initial point and this point will be colored black.
In case it converges, we have assigned a different color depending on which solution converges to. Specifically, we have chosen
the orange color for the basins of attraction of the real root 𝑧∗1 = 1 and the colors green and blue for the basin of attraction of the
complex roots 𝑧∗2 and 𝑧∗3 , respectively. Note that for all the starting points 𝑧0 ∈ 𝐷 the real part is located on the abscissa axis
and the imaginary part on the ordinate axis.

(a) Newton’s method. (b) Steffensen’s method.

FIGURE 1 Basins of attraction for the polynomial 𝐻(𝑧) = 𝑧3 + 𝑧2 − 2.

We observe in the Figure 1 that Steffensen’s accessibility is clearly worse than Newton’s, and therefore of method (5). We can
see this in the black areas that are the points of the rectangle that, after 50 iterations, do not match any of the three solutions. How-
ever, it is sometimes necessary to use this method without derivatives despite its low accessibility due to the non-applicability
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of Newton when 𝐻 is non-differentiable.

If we now apply the method (5) to solve the complex equation 𝐻(𝑧) = 𝑧3 + 𝑧2 − 2 assuming 𝐹 (𝑧) = 0, 𝐺(𝑧) = 𝑧3 + 𝑧2 − 2 and
𝜀 = 1, we see in Figure 1 that the accessibility improves with respect to Steffensen’s method since we use centered divided dif-
ferences. If we also choose 𝜀 = 0.001, the basins of attraction shown in Figure 2 are more similar to those of Newton’s method
than to those of Steffensen’s method even though we consider 𝐹 (𝑧) = 0 and do not use derivatives.

(a) 𝜀 = 1. (b) 𝜀 = 0.001.

FIGURE 2 𝐻(𝑧) = 𝑧3 + 𝑧2 − 2 for the iterative method (5).

In addition to the dynamic planes, we would like to see numerically that the accessibility of the method (5) is quite close to that
of Newton’s method. In Table 1 we study the percentage of initial points that converge to some solution. Also in this table we
can observe the average number of iterations required for each method to achieve convergence, taking into account that we work
with a maximum of 50 iterations.

TABLE 1 Comparison of the percentage and the mean of the methods.

Method 𝜀 percentage mean

Newton 99.9998% 5.7795
Steffensen 10.72645% 45.6607
Method (5) 1 30.2849% 36.7588
Method (5) 0.001 99.9378% 5.7988

As we see both in the dynamical planes and in the table, the method (5) greatly improves the accessibility of the Steffensen
method and, in turn, is applicable to non-differentiable operators. For this reason, our goal in this article is to decompose the
nonlinear operator into the sum of a differentiable and a non-differentiable part, if possible, trying to preserve the good acces-
sibility of Newton’s method for the differentiable part of 𝐻 .

Next, see Figure 3 , we are going to see how the accessibility of Steffensen’s method improves using Newton-Steffensen’s
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method with advanced divided differences of the article13 and the method (5) for the non-differentiable equation 𝐻(𝑧) =
𝑧2 + |𝑧| − 2 = 0. We know that the solutions of this equation are 𝑧∗1 = 1 and 𝑧∗2 = −1. In the case of Newton-Steffensen-type
methods, we decompose 𝐻(𝑧) into 𝐹 (𝑧) = 𝑧2−2, the differentiable part of the equation, and 𝐺(𝑧) = |𝑧| , the non-differentiable
part.

We see how the both methods, Newton-Steffensen method and (5), improve the accessibility of the Steffensen method and, in
turn, are applicable to non-differentiable operators.

Steffensen’s method. Newton-Steffensen’s method. Method (5) for 𝜀 = 0.001.

FIGURE 3 Basins of attraction for the non-differentiable equation 𝐻(𝑧) = 𝑧2 + |𝑧| − 2 = 0.

Another motivation for this work is to study how the centered divided difference operator used in (5) improves the Newton-
Steffensen method, which uses leading divided differences. In the case of these two methods, which of the two has better
accessibility is not so reflected, since no non-convergence zones are seen. The only thing that should be noted is that the basins
of attraction of the solutions for the method (5) are symmetric while for the Newton-Steffensen method more initial points con-
verge to the solution 𝑧∗2 than a 𝑧∗1.

To better see the differences between three methods in the non-differentiable case, we study in Table 2 the percentage of initial
points that converge to any of the solutions and the mean of iterations necessary to do so, taking into account that the maximum
number iterations is 50.

TABLE 2 Comparison of the percentage and the mean of methods.

Method percentage mean

Steffensen 77.2919% 15.8885
Newton-Steffensen 100% 4.5630

Method (5) 100% 4.5091

Finally, see Figure 4 , using the same non-differentiable operator, we are going to study the accessibility of method (5) for dif-
ferent values of the 𝜀 parameter. To better see the different dynamic planes generated by the different values of 𝜖, we are going
to study the accessibility of the previous equation for a maximum of 25 iterations. That is, all those points that have not satisfied
the 10−3 tolerance in less than 25 iterations, will belong to the black zone in each of the dynamic planes. Observing figures 4 ,
we can conclude that, for smaller values of 𝜀, the convergence speed improves considerably since in the cases 𝜀 = 1 and 𝜖 = 10
we can observe more extended black areas, that is, initial points that do not converge to any of the two solutions in 25 iterations.
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𝜀 = 10. 𝜀 = 1. 𝜀 = 0.001.

FIGURE 4 Basins of attraction for (5), for different values of 𝜀, for the non-differentiable equation 𝐻(𝑧) = 𝑧2 + |𝑧| − 2 = 0.

3 LOCAL ERROR AND LOCAL CONVERGENCE

In this section, firstly we study the local order of convergence for the method given by (5), assuming that the nonlinear operator H
is differentiable and we can obtain Taylor’s expansion in a neighborhood of the solution 𝑥∗, thus, we can obtain an expression of
the error. Secondly, we pay our attention to the analysis of the local convergence. The study of the local convergence of an iterative
process is based on demanding conditions in the solution 𝑥∗, from certain conditions on the operator H, and provide the so-
called ball of convergence of the iterative process, that shows the accessibility to the solution 𝑥∗ from the initial approximations
belonging to the ball

3.1 Local order of convergence
First of all, as usual8,9,10, we consider the case in which the operator 𝐻 ∶ Ω ⊆ 𝑋 → 𝑋 is sufficiently differentiable and any
decomposition is performed 𝐻(𝑥) = 𝐹 (𝑥) +𝐺(𝑥). This will allow us to obtain the error equation for the decomposition method
(5) and thus obtain its order of convergence.

From the Genochi-Hermite formula (see16) for the divided difference operator

[𝑥 + ℎ, 𝑥 − ℎ;𝐺] = 1
2

1

∫
−1

𝐺′(𝑥 + 𝑡ℎ)𝑑𝑡 (6)

and by the Taylor series expansion of 𝐺′(𝑥 + 𝑡ℎ) at the point 𝑥 and integrating, we obtain the following development

[𝑥 + ℎ, 𝑥 − ℎ;𝐺] = 𝐺′(𝑥) + 1
6
𝐺′′′(𝑥)ℎ2 + 𝑂(ℎ3), (7)

which we will use in the proof of the following Theorem when we obtain the convergence order of the method.

Theorem 1. Let 𝐻 ∶ Ω ⊆ 𝑋 → 𝑋 such that 𝐻(𝑥) = 𝐹 (𝑥) +𝐺(𝑥), where 𝐹 and 𝐺 are sufficiently differentiable operators, and
𝑥∗ ∈ Ω such that 𝐻(𝑥∗) = 0. If the initial approximation 𝑥0 is chosen sufficiently close to 𝑥∗, then the sequence {𝑥𝑛}, given by
(5), converges to 𝑥∗ and the local order of convergence of the method (5) is at least 2. Moreover, the error equation is:

𝑒𝑛+1 = (Γ𝐴2 + Υ𝐵2)(Γ + Υ)−1𝑒2𝑛 + 𝑂(𝑒3𝑛), (8)

where Γ = 𝐹 ′(𝑥∗), Υ = 𝐺′(𝑥∗) and 𝐴𝑖 = 1
𝑖!
𝐹 ′(𝑥∗)−1𝐹 (𝑖)(𝑥∗) and 𝐵𝑖 = 1

𝑖!
𝐺′(𝑥∗)−1𝐺(𝑖)(𝑥∗) such that 𝐴𝑖, 𝐵𝑖 ∈ 𝑖(𝑋,𝑋),

𝑖 = 1, 2, 3, where 𝑖(𝑋,𝑋) is the space of bounded 𝑖-linear symmetric operators.
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Proof. We calculate the Taylor series of 𝐹 (𝑥𝑛) and 𝐺(𝑥𝑛) around 𝑥∗, which is the solution, and obtain

𝐹 (𝑥𝑛) = Γ
(

𝐴0 + 𝐴1𝑒𝑛 + 𝐴2𝑒
2
𝑛 + 𝐴3𝑒

3
𝑛 + 𝑂(𝑒4𝑛)

)

,
𝐺(𝑥𝑛) = Υ

(

𝐵0 + 𝐵1𝑒𝑛 + 𝐵2𝑒
2
𝑛 + 𝐵3𝑒

3
𝑛 + 𝑂(𝑒4𝑛)

)

,

where 𝑒𝑛 = 𝑥𝑛 − 𝑥∗, Γ = 𝐹 ′(𝑥∗), Υ = 𝐺′(𝑥∗) and 𝐴𝑖 =
1
𝑖!
𝐹 ′(𝑥∗)−1𝐹 (𝑖)(𝑥∗), 𝐵𝑖 =

1
𝑖!
𝐺′(𝑥∗)−1𝐺(𝑖)(𝑥∗) ∈ 𝑖(𝑋,𝑋). By the way to

define 𝐴𝑖 and 𝐵𝑖, we have that 𝐴1 = 𝐵1 = 𝐼 in the expansions of 𝐹 (𝑥𝑛) and 𝐺(𝑥𝑛).

