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Abstract

In this paper, we investigate pattern dynamics in a reaction-diffusion-chemotaxis food chain model with predator-taxis, which

enriches previous studies about diffusive food chain models. By virtue of diffusion semigroup theory, we first show the global

classical solvability and uniform boundedness of the considered model over a bounded domain [?] R N ( N [?] 1 ) with smooth

boundary. Then the linear stability analysis for the considered model shows that chemotaxis can induce the unique positive

spatially homogeneous steady state loses its stability via Turing bifurcation and Turing-spatiotemporal Hopf bifurcation, which

results in the formation of two kinds of important spatiotemporal patterns: stationary Turing pattern and oscillatory pattern.

Simultaneously, the threshold values for Turing bifurcation and Turing-spatiotemporal Hopf bifurcation are given explicitly.

In addition, the existence and stability of non-constant positive steady state that bifurcates from the positive constant steady

state is investigated by the abstract bifurcation theory of Crandall-Rabinowitz and eigenvalue perturbation theory. Finally,

numerical simulations are performed to verify our theoretical results, and some interesting non-Turing pattern are found in

temporal Hopf parameter space by numerical simulation.
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In this paper, we investigate pattern dynamics in a reaction-diffusion-chemotaxis food

chain model with predator-taxis, which extends previous studies of reaction-diffusion food

chain model. By virtue of diffusion semigroup theory, we first prove the global existence

and uniform boundedness of non-negative classical solution of the model over a bounded

domain Ω ⊂ RN (N ≥ 1) with smooth boundary for arbitrary predator-taxis sensitivity

coefficient. Then the linear stability analysis for the considered model shows that chemo-

taxis can induce the unique positive spatially homogeneous steady state loses its stability

via Turing bifurcation and Turing-spatiotemporal Hopf bifurcation, which results in the

formation of two kinds of important spatiotemporal patterns: stationary Turing pattern

and oscillatory pattern. Simultaneously, the threshold values for Turing bifurcation and

Turing-spatiotemporal Hopf bifurcation are given explicitly. In addition, the existence and

stability of non-constant positive steady state that bifurcates from the positive constant

steady state is investigated by the abstract bifurcation theory of Crandall-Rabinowitz and

eigenvalue perturbation theory. Finally, numerical simulations are performed to illustrate

and support our theoretical findings, and some interesting non-Turing pattern are found

in temporal Hopf parameter space by numerical simulation.
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1 Introduction

Predation is one of the basic interspecies relationships in biology and ecology, and various

mathematical models have been established to describe predator-prey interaction to predict

long term outcome and impact on the entire ecosystem (see, for example, Murray[1]). Math-

ematical models of many biological control processes naturally require ordinary differential

systems with three equations describing the growth of plant, pest and top predator (control

agent), respectively. One important mathematical model of these three species is the so-called

food chain model. Many papers on food chain model have been published to illustrate the

importance of this multiple species interaction (see e.g. [2, 3, 4] and the related references

therein).

By Fick’s law, the species are distributed unevenly over space and interact with each other

within the spatial domain [6, 7, 8]. Recently, spatially heterogeneous distribution of many

species have been observed in some ecological systems, for example, patchiness of plankton in

a minimal phytoplankton-zooplankton interaction model [9, 10], spatiotemporal pattern for-

mation in a nutrient-plankton-fish coupled model [11].One important question is that what are

the mechanisms behind the spatially heterogeneous distribution of species in a homogeneous

environment? Generally, there are two categories of important mechanisms: one category

is that spatial patterns emerge from locally stable kinetic dynamics due to the presence of

self-diffusion [12], cross-diffusion [13, 14, 15, 16], nonlocal interactions [17, 18] and advection

[19]; the other category is that spatial patterns emerge from locally unstable kinetic dynamics

(such as limit cycle oscillation, chaos) through spatially inhomogeneous perturbations [20, 21].

The diffusive predator-prey model mentioned above is based on the assumption that preys

and predators move randomly in their habitats, which is undirected. In reality, in addition

to pure random movement of preys and predators, directed movement of predators and preys

often occurs, which is reflected in the two aspects: predators pursuing preys and preys es-

caping from predators. As we know, the directed spatial movement of predators and preys

can be classified into two kinds: one is predators move toward the gradient direction of prey

distribution (called ”prey-taxis”), the other is prey move opposite to the gradient of predator

distribution (called ”predator-taxis”). Prey-taxis problem has attracted many scholar’s atten-
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tion in recent years and has inspired numerous research about it. In [22], the global existence

and boundedness of the solution were proved in a Keller-Segel-type chemotaxis model. In [23],

the authors proved the global existence of weak solution and classical solution, respectively.