We calculate the expression of 𝐻(𝑥𝑛) = 𝐹 (𝑥𝑛) +𝐺(𝑥𝑛), using the previous developments. To do this, we are going to take into
account that Γ𝐴0 + Υ𝐵0 = 𝐹 (𝑥∗) + 𝐺(𝑥∗) = 𝐻(𝑥∗) = 0. We obtain

𝐻(𝑥𝑛) = (Γ + Υ)𝑒𝑛 + (Γ𝐴2 + Υ𝐵2)𝑒2𝑛 + (Γ𝐴3 + Υ𝐵3)𝑒3𝑛 + 𝑂(𝑒4𝑛). (9)

Now, deriving the Taylor series of 𝐹 (𝑥𝑛) with respect to 𝑥𝑛 we obtain that 𝐹 ′(𝑥𝑛) is of the form:

𝐹 ′(𝑥𝑛) = Γ
(

𝐼 + 2𝐴2𝑒𝑛 + 3𝐴3𝑒
2
𝑛 + 4𝐴4𝑒

3
𝑛 + 𝑂(𝑒4𝑛)

)

.

Using the divided difference operator seen in (7), we have:

[𝑥𝑛 + ℎ, 𝑥𝑛 − ℎ;𝐺] = 𝐺′(𝑥𝑛) +
1
6
𝐺′′′(𝑥𝑛)ℎ2 + 𝑂(ℎ3) (10)

where ℎ = 𝜀𝐻(𝑥𝑛).

To calculate the above equation, first we will see what the expressions for 𝐺′(𝑥𝑛) and 𝐺′′′(𝑥𝑛) look like. From the Taylor series
of 𝐺(𝑥𝑛) around 𝑥∗ we obtain

𝐺′(𝑥𝑛) = Υ
(

𝐼 + 2𝐵2𝑒𝑛 + 3𝐵3𝑒
2
𝑛 + 4𝐵4𝑒

3
𝑛 + 𝑂(𝑒4𝑛)

)

,
𝐺′′′(𝑥𝑛) = Υ

(

6𝐵3 + 24𝐵4𝑒𝑛 + 60𝐵5𝑒
2
𝑛 + 𝑂(𝑒2𝑛)

)

.

Substituting these developments in (10) and taking into account that ℎ = 𝜀𝐻(𝑥𝑛) with 𝐻(𝑥𝑛) developed in (9), we calculate

[𝑥𝑛 − ℎ, 𝑥𝑛 + ℎ;𝐺] = Υ(𝐼 + 2𝐵2𝑒𝑛 + (3𝐼 + 𝜀2(Γ + Υ)2)𝐵3𝑒
2
𝑛

+ 2(𝜀2(Γ + Υ)(Γ𝐴2 + Υ𝐵2)𝐵3 + 2𝐵4 + 2𝜀2(Γ + Υ)2𝐵4)𝑒3𝑛 + 𝑂(𝑒4𝑛)).

We denote 𝐴(𝑥𝑛) = 𝐹 ′(𝑥𝑛) + [𝑥𝑛 − 𝜀𝐻(𝑥𝑛), 𝑥𝑛 + 𝜀𝐻(𝑥𝑛);𝐺]. Using the Taylor series expansion of 𝐹 ′(𝑥𝑛) around 𝑥∗ and the
last expression obtained, 𝐴(𝑥𝑛) is expressed as follows:

𝐴(𝑥𝑛) = (Γ + Υ) + (2Γ𝐴2 + 2Υ𝐵2)𝑒𝑛 + (3Γ𝐴3 + Υ(3𝐼 + 𝜀2(Γ + Υ)2)𝐵3)𝑒2𝑛 + 𝑂(𝑒3𝑛).

Finally, calculating 𝐴(𝑥𝑛)−1 = (𝐹 ′(𝑥𝑛) + [𝑥𝑛 − 𝜀𝐻(𝑥𝑛), 𝑥𝑛 + 𝜀𝐻(𝑥𝑛);𝐺])−1 and substituting this development in the method
(5) together with the expansion of 𝐻(𝑥𝑛) from (9), the following error equation is obtained:

𝑒𝑛+1 = 𝑥𝑛+1 − 𝑥∗ = 𝑥𝑛 − 𝑥∗ − [𝐴(𝑥𝑛)]−1𝐻(𝑥𝑛) = (Γ𝐴2 + Υ𝐵2)(Γ + Υ)−1𝑒2𝑛 + 𝑂(𝑒3𝑛).

3.2 Local convergence and uniquiness of solutions
Second, we are going to obtain a local convergence result applicable to the operator 𝐻 both when it is differentiable and non-
differentiable.

We consider 𝐻(𝑥) = 𝐹 (𝑥) + 𝐺(𝑥) where 𝐹 ,𝐺 ∶ Ω ⊆ 𝑋 → 𝑋, F is a differentiable Fréchet operator and G is continuous but
not differentiable. Note that if 𝐻(𝑥) is differentiable, we consider 𝐻(𝑥) = 𝐹 (𝑥) and we would be studying local convergence
for Newton’s method. In the opposite case, that is, if 𝐻(𝑥) is a non-differentiable operator such that 𝐻(𝑥) = 𝐺(𝑥), we would be
studying the local convergence of the Steffensen method.

To ensure the local convergence of the method (5), we assume conditions on the operators 𝐹 and 𝐺 and also on the solution 𝑥∗

of the equation 𝐻(𝑥) = 0. Recall that local convergence provides what we call the convergence ball 𝐵(𝑥∗, 𝑟) where 𝑥∗ is the
center and 𝑟 is its radius. Depending on how large the radius of convergence is, we can say that the method has more or less
accessibility because the larger the ball, the more starting points within it will converge to the solution.
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First, we consider the following conditions:

(A) 𝐻 is 𝜇0-Lipschitz continuous operator on 𝑥∗ such that

‖𝐻(𝑥) −𝐻(𝑥∗)‖ ≤ 𝜇0(‖𝑥 − 𝑥∗‖), 𝑥 ∈ Ω, (11)

where 𝜇0 ∶ ℝ+ → ℝ+ is a non-decreasing continuous function, with ℝ+ = {𝑥 ∈ ℝ ∶ 𝑥 ≥ 0}.

(B) 𝐹 ′ is 𝜇1-Lipschitz continuous operator such that

‖𝐹 ′(𝑥) − 𝐹 ′(𝑦)‖ ≤ 𝜇1(‖𝑥 − 𝑦‖), 𝑥, 𝑦 ∈ Ω, (12)

where 𝜇1 ∶ ℝ+ → ℝ+ is a non-decreasing continuous function. We assume that there exists a function ℎ ∶ [0, 1] → ℝ+,
which is continuous and non-decreasing, such that 𝜇1(𝑡𝑧) ≤ ℎ(𝑡)𝜇1(𝑧), with 𝑡 ∈ [0, 1] and 𝑧 ∈ [0,+∞). In addition, we
define 𝑀 = ∫ 1

0 ℎ(𝑡)𝑑𝑡.

(C) We suppose that there exists the divided difference operator of the form [𝑢, 𝑣;𝐺] for each pair 𝑢, 𝑣 ∈ Ω, 𝑢 ≠ 𝑣. Therefore,
[−,−;𝐺] is a 𝜇2-Lipschitz continuous operator such that

‖[𝑥, 𝑦;𝐺] − [𝑢, 𝑣;𝐺]‖ ≤ 𝜇2(‖𝑥 − 𝑢‖, ‖𝑦 − 𝑣‖), 𝑥, 𝑦, 𝑢, 𝑣 ∈ Ω, (13)

where 𝜇2 ∶ ℝ+ ×ℝ+ → ℝ+ is a continuous non-decreasing function respect to both arguments.

Note that since 𝐺 is a non-differentiable operator, 𝜇2(0, 0) > 0. If we consider that 𝜇2(0, 0) = 0, this would imply that G
is differentiable as proved in14 and, therefore, we would not be doing a study of local convergence of the method (5) for
any operator 𝐻(𝑥), be it differentiable or non-differentiable.

Now, we are going to introduce a lemma to make sure that the sequence of iterations {𝑥𝑛} given by the method (5) is well defined.

Lemma 1. Under conditions (A), (B) and (C), we assume that 𝑥𝑛−1, 𝑥𝑛−1 − 𝜀𝐻(𝑥𝑛−1), 𝑥𝑛−1 + 𝜀𝐻(𝑥𝑛−1) ∈ Ω for 𝜀 > 0, 𝑛 ≥ 1,
and the following conditions are verified:

(D) Let 𝑥∗ be the solution of 𝐻(𝑥) = 0 and considering 𝑥̃ ∈ Ω, with ‖𝑥̃ − 𝑥∗‖ ≤ 𝛿 and 𝛿 > 0, so that 𝐿−1 = (𝐹 ′(𝑥∗) +
[𝑥∗, 𝑥̃;𝐺])−1 exists and ‖𝐿−1

‖ ≤ 𝛾 .