Uniform persistence are proved in [25]. Boundedness and global existence or blow-up are

given in [24]. A necessary conditions for pattern formation in prey-taxis system was given

in [26], In [27], steady-state bifurcations and their stability results were given in a prey-taxis

system with herd behaviour. In [30], the existence of non-constant positive steady states and

their stability in chemotaxis model with prey-taxis in 1D were proved. Besides the fact that

predators forage prey, prey may evade predators and move away from the direction of the

higher predator density due to the anti-predator behaviors [32]. Very recently, Wu et. al.

[31] investigated the global existence and boundedness in a reaction-diffusion predator-prey

equations model with predator-taxis, and it was shown that the presence of predator-taxis

can induce disappearance of spatial pattern. In [32], the authors studied pattern formation

of a predator-prey model with the cost of anti-predator behavior and predator-taxis through

mathematical and numerical analyses. Dai and Liu investigated global solvability for a general

cross-diffusion predator-prey system with predator-taxis [33].

Functional response describes how the consumption rate of individual consumers changes

with respect to resource density, and is often used to model predator-prey interactions. Re-

cently there is a growing evidences [34, 35] that in some circumstance, especially when predator

have to search for food, a more suitable mathematical model that depicts predator-prey in-

teractions should be based on the so called ratio-dependent theory, which can be stated as

that the per capita predator growth rate should be a function of prey to predator abundance,

i.e., if we substitute this ratio-dependence into the standard Holling II functional response we

obtain

f(u, v) =
u/v

u/v + c
=

u

u+ cv
,

where c is a half saturation constant.

Motivated by the above discussions, in this paper, we consider the following reaction-

diffusive-chemotaxis food chain model with predator-taxis and ratio-dependent functional
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response:

∂S1
∂t = D1∆S1 + e1c1S2S1

S2+aS1
−m1S1, x ∈ Ω, t > 0,

∂S2
∂t = ∇ · (D2∇S2 + χ̄S2∇S1) + e2c2S2S3

S3+bS2
− c1S2S1

S2+aS1
−m2S2, x ∈ Ω, t > 0,

∂S3
∂t = D34S3 + r0S3(1− S3

K0
)− c2S2S3

S3+bS2
, x ∈ Ω, t > 0,

∂S1(x,t)
∂ν = ∂S2(x,t)

∂ν = ∂S3(x,t)
∂ν = 0, x ∈ ∂Ω, t > 0,

S1(x, 0) = S10(x) ≥ 0S2(x, 0) = S20(x) ≥ 0, S3(x, 0) = S30(x) ≥ 0, x ∈ Ω,

(1.1)

where S1(x, t), S2(x, t), S3(x, t) represent the densities of the top predator, the predator and

the prey at time t and location x, respectively; the habitat of the three species Ω is a bound-

ed domain in RN (N ≥ 1) with boundary ∂Ω ∈ C1; the homogeneous Neumann boundary

conditions indicate the region with a no-flux boundary environment; Di, i = 1, 2, 3 are the

respective diffusion coefficients of the three species; χ̄ represents predator-taxis rate which

reflects the repulsion effect of the predator-taxis; r0 is the intrinsic growth rate of the prey

S3 in the absence of the predator S2 and the top predator S1, K0 represents the carrying

capacity of environment of the prey; ci, i = 1, 2, 3 are the predation rates of the three interac-

tion species; ei, i = 1, 2, 3 are the conversion rates of the three species; a, b are half saturation

constants; m1 and m2 are density-independent morality rates of the top predator and the

predator, respectively.

To reduce the number of parameters, we start by non-dimensionalizing. Let

u = abS1
K0

, v = bS2
K0
, w = S3

K0
,

β1 = e1c1
r0
, γ1 = m1

r0
, β2 = c1

ar0
, γ2 = m2

r0
,

δ1 = c2
br0
, δ2 = e2c2

r0
, χ = K0χ̄

abr0L2 , x̂ = x
L ,

d1 = D1
r0L2 , d2 = D2

r0L2 , d3 = D3
r0L2 , t̂ = tr0.