(E)

𝛼𝑛−1 =𝛾(𝜇1(‖𝑥𝑛−1 − 𝑥∗‖) + 𝜇2(‖𝑥𝑛−1 − 𝑥∗‖ + 𝜀𝜇0(‖𝑥𝑛−1 − 𝑥∗‖), 𝛿 + ‖𝑥𝑛−1 − 𝑥∗‖ + 𝜀𝜇0(‖𝑥𝑛−1 − 𝑥∗‖))) < 1.

Then, 𝑥𝑛 is well defined and it holds that:

‖𝑥𝑛 − 𝑥∗‖ ≤ Γ𝑛−1‖𝑥𝑛−1 − 𝑥∗‖ where Γ𝑛−1 =
𝛼̃𝑛−1

1 − 𝛼𝑛−1
and

𝛼̃𝑛−1 = 𝛾
(

𝑀𝜇1(‖𝑥𝑛−1 − 𝑥∗‖) + 𝜇2(‖𝑥𝑛−1 − 𝑥∗‖ + 𝜀𝜇0(‖𝑥𝑛−1 − 𝑥∗‖), 𝜀𝜇0(‖𝑥𝑛−1 − 𝑥∗‖))
)

.

Proof. Note that 𝑥𝑛−1 − 𝜀𝐻(𝑥𝑛−1), 𝑥𝑛−1 + 𝜀𝐻(𝑥𝑛−1) ∈ Ω for 𝜀 > 0 and we assume that 𝑥𝑛−1 − 𝜀𝐻(𝑥𝑛−1) ≠ 𝑥𝑛−1 + 𝜀𝐻(𝑥𝑛−1).
We assume the above because otherwise we would have to 2𝜀𝐻(𝑥𝑛−1) = 0 and, since 𝜀 > 0, we have that 𝐻(𝑥𝑛−1) = 0 and so
𝑥𝑚 = 𝑥𝑛−1 = 𝑥∗, ∀𝑚 ≥ 𝑛 − 1 so that the result would be obtained in a simple way. So if 𝑥𝑛−1 − 𝜀𝐻(𝑥𝑛−1) ≠ 𝑥𝑛−1 + 𝜀𝐻(𝑥𝑛−1),
the operator exists [𝑥𝑛−1 − 𝜀𝐻(𝑥𝑛−1), 𝑥𝑛−1 + 𝜀𝐻(𝑥𝑛−1);𝐺].

To simplify the proof notation, we define 𝐴(𝑥) = 𝐹 ′(𝑥) + [𝑥 − 𝜀𝐻(𝑥), 𝑥 + 𝜀𝐻(𝑥);𝐺]. Now, taking into account the conditions
(A) - (B),

‖𝐼 − 𝐿−1𝐴(𝑥𝑛−1)‖ = ‖𝐼 − 𝐿−1(𝐹 ′(𝑥𝑛−1) + [𝑥𝑛−1 − 𝜀𝐻(𝑥𝑛−1), 𝑥𝑛−1 + 𝜀𝐻(𝑥𝑛−1);𝐺])‖
≤ ‖𝐿−1

‖‖𝐿 − 𝐹 ′(𝑥𝑛−1) − [𝑥𝑛−1 − 𝜀𝐻(𝑥𝑛−1), 𝑥𝑛−1 + 𝜀𝐻(𝑥𝑛−1);𝐺]‖
≤ ‖𝐿−1

‖(‖𝐹 ′(𝑥∗) − 𝐹 ′(𝑥𝑛−1)‖ + ‖[𝑥∗, 𝑥̃;𝐺] − [𝑥𝑛−1 − 𝜀𝐻(𝑥𝑛−1), 𝑥𝑛−1 + 𝜀𝐻(𝑥𝑛−1);𝐺]‖)
≤ 𝛾

(

𝜇1(‖𝑥𝑛−1 − 𝑥∗‖) + 𝜇2(‖𝑥∗ − 𝑥𝑛−1 + 𝜀𝐻(𝑥𝑛−1)‖, ‖𝑥̃ − 𝑥𝑛−1 − 𝜀𝐻(𝑥𝑛−1)‖)
)

≤ 𝛾(𝜇1(‖𝑥𝑛−1 − 𝑥∗‖) + 𝜇2(‖𝑥𝑛−1 − 𝑥∗‖ + 𝜀‖𝐻(𝑥𝑛−1) −𝐻(𝑥∗)‖, ‖𝑥̃ − 𝑥∗‖ + ‖𝑥𝑛−1 − 𝜀𝐻(𝑥𝑛−1) − 𝑥∗‖))
≤ 𝛾(𝜇1(‖𝑥𝑛−1 − 𝑥∗‖) + 𝜇2(‖𝑥𝑛−1 − 𝑥∗‖ + 𝜀𝜇0(‖𝑥𝑛−1 − 𝑥∗‖), 𝛿 + ‖𝑥𝑛−1 − 𝑥∗‖ + 𝜀𝜇0(‖𝑥𝑛−1 − 𝑥∗‖)))
≤ 𝛼𝑛−1 < 1.
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By Banach’s Lemma for invertible operators (see6), there exists 𝐴(𝑥𝑛−1)−1 and

‖𝐴(𝑥𝑛−1)−1‖ ≤ ‖𝐿−1
‖

1 − ‖𝐿−1𝐴(𝑥𝑛−1)‖
≤ 𝛾

1 − 𝛼𝑛−1
.

Since method (5) says that

𝑥𝑛 = 𝑥𝑛−1 + (𝐹 ′(𝑥𝑛−1) + [𝑥𝑛−1 − 𝜀𝐻(𝑥𝑛−1), 𝑥𝑛−1 + 𝜀𝐻(𝑥𝑛−1);𝐺])−1𝐻(𝑥𝑛−1)

and we have seen that 𝐴(𝑥𝑛−1)−1 exists, so 𝑥𝑛 is well defined.

From the method (5) we deduce:

𝑥𝑛−1 − 𝑥∗ = 𝑥𝑛−1 − 𝐴(𝑥𝑛−1)−1𝐻(𝑥𝑛−1) − 𝑥∗ = 𝐴(𝑥𝑛−1)−1(𝐴(𝑥𝑛−1)(𝑥𝑛−1 − 𝑥∗) −𝐻(𝑥𝑛−1))
= 𝐴(𝑥𝑛−1)−1((𝐹 ′(𝑥𝑛−1) + [𝑥𝑛−1 − 𝜀𝐻(𝑥𝑛−1), 𝑥𝑛−1 + 𝜀𝐻(𝑥𝑛−1);𝐺])(𝑥𝑛−1 − 𝑥∗) − 𝐹 (𝑥𝑛−1) − 𝐺(𝑥𝑛−1)).

Since ∫ 𝑥∗

𝑥𝑛−1
(𝐹 ′(𝑧) − 𝐹 ′(𝑥𝑛−1))𝑑𝑧 = 𝐹 (𝑥∗) − 𝐹 (𝑥𝑛−1) − 𝐹 ′(𝑥𝑛−1)(𝑥∗ − 𝑥𝑛−1), substituting in the previous equation:

𝑥𝑛−1 − 𝑥∗ = 𝐴(𝑥𝑛−1)−1
𝑥∗

∫
𝑥𝑛−1

(𝐹 ′(𝑧) − 𝐹 ′(𝑥𝑛−1))𝑑𝑧

+ 𝐴(𝑥𝑛−1)−1([𝑥𝑛−1 − 𝜀𝐻(𝑥𝑛−1), 𝑥𝑛−1 + 𝜀𝐻(𝑥𝑛−1);𝐺](𝑥𝑛−1 − 𝑥∗) + 𝐺(𝑥∗) − 𝐺(𝑥𝑛−1))

= 𝐴(𝑥𝑛−1)−1
⎛

⎜

⎜

⎝

1

∫
0

(𝐹 ′(𝑥𝑛−1 + 𝑡(𝑥∗ − 𝑥𝑛−1)) − 𝐹 ′(𝑥𝑛−1))(𝑥∗ − 𝑥𝑛−1)𝑑𝑡
⎞

⎟

⎟

⎠

+ 𝐴(𝑥𝑛−1)−1
(

[𝑥𝑛−1 − 𝜀𝐻(𝑥𝑛−1), 𝑥𝑛−1 + 𝜀𝐻(𝑥𝑛−1);𝐺] − [𝑥∗, 𝑥𝑛−1;𝐺](𝑥𝑛−1 − 𝑥∗)
)

.

Taking norms in the previous expression and taking into account the conditions (A)-(C), we obtain:

‖𝑥𝑛 − 𝑥∗‖ ≤ ‖𝐴(𝑥𝑛−1)−1‖
(

1

∫
0

𝜇1(‖𝑡(𝑥∗ − 𝑥𝑛−1)‖)𝑑𝑡 + 𝜇2(‖𝑥𝑛−1 − 𝜀𝐻(𝑥𝑛−1) − 𝑥∗‖, ‖𝜀𝐻(𝑥𝑛−1)‖)
)

|𝑥𝑛−1 − 𝑥∗‖

≤ 𝛾
1 − 𝛼𝑛−1

(𝑀𝜇1(‖𝑥𝑛−1 − 𝑥∗‖) + 𝜇2(‖𝑥𝑛−1 − 𝑥∗‖ + 𝜀𝜇0(‖𝑥𝑛−1 − 𝑥∗‖), 𝜀𝜇0(‖𝑥𝑛−1 − 𝑥∗‖)))‖𝑥𝑛−1 − 𝑥∗‖

=
𝛼̃𝑛−1

1 − 𝛼𝑛−1
‖𝑥𝑛−1 − 𝑥∗‖ = Γ𝑛−1‖𝑥𝑛−1 − 𝑥∗‖.

To prove that {𝑥𝑛} given by the method (5) converges to 𝑥∗, we are interested in the conditions under which {‖𝑥𝑛 − 𝑥∗‖}∞𝑛=0
is a strictly decreasing sequence of positive real numbers. By the Lemma 1, ‖𝑥𝑛 − 𝑥∗‖ < ‖𝑥𝑛−1 − 𝑥∗‖ if Γ𝑛−1 < 1 and this is
true if only if 𝛼̃𝑛−1 + 𝛼𝑛−1 < 1.

Thus, if there exists at least a positive real root for the real equation:

𝛾
(

𝜇1(𝑡) + 𝜇2(𝑡 + 𝜀𝜇0(𝑡), 𝛿 + 𝑡 + 𝜀𝜇0(𝑡))
)

+ 𝛾
(

𝑀𝜇1(𝑡) + 𝜇2(𝑡 + 𝜀𝜇0(𝑡), 𝜀𝜇0(𝑡))
)

− 1 = 0,

we denote by 𝑟 the smallest positive real root.

So, for 𝑥𝑛−1 ∈ 𝐵(𝑥∗, 𝑟) and 𝑥𝑛−1 − 𝜀𝐻(𝑥𝑛−1), 𝑥𝑛−1 + 𝜀𝐻(𝑥𝑛−1) ∈ Ω such that

‖𝑥𝑛−1 + 𝜀𝐻(𝑥𝑛−1) − 𝑥∗‖ ≤ ‖𝑥𝑛−1 − 𝑥∗‖ + 𝜀𝜇0(‖𝑥𝑛−1 − 𝑥∗‖) < 𝑟 + 𝜀𝜇0(𝑟),
‖𝑥𝑛−1 − 𝜀𝐻(𝑥𝑛−1) − 𝑥∗‖ ≤ ‖𝑥𝑛−1 − 𝑥∗‖ + 𝜀𝜇0(‖𝑥𝑛−1 − 𝑥∗‖) < 𝑟 + 𝜀𝜇0(𝑟),

we get that
𝛼𝑛−1 < 𝑚 = 𝛾(𝜇1(𝑟) + 𝜇2(𝑟 + 𝜀𝜇0(𝑟), 𝛿 + 𝑟 + 𝜀𝜇0(𝑟))) < 1

since 𝜇1 and 𝜇2 are non-decresing functions in ℝ+ ×ℝ+. Also,

𝛼̃𝑛−1 < 𝑚̃ = 𝛾(𝑀𝜇1(𝑟) + 𝜇2(𝑟 + 𝜀𝜇0(𝑟), 𝜀𝜇0(𝑟))).

Thus, since 𝑚 + 𝑚̃ = 1, we have:
Γ𝑛−1 <

𝑚̃
1 − 𝑚

= 1.
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where {Γ𝑛−1} is a strictly decreasing sequence.

Bearing in mind these new results, we modify the condition (E) from the previous study and consider the following condition

(E’) We assume that the equation

𝛾
[

(1 +𝑀)𝜇1(𝑡) + 𝜇2(𝑡 + 𝜀𝜇0(𝑡), 𝛿 + 𝑡 + 𝜀𝜇0(𝑡)) + 𝜇2(𝑡 + 𝜀𝜇0(𝑡), 𝜀𝜇0(𝑡))
]

− 1 = 0 (14)

has at least one positive real root and 𝐵(𝑥∗, 𝑟 + 𝜀𝜇0(𝑟)) ⊂ Ω, where 𝑟 is the smallest positive real root of (14).

The following result shows the local convergence results.

Theorem 2. Under the conditions (A)-(D) and (E’), if we choose an initial approximation 𝑥0 ∈ 𝐵(𝑥∗, 𝑟), then the sequence
{𝑥𝑛} given by the method (5) is well defined, belongs to the ball of convergence 𝐵(𝑥∗, 𝑟) and converges to the solution 𝑥∗ from
the equation 𝐻(𝑥) = 0.

Proof. We have 𝑥0 + 𝜀𝐻(𝑥0) ≠ 𝑥0 − 𝜀𝐻(𝑥0) since otherwise 𝐻(𝑥0) = 0 and therefore 𝑥0 = 𝑥∗ and 𝑥𝑛 = 𝑥∗, ∀𝑛 ≤ 1 and the
result would be proved.

From Lemma 1,

𝛼0 = 𝛾(𝜇1(‖𝑥0 − 𝑥∗‖) + 𝜇2(‖𝑥0 − 𝑥∗‖ + 𝜀𝜇0(‖𝑥0 − 𝑥∗‖), 𝛿 + ‖𝑥0 − 𝑥∗‖ + 𝜇0(𝑥0 − 𝑥∗)))
< 𝛾(𝜇1(𝑟) + 𝜇2(𝑟 + 𝜀𝜇0(𝑟), 𝛿 + 𝑟 + 𝜀𝜇0(𝑟))) = 𝑚 < 1,

we have that there exists 𝐴(𝑥0)−1 and ‖𝐴(𝑥0)−1‖ ≤ 𝛾
1−𝛼0

. Hence, 𝑥1 is well defined and

‖𝑥1 − 𝑥∗‖ ≤ Γ0‖𝑥0 − 𝑥∗‖ < ‖𝑥0 − 𝑥∗‖ < 𝑟.

Therefore 𝑥1 ∈ 𝐵(𝑥∗, 𝑟). On the other hand,

‖𝑥1 + 𝜀𝐻(𝑥1) − 𝑥∗‖ ≤ ‖𝑥1 − 𝑥∗‖ + 𝜀‖𝐻(𝑥1)‖ ≤ ‖𝑥1 − 𝑥∗‖ + 𝜀𝜇0(‖𝑥1 − 𝑥∗‖)
< ‖𝑥0 − 𝑥∗‖ + 𝜀𝜇0(‖𝑥0 − 𝑥∗‖) < 𝑟 + 𝜀𝜇0(𝑟),

‖𝑥1 − 𝜀𝐻(𝑥1) − 𝑥∗‖ ≤ ‖𝑥1 − 𝑥∗‖ + 𝜀𝜇0(‖𝑥1 − 𝑥∗‖) < 𝑟 + 𝜀𝜇0(𝑟).

So, 𝑥1 + 𝜀𝐻(𝑥1), 𝑥1 − 𝜀𝐻(𝑥1) ∈ Ω.

By induction on 𝑛 ≥ 2, we prove that, if 𝑥𝑛−1 ∈ 𝐵(𝑥∗, 𝑟) and 𝑥𝑛−1 + 𝜀𝐻(𝑥𝑛−1), 𝑥𝑛−1 − 𝜀𝐻(𝑥𝑛−1) ∈ Ω, with 𝑥𝑛−1 + 𝜀𝐻(𝑥𝑛−1) ≠
𝑥𝑛−1 − 𝜀𝐻(𝑥𝑛−1), then 𝑥𝑛 is well defined,

‖𝑥𝑛 − 𝑥∗‖ < ‖𝑥𝑛−1 − 𝑥∗‖, ‖𝑥𝑛 + 𝜀𝐻(𝑥𝑛) − 𝑥∗‖ < 𝑟 + 𝜀𝜇0(𝑟) and ‖𝑥𝑛 − 𝜀𝐻(𝑥𝑛) − 𝑥∗‖ < 𝑟 + 𝜀𝜇0(𝑟).

Assuming that the hypotheses are true for 𝑛 = 2,… , 𝑘, let’s see that it is true for 𝑛 = 𝑘 + 1.

Since 𝑥𝑘 ∈ 𝐵(𝑥∗, 𝑟) and 𝑥𝑘+𝜀𝐻(𝑥𝑘), 𝑥𝑘−𝜀𝐻(𝑥𝑘) ∈ Ω, by Lemma 1 there exists 𝐴(𝑥𝑘)−1. This implies that 𝑥𝑘+1 is well defined
and so

‖𝑥𝑘+1 − 𝑥∗‖ ≤ Γ𝑘‖𝑥𝑘 − 𝑥∗‖ < ‖𝑥𝑘 − 𝑥∗‖ < … < ‖𝑥0 − 𝑥∗‖ < 𝑟.

Moreover,

‖𝑥𝑘+1 + 𝜀𝐻(𝑥𝑘+1) − 𝑥∗‖ ≤‖𝑥𝑘+1 − 𝑥∗‖ + 𝜀𝜇0(‖𝑥𝑘+1 − 𝑥∗‖) < 𝑟 + 𝜀𝜇0(𝑟),
‖𝑥𝑘+1 − 𝜀𝐻(𝑥𝑘+1) − 𝑥∗‖ ≤‖𝑥𝑘+1 − 𝑥∗‖ + 𝜀𝜇0(‖𝑥𝑘+1 − 𝑥∗‖) < 𝑟 + 𝜀𝜇0(𝑟).

Then, {𝑥𝑛} ⊂ 𝐵(𝑥∗, 𝑟) and {‖𝑥𝑛 − 𝑥∗‖} is a strictly decreasing sequence of positive real numbers. Since {𝐺𝑎𝑚𝑚𝑎𝑛−1} is also
strictly decreasing, we have that

‖𝑥𝑛 − 𝑥∗‖ < Γ𝑛−1‖𝑥𝑛−1 − 𝑥∗‖ < … < Γ𝑛
0‖𝑥0 − 𝑥∗‖.

Therefore, when 𝑛 → ∞, {𝑥𝑛 − 𝑥∗} → 0 is satisfied, and therefore {𝑥𝑛} converges to 𝑥∗.

Now we are going to present a result that ensures uniqueness of solution under certain conditions and allows us to define the
uniqueness ball.



Hernández-Verón ET AL 11

Theorem 3. Under the conditions (A)-(D) and (E’), we assume that the equation

𝐸1(𝑡) = 𝛾(𝑀𝜇1(𝑡) + 𝜇2(0, 𝑡 + 𝛿)) − 1 = 0 (15)

has at least one positive real root, where 𝑅 is the smallest positive real root of (15). Then the solution 𝑥∗ is the only solution of
the equation 𝐻(𝑥) = 0 in 𝐵(𝑥∗, 𝑅) ∩ Ω.

Proof. Let 𝑦∗ ∈ 𝐵(𝑥∗, 𝑅) ∩ Ω and 𝐻(𝑦∗) = 0. We define the following operator:

𝑃 =

1

∫
0

𝐹 ′(𝑥∗ + 𝑡(𝑦∗ − 𝑥∗))𝑑𝑡 + [𝑥∗, 𝑦∗;𝐺].

Using (A) and (B), we get:

‖𝐿−1𝑃 − 𝐼‖ ≤ ‖𝐿−1
‖‖𝑃 − 𝐿‖

≤ ‖𝐿−1
‖

⎡

⎢

⎢

⎣

1

∫
0

‖𝐹 ′(𝑥∗ + 𝑡(𝑦∗ − 𝑥∗)) − 𝐹 ′(𝑥∗)‖𝑑𝑡 + ‖[𝑥∗, 𝑦∗;𝐺] − [𝑥∗, 𝑥̃;𝐺]‖
⎤

⎥

⎥

⎦

≤ 𝛾
⎡

⎢

⎢

⎣

1

∫
0

𝜇1(‖𝑡(𝑦∗ − 𝑥∗)‖)𝑑𝑡 + 𝜇2(0, ‖𝑦∗ − 𝑥̃‖)
⎤

⎥

⎥

⎦

< 𝛾(𝑀𝜇1(𝑅) + 𝜇2(0, 𝑅 + 𝛿)) = 1.

In the last inequality we have used the hypothesis that there is at least one positive real root of 𝐸1(𝑡) since this implies that at
least one of the functions 𝜇1(𝑡) or 𝜇2(𝑡) is strictly increasing.

Therefore, there exists 𝑃 −1 ∈ (𝑋, 𝑌 ) and, for the identity

0 = 𝐻(𝑥∗) −𝐻(𝑦∗) = 𝐹 (𝑥∗) − 𝐹 (𝑦∗) + 𝐺(𝑥∗) − 𝐺(𝑦∗)

=
⎛

⎜

⎜

⎝

1

∫
0

𝐹 ′(𝑥∗ + 𝑡(𝑦∗ − 𝑥∗))𝑑𝑡 + [𝑥∗, 𝑦∗;𝐺]
⎞

⎟

⎟

⎠

(𝑥∗ − 𝑦∗)

= 𝑃 (𝑥∗ − 𝑦∗),

we deduce that 𝑥∗ = 𝑦∗.

4 SEMILOCAL CONVERGENCE

In this section we are going to analyze the semilocal convergence of iterative method (5), that is, we are going to impose the
necessary conditions so that, given a starting point 𝑥0, the iterative method (5) converges to a solution. Moreover, we determine
the existence and uniqueness convergence domains.

For this, we consider 𝑥0 ∈ Ω and we assume:

(I) Exists 𝐴−1
0 = 𝐴(𝑥0)−1 = (𝐹 ′(𝑥0) + [𝑥0 + 𝜀𝐻(𝑥0), 𝑥0 − 𝜀𝐻(𝑥0)])−1 such that ||𝐴−1

0 || ≤ 𝛽. Furthermore, ||𝐻(𝑥0)|| ≤ 𝜂0
such that ||𝐴−1

0 𝐻(𝑥0)|| ≤ 𝛽𝜂0 = 𝜔.

(II) ||𝐻(𝑥) −𝐻(𝑦)|| ≤ 𝜇0(||𝑥 − 𝑦||), 𝑥, 𝑦 ∈ Ω where 𝜇0 ∶ ℝ+ → ℝ+ is a continuous non-decreasing function.

(III) ||𝐹 ′(𝑥)−𝐹 ′(𝑦)|| ≤ 𝜇1(||𝑥−𝑦||), 𝑥, 𝑦 ∈ Ω where 𝜇1 ∶ ℝ+ → ℝ+ is a continuous non-decreasing function. We assume that
exists a continuous non-decreasing function ℎ ∶ [0, 1] → ℝ+ such that 𝜇1(𝑡𝑧) ≤ ℎ(𝑡)𝜇1(𝑧) with 𝑧 ∈ [0, 1] and 𝑡 ∈ [0,∞).
We denote 𝑀 = ∫ 1

0 ℎ(𝑡)𝑑𝑡.

Note that ℎ always exists, by taking ℎ(𝑡) = 1, as a consequence of 𝜇1 is a non-decreasing function.

(IV) We suppose that exists [𝑥, 𝑦;𝐺] for each pair 𝑥, 𝑦 ∈ Ω, 𝑥 ≠ 𝑦 such that the divided differences operator satisfies:

||[𝑥, 𝑦;𝐺] − [𝑢, 𝑣;𝐺]|| ≤ 𝜇2(||𝑥 − 𝑢||, ||𝑦 − 𝑣||); for all 𝑥, 𝑦, 𝑢, 𝑣 ∈ Ω,
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where 𝜇2 ∶ ℝ+ ×ℝ+ → ℝ+ is a continuous non-decreasing function with respect to both arguments.

Note that since 𝐺 is non-differentiable, 𝜇2(0, 0) > 0. Then, we will give a generalized result of semilocal convergence. We will
do it by fixing the radius 𝑟 of the domain of existence and we will try to calculate it so that the sequence {𝑥𝑛} is contained in the
ball of convergence 𝐵(𝑥0, 𝑟) whose center is the initial iteration and whose radius is our fixed 𝑟.

Theorem 4. Under the conditions (I) − (IV), we consider the following parameter 𝑠 = 𝜇2(𝜀𝜂0, 𝜔 + 𝜀𝜂0) + 𝑀𝜇1(𝜔), and the
functions

𝑚(𝑡) = 𝛽(𝜇1(𝑡) + 𝜇2(𝑡 + 𝜀𝜇0(𝑡), 𝑡 + 𝜀𝜇0(𝑡))) and 𝜆(𝑡) =
𝛽𝑠

1 − 𝑚(𝑡)
,

with 𝑡 ∈ ℝ+. Let us assume that the following equation has at least one positive real root,
1

1 − 𝜆(𝑡)
𝜔 − 𝑡 = 0, (16)

by denoting 𝑟 the smallest one and if it is verified that 𝑠𝛽 < 1, 𝑚(𝑟) < 1 and 𝜆(𝑟) < 1. Then, the sequence {𝑥𝑛} given by the
iterative method (5) is well defined, remains in 𝐵(𝑥0, 𝑟) and converges to the solution 𝑥∗ of the equation 𝐻(𝑥) = 0.

Proof. To simplify the notation, we denote

𝐴𝑛 = 𝐴(𝑥𝑛) = 𝐹 ′(𝑥𝑛) + [𝑥𝑛 − 𝜀𝐻(𝑥𝑛), 𝑥𝑛 + 𝜀𝐻(𝑥𝑛);𝐺].

First, we prove by induction that the sequence given by the method (5) is well defined, that is, in each step 𝑛 ≥ 1, the operator
𝐴𝑛 is invertible and the iteration 𝑥𝑛+1 can be obtained.

We start from the fact that 𝑥1 is well defined since by the condition (I), we have:

||𝑥1 − 𝑥0|| = ||𝐴−1
0 𝐻(𝑥0)|| ≤ 𝜔 < 𝑟.

Considering the conditions (I) − (IV) and the auxiliary function implied, we have:

||𝐼 − 𝐴−1
0 𝐴1|| ≤ ||𝐴−1

0 || ||𝐴0 − 𝐴1||

≤ ||𝐴−1
0 || ||𝐹 ′(𝑥0) + [𝑥0 + 𝜀𝐻(𝑥0), 𝑥0 − 𝜀𝐻(𝑥0);𝐺] − 𝐹 ′(𝑥1) − [𝑥1 + 𝜀𝐻(𝑥1), 𝑥1 − 𝜀𝐻(𝑥1)]||

≤ 𝛽
(

𝜇1(||𝑥1 − 𝑥0||) + 𝜇2(||𝑥1 − 𝑥0|| + 𝜀𝜇0(||𝑥1 − 𝑥0||), ||𝑥1 − 𝑥0|| + 𝜀𝜇0(||𝑥1 − 𝑥0||))
)

≤ 𝛽
(

𝜇1(𝑟) + 𝜇2(𝑟 + 𝜀𝜇0(𝑟), 𝑟 + 𝜀𝜇0(𝑟))
)

= 𝑚(𝑟) < 1.

So, by applying Banach’s lemma, there exists 𝐴−1
1 and

||𝐴−1
1 || ≤ 𝛽

1 − 𝑚(𝑟)
.

Since 𝐹 is Fréchet differentiable, one has

𝐹 (𝑥1) = 𝐹 (𝑥0) +

1

∫
0

𝐹 ′(𝑥0 + 𝑡(𝑥1 − 𝑥0))(𝑥1 − 𝑥0)𝑑𝑡

= 𝐹 (𝑥0) + 𝐹 ′(𝑥0)(𝑥1 − 𝑥0) +

1

∫
0

(𝐹 ′(𝑥0 + 𝑡(𝑥1 − 𝑥0)) − 𝐹 ′(𝑥0))(𝑥1 − 𝑥0)𝑑𝑡.

On the other hand, for the operator G we use the definition of divided difference:

𝐺(𝑥1) = 𝐺(𝑥0) − [𝑥0, 𝑥1;𝐺](𝑥0 − 𝑥1).

Therefore, since 𝐻(𝑥) = 𝐹 (𝑥) + 𝐺(𝑥), we have:

𝐻(𝑥1) = 𝐻(𝑥0) + 𝐹 ′(𝑥0)(𝑥1 − 𝑥0) + [𝑥0, 𝑥1;𝐺](𝑥1 − 𝑥0) +

1

∫
0

(𝐹 ′(𝑥0 + 𝑡(𝑥1 − 𝑥0)) − 𝐹 ′(𝑥0))(𝑥1 − 𝑥0)𝑑𝑡.
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So, by substituting 𝐻(𝑥0) by its obtained expression with the function iteration of ((5)), we obtain:

𝐻(𝑥1) = −[𝐹 ′(𝑥0) + [𝑥0 + 𝜀𝐻(𝑥0), 𝑥0 − 𝜀𝐻(𝑥0);𝐺]](𝑥1 − 𝑥0)
+ 𝐹 ′(𝑥0)(𝑥1 − 𝑥0) + [𝑥0, 𝑥1;𝐺](𝑥1 − 𝑥0)

+

1

∫
0

(𝐹 ′(𝑥0 + 𝑡(𝑥1 − 𝑥0)) − 𝐹 ′(𝑥0))(𝑥1 − 𝑥0)𝑑𝑡

= ([𝑥0, 𝑥1;𝐺] − [𝑥0 + 𝜀𝐻(𝑥0), 𝑥0 − 𝜀𝐻(𝑥0);𝐺])(𝑥1 − 𝑥0)

+

1

∫
0

(𝐹 ′(𝑥0 + 𝑡(𝑥1 − 𝑥0)) − 𝐹 ′(𝑥0))(𝑥1 − 𝑥0)𝑑𝑡.

Applying norms to the above expression one gets

||𝐻(𝑥1)|| ≤ (𝜇2(𝜀𝜂0, ||𝑥1 − 𝑥0|| + 𝜀𝜂0) + 𝜇1(||𝑥1 − 𝑥0||)

1

∫
0

ℎ(𝑡)𝑑𝑡)||𝑥1 − 𝑥0||

≤ (𝜇2(𝜀𝜂0, 𝜔 + 𝜀𝜂0) +𝑀𝜇1(𝜔))||𝑥1 − 𝑥0|| ≤ 𝑠||𝑥1 − 𝑥0|| < 𝑠𝛽𝜂0 < 𝜂0.

Therefore, we can say that 𝑥2 is well defined thanks to the existence of 𝐴−1
1 and verifies

||𝑥2 − 𝑥1|| ≤ ||𝐴−1
1 𝐻(𝑥1)||

≤ 𝛽
1 − 𝑚

𝑠||𝑥1 − 𝑥0||

=
𝛽𝑠

1 − 𝑚(𝑟)
||𝑥1 − 𝑥0|| = 𝜆(𝑟)||𝑥1 − 𝑥0|| < 𝜔.

So,

||𝑥2 − 𝑥0|| ≤ ||𝑥2 − 𝑥1|| + ||𝑥1 − 𝑥0|| ≤ (𝜆(𝑟) + 1)||𝑥1 − 𝑥0|| ≤ (𝜆(𝑟) + 1)𝜔 < 𝑟

and 𝑥2 ∈ 𝐵(𝑥0, 𝑟).

By mathematical induction, we assume that for 𝑘 = 2,… , 𝑛 − 1, the following are verified:

(1) There exists 𝐴−1
𝑘−1 =

(

𝐹 ′(𝑥𝑘) + [𝑥𝑘 + 𝜀𝐻(𝑥𝑘), 𝑥𝑘 − 𝜀𝐻(𝑥𝑘);𝐺]
)−1 such that ||𝐴−1

𝑘−1|| ≤
𝛽

1 − 𝑚(𝑟)
.

(2) ||𝑥𝑘 − 𝑥𝑘−1|| ≤ 𝜆(𝑟)||𝑥𝑘−1 − 𝑥𝑘−2|| ≤ 𝜆(𝑟)𝑘−1||𝑥1 − 𝑥0|| < 𝜔.

(3) ||𝐻(𝑥𝑘)|| ≤ 𝑠||𝑥𝑘 − 𝑥𝑘−1|| < 𝜂0.

(4) ||𝑥𝑘 − 𝑥0|| ≤
1 − 𝜆(𝑟)𝑘

1 − 𝜆(𝑟)
𝜔 < 𝑟 and 𝑥𝑘 ∈ 𝐵(𝑥0, 𝑟).

So, we are going to see that (1) − (4) are true for 𝑘 = 𝑛.

First, let us see that there exists 𝐴−1
𝑛−1.

||𝐼 − 𝐴−1
0 𝐴𝑛−1|| ≤ 𝛽||𝐹 ′(𝑥0) + [𝑥0 + 𝜀𝐻(𝑥0), 𝑥0 − 𝜀𝐻(𝑥0)] − 𝐹 ′(𝑥𝑛−1) − [𝑥𝑛−1 + 𝜀𝐻(𝑥𝑛−1), 𝑥𝑛−1 − 𝜀𝐻(𝑥𝑛−1);𝐺]||

≤ 𝛽
(

𝜇1(𝑟) + 𝜇2(𝑟 + 𝜀𝜇0(𝑟), 𝑟 + 𝜀𝜇0(𝑟))
)

= 𝑚(𝑟) < 1.

So, by Banach’s lemma, exists 𝐴−1
𝑛−1 and

||𝐴−1
𝑛−1|| ≤

𝛽
1 − 𝑚(𝑟)

.

Then, we have that 𝑥𝑛 is well defined and, furthermore, (3) holds:

||𝑥𝑛 − 𝑥𝑛−1|| ≤ ||𝐴−1
𝑛−1𝐻(𝑥𝑛−1)|| ≤

𝛽
1 − 𝑚(𝑟)

𝑠||𝑥𝑛−1 − 𝑥𝑛−2|| ≤ 𝜆(𝑟)𝑛−1𝜔 ≤ 𝜔 < 𝑟.
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Also, thanks to this bound, we can ensure that 𝑥𝑛 ∈ 𝐵(𝑥0, 𝑟) since:

||𝑥𝑛 − 𝑥0|| ≤ ||𝑥𝑛 − 𝑥𝑛−1|| + ||𝑥𝑛−1 − 𝑥0||

≤ 𝜆(𝑟)𝑛−1𝜔 +
1 − 𝜆(𝑟)𝑛−1

1 − 𝜆(𝑟)
𝜔 ≤ 1 − 𝜆(𝑟)𝑛

1 − 𝜆(𝑟)
𝜔 < 1

1 − 𝜆(𝑟)
𝜔 = 𝑟.

On the other hand,

𝐻(𝑥𝑛) = −[𝐹 ′(𝑥𝑛−1) + [𝑥𝑛−1 + 𝜀𝐻(𝑥𝑛−1), 𝑥𝑛−1 − 𝜀𝐻(𝑥𝑛−1);𝐺]](𝑥𝑛 − 𝑥𝑛−1)
+ 𝐹 ′(𝑥𝑛−1)(𝑥𝑛 − 𝑥𝑛−1) + [𝑥𝑛−1, 𝑥𝑛;𝐺](𝑥𝑛 − 𝑥𝑛−1)

+

1

∫
0

(𝐹 ′(𝑥𝑛−1 + 𝑡(𝑥𝑛 − 𝑥𝑛−1)) − 𝐹 ′(𝑥𝑛−1))(𝑥𝑛 − 𝑥𝑛−1)𝑑𝑡

= ([𝑥𝑛−1, 𝑥𝑛;𝐺] − [𝑥𝑛−1 + 𝜀𝐻(𝑥𝑛−1), 𝑥𝑛−1 − 𝜀𝐻(𝑥𝑛−1);𝐺])(𝑥𝑛 − 𝑥𝑛−1)

+

1

∫
0

(𝐹 ′(𝑥𝑛−1 + 𝑡(𝑥𝑛 − 𝑥𝑛−1)) − 𝐹 ′(𝑥𝑛−1))(𝑥𝑛 − 𝑥𝑛−1)𝑑𝑡.

Applying norms to the above expression one gets

||𝐻(𝑥𝑛)|| ≤ (𝜇2(𝜀𝜂0, ||𝑥𝑛 − 𝑥𝑛−1|| + 𝜀𝜂0) + 𝜇1(||𝑥𝑛 − 𝑥𝑛−1||)

1

∫
0

ℎ(𝑡)𝑑𝑡)||𝑥𝑛 − 𝑥𝑛−1||

≤ (𝜇2(𝜀𝜂0, 𝜔 + 𝜀𝜂0) +𝑀𝜇1(𝜔))||𝑥𝑛 − 𝑥𝑛−1|| ≤ 𝑠||𝑥𝑛 − 𝑥𝑛−1|| < 𝑠𝜆(𝑟)𝑛−1||𝑥1 − 𝑥0||
≤ 𝑠𝜆(𝑟)𝑛−1𝛽𝜂0 ≤ 𝜂0.

Therefore, since (1)-(5) holds for 𝑘 = 𝑛, we have shown that these hypotheses are true ∀𝑛 ∈ ℕ.

Now, using these hypotheses, we are going to prove that the sequence of iterations {𝑥𝑛} is a Cauchy sequence. For 𝑘 ≥ 1,

||𝑥𝑛+𝑘 − 𝑥𝑛−1|| ≤ ||𝑥𝑛+𝑘 − 𝑥𝑛+𝑘−1|| +…+ ||𝑥𝑛 − 𝑥𝑛−1||
≤
(

𝜆(𝑟)𝑘 + 𝜆(𝑟)𝑘−1 +…+ 1
)

||𝑥𝑛 − 𝑥𝑛−1||

≤ 1 − 𝜆(𝑟)𝑘+1

1 − 𝜆(𝑟)
||𝑥𝑛 − 𝑥𝑛−1|| ≤

1 − 𝜆(𝑟)𝑘

1 − 𝜆(𝑟)
𝜆(𝑟)𝑛−1||𝑥1 − 𝑥0||

< 1
1 − 𝜆(𝑟)

𝜆(𝑟)𝑛−1||𝑥1 − 𝑥0||.

Therefore, {𝑥𝑛} is a Cauchy sequence and converges to 𝑥∗ ∈ 𝐵(𝑥0, 𝑟) where

𝑟 = 1
1 − 𝜆(𝑟)

𝜔.

Finally, we see that 𝑥∗ is a zero of 𝐻(𝑥). Since

||𝐻(𝑥𝑛)|| ≤ (𝜇2(𝜀𝜂0, 𝜔 + 𝜀𝜂0) +𝑀𝜇1(𝜔))||𝑥𝑛 − 𝑥𝑛−1||.

Moreover, by taking limits when 𝑛 → ∞, as ||𝑥𝑛 − 𝑥𝑛−1|| → 0, thus, by the continuity of the operator 𝐻 , 𝐻(𝑥∗) = 0.

Theorem 5. Under the conditions (I) − (IV), we suppose that the equation

𝐸2(𝑡) = 𝛽(𝜇1(𝑟 + 𝑡) + 𝜇2(𝑟 + 𝜀𝜇0(𝑡), 𝑟 + 𝜀𝜇0(𝑡))) − 1 = 0 (17)

has at least one positive real root, we denote 𝑅 the smallest one. Then, the solution 𝑥∗ is the unique solution of the equation
𝐻(𝑥) = 0 in 𝐵(𝑥0, 𝑅) ∩ Ω.
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Proof. To see uniqueness, we assume that there is another solution 𝑦∗ ∈ 𝐵(𝑥0, 𝑅) ∩ Ω and consider the operator

𝑃 =

1

∫
0

𝐹 ′(𝑥∗ + 𝑡(𝑦∗ − 𝑥∗))𝑑𝑡 + [𝑥∗, 𝑦∗;𝐺].

Since 𝑃 (𝑦∗−𝑥∗) = 𝐻(𝑦∗)−𝐻(𝑥∗) = 0, if P is an invertible operator then 𝑥∗ = 𝑦∗. So, in order to apply Banach lemma we have:

||𝐴−1
0 𝑃 − 𝐼|| ≤ 𝛽

(

1

∫
0

||𝐹 ′(𝑥∗ + 𝑡(𝑦∗ − 𝑥∗)) − 𝐹 ′(𝑥0)||𝑑𝑡 + ||[𝑥∗, 𝑦∗;𝐺] − [𝑥0 + 𝜀𝐻(𝑥0), 𝑥0 − 𝜀𝐻(𝑥0);𝐺]||
)

≤ 𝛽
(

1

∫
0

𝜇1(||𝑥∗ − 𝑥0 + 𝑡𝑦∗ − 𝑡𝑥∗)||)𝑑𝑡 + 𝜇2(||𝑥∗ − 𝑥0|| + 𝜀‖𝐻(𝑥0)‖, ||𝑦∗ − 𝑥0|| + 𝜀||𝐻(𝑥0)||)
)

≤ 𝛽
(

1

∫
0

𝜇1(||(1 − 𝑡)(𝑥∗ − 𝑥0) + 𝑡(𝑦∗ − 𝑥0)||)𝑑𝑡 + 𝜇2(||𝑥∗ − 𝑥0|| + 𝜀𝜇0(||𝑥∗ − 𝑥0||), ||𝑦∗ − 𝑥0|| + 𝜀𝜇0(||𝑦∗ − 𝑥0||))
)

< 𝛽(𝜇1(𝑟 + 𝑅) + 𝜇2(𝑟 + 𝜀𝜇0(𝑅), 𝑟 + 𝜀𝜇0(𝑅))) = 1.

In the last inequality we have used the hypothesis that there is at least one positive real root of 𝐸2(𝑡) since this implies that at
least one of the functions 𝜇1(𝑡) or 𝜇2(𝑡) is strictly increasing.

Therefore, 𝑃 −1 exists, and the result holds.

5 NUMERICAL EXPERIENCE

In this section we deal with the application of the previously obtained local convergence results. We consider the nonlinear elliptic
boundary value problem solved in12, that describes properties in the gas dynamic theory. But, now we add a nondifferentiable
part in order to illustrate the theory developed in our study.

𝑢𝑠𝑠 + 𝑢𝑡𝑡 = 𝑢3 + |𝑢| with S={(𝑠, 𝑡) ∈ ℝ2 ∶ 𝑠, 𝑡 ∈ [0, 1]}
𝑢(𝑠, 0) = 2𝑠2 − 𝑠 + 1, 𝑢(𝑠, 1) = 2, 0 ≤ 𝑠 ≤ 1
𝑢(0, 𝑡) = 2𝑡2 − 𝑡 + 1, 𝑢(1, 𝑡) = 2, 0 ≤ 𝑡 ≤ 1

We create a mesh for discretising the problem being: ℎ = 1
𝑛+1

and 𝜏 = 1
𝑚+1

, we have the mesh points (𝑠𝑖, 𝑡𝑗) with 𝑠𝑖 = 𝑖ℎ, 𝑖 =
0, ..., 𝑛 + 1 and 𝑡𝑗 = 𝑗𝜏, 𝑗 = 0, ..., 𝑚 + 1, such that:

𝑢𝑠𝑠(𝑠𝑖, 𝑡𝑗) + 𝑢𝑡𝑡(𝑠𝑖, 𝑡𝑗) = 𝑢(𝑠𝑖, 𝑡𝑗)3 + |𝑢((𝑠𝑖, 𝑡𝑗)|.

So, by approximating the partial derivatives by central divided differences we have the following equation:

𝑢(𝑠𝑖+1, 𝑡𝑗) − 2𝑢(𝑠𝑖, 𝑡𝑗) + 𝑢(𝑠𝑖−1, 𝑡𝑗)
ℎ2

+
𝑢(𝑠𝑖, 𝑡𝑗−1) − 2𝑢(𝑠𝑖, 𝑡𝑗) + 𝑢(𝑠𝑖, 𝑡𝑗+1)

𝜏2
= 𝑢(𝑠𝑖, 𝑡𝑗)3 + |𝑢(𝑠𝑖, 𝑡𝑗)|

for 𝑖 = 1,… , 𝑛 and 𝑗 = 1,… , 𝑚.

The boundary conditions are:

𝑢(𝑠𝑖, 𝑡0) = 2𝑠2𝑖 − 𝑠𝑖 + 1, 𝑢(𝑠𝑖, 𝑡𝑞+1) = 2, 𝑖 = 1,… , 𝑛
𝑢(𝑠0, 𝑡𝑗) = 2𝑡2𝑗 − 𝑡𝑗 + 1, 𝑢(𝑠𝑝+1, 𝑡𝑗) = 2, 𝑗 = 0,… , 𝑚 + 1.

Now, we denote 𝑢(𝑠𝑖, 𝑡𝑗) = 𝑢𝑖,𝑗 simplifying the notation we obtain:
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2(1 +
(ℎ
𝜏

)2
)𝑢𝑖,𝑗 − (𝑢𝑖−1 + 𝑢𝑖+1,𝑗) −

(ℎ
𝜏

)2
(𝑢𝑖,𝑗−1 + 𝑢𝑖,𝑗+1) = −ℎ2(𝑢𝑖𝑗 + |𝑢𝑖𝑗|) (18)

for 𝑖 = 1,… , 𝑛 and 𝑗 = 1,… , 𝑚 with

𝑢𝑖,0 = 2𝑠2𝑖 − 𝑠𝑖 + 1, 𝑢𝑖,𝑞+1 = 2, 𝑖 = 1,… , 𝑛
𝑢0,𝑗 = 2𝑡2𝑗 − 𝑡𝑗 + 1, 𝑢𝑝+1,𝑗 = 2, 𝑗 = 0,… , 𝑚 + 1.

The equation (18) together with the boundary conditions form a nonlinear system of size (𝑛𝑚) × (𝑛𝑚) given by:

𝑇 𝑢 + ℎ2𝜈(𝑢) = 𝜔

where

𝑇 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝐴 𝐵 0 ⋯ 0
𝐵 𝐴 𝐵 ⋱ ⋮
0 ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ ⋱ 𝐵
0 … 0 𝐵 𝐴

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, 𝐴 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

2(1 + (ℎ
𝜏
)2) −1 0 ⋯ 0

−1 2(1 + (ℎ
𝜏
)2) −1 ⋱ ⋮

0 ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ ⋱ −1
0 … 0 −1 2(1 + (ℎ

𝜏
)2)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

𝐵 = −(ℎ
𝜏
)2𝐼𝑛×𝑛, 𝑢 = (𝑢1,… , 𝑢𝑑)𝑇 , 𝜈(𝑢) = (𝑢31,… , 𝑢3𝑑)

𝑇 + (|𝑢1|,… , |𝑢𝑑|)𝑇 being 𝑑 = 𝑛𝑚, and 𝑊 is a vector formed by the
boundary conditions. Then, the nonlinear system can be formulated as follows:

𝐻(𝑢) = 𝑇 𝑢 + ℎ2𝜈(𝑢) −𝑊 = 0, (19)

being its differenctiable part 𝐹 (𝑢) = 𝑇 (𝑢1,… , 𝑢𝑑) + ℎ2(𝑢31,… , 𝑢3𝑑)
𝑇 − 𝑊 , and the non-differentiable part 𝐺(𝑢) =

ℎ2(|𝑢1|,… , |𝑢𝑑|)𝑇 , such that 𝐹 (𝑢) + 𝐺(𝑢) = 0.

We calculate the linear operator 𝐹 ′(𝑢) = 𝑇 +3ℎ2diag[𝑢21,… , 𝑢2𝑑]. Moreover we characterize the divided differences considering:
[𝑢, 𝑣;𝐺] = ([𝑢, 𝑣;𝐺]𝑖𝑗)𝑑𝑖,𝑗=1 ∈ (ℝ𝑑 ,ℝ𝑑) where

[𝑢, 𝑣;𝐺]𝑖𝑗 =
1

𝑢𝑗 − 𝑣𝑗
(𝐺𝑖(𝑢1,… , 𝑢𝑗 , 𝑣𝑗+1,… , 𝑣𝑑) − 𝐺𝑖(𝑢1,… , 𝑢𝑗−1, 𝑣𝑗 ,… , 𝑣𝑑))

and 𝑢 = (𝑢1,… , 𝑢𝑑)𝑇 , 𝑣 = (𝑣1,… , 𝑣𝑑)𝑇 , then

[𝑢, 𝑣;𝐺] = ℎ2 ⋅ 𝑑𝑖𝑎𝑔
(

|𝑢1| − |𝑣1|
𝑢1 − 𝑣1

,… ,
|𝑢𝑑| − |𝑣𝑑|
𝑢𝑑 − 𝑣𝑑

)

.

To solve the problem (19), we approximate the exact solution 𝑢∗ with starting point 𝑢(0) = (1, 1, ..., 1), denoting the iteration i−𝑡ℎ
by the 𝑢(𝑖) = (𝑢(𝑖)1 , ..., 𝑢(𝑖)𝑑 when running the iterative scheme (5) in Matlab2020 by using variable precision arithmetic with 100
digits, using as stopping criteria ‖𝑢(𝑛+1) − 𝑢(𝑛)‖ < 10−30 and with 𝑛 = 𝑚 = 4 and 𝜀 = 1. The solution obtained after 6 iterations
verifies ||𝑢(6) − 𝑢(5)|| < 5.2930𝑒 − 37 and the norm of nonlinear operator 𝐻 at this point verifies ||𝐻(𝑢(6))|| ≤ 3.3391𝑒 − 75,
reshaping the approximated solution in ℝ16 to the initial size 4 × 4 for 𝑖, 𝑗 = 1, ..., 4 is

𝑢(6)(𝑠𝑖, 𝑡𝑗) =

⎛

⎜

⎜

⎜

⎜

⎝

0.92416 0.98713 1.11328 1.39532
1.01807 1.10905 1.25039 1.51249
1.20200 1.27954 1.39495 1.60315
1.50792 1.54714 1.61111 1.73408

⎞

⎟

⎟

⎟

⎟

⎠

Finally, we change the starting point to 𝑢(0) = (1.5, 1.5, ..., 1.5) noting that the iterative method converges to the same solution,
now we have ||𝑢(6)−𝑢(5)|| < 1.4351𝑒−41 and the norm of nonlinear operator 𝐻 at this point verifies ||𝐻(𝑢(6))|| ≤ 2.1086𝑒−84.

So, we use this approximated solution to establish that if there exists the exact solution 𝑢∗ then 𝑢∗ ∈ 𝐵(1̄, 𝑙), and so we take
Ω = 𝐵(1̄, 𝑙) with 𝑙 ≥ 1 and 1̄ = (1, 1, ..., 1). Therefore, we can obtain the bounds for the conditions assumed in the semilocal
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convergence study and establishing the auxiliary functions 𝜇0, 𝜇1 and 𝜇2 involved in conditions (𝐼) − (𝐼𝑉 ), we observe that:

||𝐻(𝑢) −𝐻(𝑣)|| = ||𝐹 (𝑢) + 𝐺(𝑢) − 𝐹 (𝑣) − 𝐺(𝑣)||
≤ ||𝐹 (𝑢) − 𝐹 (𝑣)|| + ||𝐺(𝑢) − 𝐺(𝑣)||.

But taking into account that 𝐹 is differentiable, we have, by applying the mean value theorem, that:

||𝐹 (𝑢) − 𝐹 (𝑣)|| ≤ 𝐹 ′(𝑢̃)||𝑢 − 𝑣|| with 𝑢̃ ∈ 𝐵(1̄, 𝑙),

so,

||𝐹 (𝑢) − 𝐹 (𝑣)|| ≤ (||𝑇 || + 3ℎ2
||diag(𝑢̃21,… , 𝑢̃2𝑑))||||𝑢 − 𝑣||

≤ (||𝑇 || + 3ℎ2(1 + 𝑙)2)||𝑢 − 𝑣||.

On the other hand, by using the definition of the divided differences we have:

||𝐺(𝑢) − 𝐺(𝑣)|| ≤ ||[𝑢, 𝑣, 𝐺]||||𝑢 − 𝑣||.

Therefore, we define 𝜇0(𝑡) = (||𝑇 ||+3ℎ2(1+ 𝑙)2+ℎ2)𝑡. From the expression of 𝐹 ′(𝑢) deduced before we get 𝜇1(𝑡) = 6ℎ2(1+ 𝑙)𝑡,
and using the characterization of divided differences we define 𝜇2(𝑠, 𝑡) = 2ℎ2.

By using these auxiliary functions we focus on applying the semilocal convergence results obtained previously, by taking the
initial approximation

𝑢(0) = (1, 1, 1.2, 1.6, 1.1, 1.2, 1.4, 1.6, 1.2, 1.4, 1.5, 1.7, 1.4, 1.6, 1.6, 1.8)𝑇 ,

we obtain
𝛽 = 0.96767, 𝜂0 = 0.34784, 𝜔 = 0.33659

and solving equations (16) and (17) we obtain the existence and uniqueness radius, 𝑟 and𝑅 involved in our semilocal convergence
study. We consider different values for 𝑙, while 𝜀 = 0.1 in scheme (5). In Table 3 we can see the radii obtained 𝑟 and 𝑅 while
in the last two columns we check the conditions 𝑚(𝑟) < 1 and 𝜆(𝑟) < 1. We obtain better results when 𝑙 is smaller because in
this case the bounds used are more accurate.

TABLE 3 Numerical results with different values of 𝑙.

𝑙 𝑟 𝑅 𝑚(𝑟) 𝜆(𝑟)

1.5 0.45918 1.12985 0.34401 0.26696
2.0 0.51367 0.81052 0.43529 0.34473
2.25 0.58617 0.63616 0.51984 0.42577

Finally, once has been proved the existence of an exact solution, 𝑢∗, we focus on the local convergence study also in Ω = 𝐵(1̄, 𝑙)
with 𝑙 ≥ 1, so we set in condition (𝐷) that ||𝑢̃ − 𝑢∗|| ≤ 𝛿 < 𝑙 obtaining parameter 𝛾 , the convergence and uniqueness radius, 𝑟
and 𝑅 of section 3.2. We take different values for 𝑙 and 𝑢0 = 𝑢̃ while we consider 𝑢∗ as the approximate solution given by the
scheme (5) and 𝜀 = 0.1. In Table 4 we can observe the results, it can be checked that the accessibility improves when we work
in a smaller domain, that is due to the fact that we can find more precise bounds for our local convergence restrictions.

6 CONCLUSIONS

In this work we use a decomposition technique that consists on considering the non-differentiable and nonlinear operator 𝐻(𝑥)
as 𝐻(𝑥) = 𝐹 (𝑥) + 𝐺(𝑥), where 𝐹 is Fréchet differentiable and 𝐺 is continuous but non-differentiable. So we define a new
iterative method to solve 𝐻(𝑥) = 0 that allows us to maintain the quadratic order of convergence due to Newton’s method for
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TABLE 4 Numerical results with different values of 𝑢0 and 𝑙.

𝑢(0) = 𝑢̃ 𝑙 𝛿 = ‖𝑢∗ − 𝑢̃‖ 𝛾 𝑟 𝑅

(1, 1, 1,… , 1)𝑇 1.5 0.73408 1.27893 0.69101 2.33968
(1, 1, 1,… , 1)𝑇 2 0.73408 1.27893 0.575838 1.94974
(1, 1, 1,… , 1)𝑇 3 0.73408 1.27893 0.43188 1.46231

(−0.25,… ,−0.25)𝑇 1.5 1.98408 1.29837 0.67799 2.30065
(−0.25,… ,−0.25)𝑇 2 1.98408 1.29837 0.56499 1.91721
(−0.25,… ,−0.25)𝑇 3 1.98408 1.29837 0.42375 1.43791
(−1,−1,… ,−1)𝑇 2 2.73408 1.33098 0.54753 1.86479
(−1,−1,… ,−1)𝑇 3 2.73408 1.33098 0.41064 1.39859

non-differentiable operators. Besides, by means of a dynamical study, we check that the iterative process considered has as good
accessibility as Newton’s method. We focus on the local and semilocal convergence study by using weaker conditions that in
previous studies.
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