(1.2)

Here L is the spatial size of bounded domain Ω. Then the non-dimensionalized form of

model (1.1), dropping the hats for t̂ and x̂, is

∂u
∂t = d1∆u+ f(u, v, w), x ∈ Ω, t > 0,

∂v
∂t = ∇ · (d2∇v + χv∇u) + g(u, v, w), x ∈ Ω, t > 0,

∂w
∂t = d34w + h(u, v, w), x ∈ Ω, t > 0,
∂u(x,t)
∂ν = ∂v(x,t)

∂ν = ∂w(x,t)
∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0 v(x, 0) = v0(x) ≥ 0, w(x, 0) = w0(x) ≥ 0, x ∈ Ω,

(1.3)
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where

f(u, v, w) =
β1vu

v + u
− γ1u,

g(u, v, w) =
δ2vw

v + w
− β2vu

u+ v
− γ2v,

h(u, v, w) = w(1− w)− δ1vw

v + w
.

Taking χ = 0 in model (1.3), Ko and Ahn [36] investigated the large time behavior of all

non-negative equilibria and studied the existence of non-constant positive steady states and

demonstrated the Turing pattern formation arising from diffusion-driven instability. Subse-

quently, the existence and non-existence of coexistence states and global attractor of unique

coexistence state are proved [37]. Other work for the ratio-dependent food chain model and

spatial diffusion can be found in [38, 39, 40].

An origin of reaction-diffusion-chemotaxis model (1.3) is the following non-dimensionalized

ODE system suggested by S.B. Hsu et al. in [4]:
ẋ(t) = β1xy

x+y − γ1x, x(0) > 0,

ẏ(t) = δ2yz
y+z −

β2xy
x+y − γ2y, y(0) > 0,

ż(t) = z(1− z)− δ1yz
y+z , z(0) > 0,

where x, y, z are the population densities of top predator, predator and prey respectively.

The other parameters have the same meanings as those in model (1.3). The authors studied

rich dynamics of boundary equilibria and unique coexist equilibrium, and multiple attractor

scenario was found.

The rest of the paper is organized as follows. In Section 2 and Section 3, local and

global existence and boundedness of non-negative classical solution of the considered model is

established. Then linear stability analysis is carried out to interpret Turing pattern formation

mechanism via Turing bifurcation and Turing-spatiotemporal Hopf bifurcation, respectively in

Section 4. In Section 5, we study the existence and stability of non-constant positive solution

by abstract bifurcation theory. Eventually, numerical simulations are carried out to illustrate

the effectiveness of our theoretical results, and some interesting non-Turing patterns are found

near temporal Hopf bifurcation threshold. In the rest of the paper, we use abbreviated

notations like ‖z(t)‖p = ‖z(·, t)‖p = ‖z(·, t)‖Lp(Ω) = (
∫

Ω |z(x, t)|
p)

1
p for p ∈ [1,∞), ‖z(t)‖∞ =

‖z(·, t)‖∞ = ‖z(·, t)‖L∞(Ω) = esssup
x∈Ω

|z(x, t)| and ‖ · ‖m,p as the norm of Wm,p with m =

1, 2, 1 ≤ p ≤ ∞.
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2 Local Existence and Preliminaries

Let ρ ∈ (N,∞), then W 1,ρ(Ω,R3) is continuously embedded in C(Ω̄,R3). We consider solu-

tions of (1.3) in X =
{
ω ∈W 1,ρ(Ω,R3)

∣∣∂ω
∂ν = 0 on ∂Ω

}
. Then we have the following lemma.

Lemma 2.1 Assume that the nonnegative initial data (u0, v0, w0) ∈ X for some ρ > N , and

u0, v0, w0 6≡ 0 in Ω. Then:

(i) There exists a positive constant Tmax (the maximal existence time) such that the sys-

tem (1.3) has a unique classical solution ((u(x, t), v(x, t), w(x, t)) ∈ X defined on Ω ×

(0, Tmax) satisfying (u, v, w) ∈ C([0, Tmax), X)
⋂
C2,1(Ω× (0, Tmax),R3).

(ii) There exist constants C1 > 0, C2 > 0, C3 > 0 such that the solution of system (1.3)

defined on Ω× (0, Tmax) satisfies

‖u(., t)‖1 ≤ C1, ‖v(., t)‖1 ≤ C2, ‖w(., t)‖1 ≤ C3 for∀ t ∈ (0, Tmax). (2.1)

Furthermore, there exists two constants Mu > 0 and Mw > 0 such that u, v, w satisfy

0 ≤ u(x, t) ≤Mu, v(x, t) ≥ 0, 0 ≤ w(x, t) ≤Mw for∀ (x, t) ∈ Ω× (0, Tmax). (2.2)

Proof Let u = (u, v, w)T . Then system (1.3) can be rewritten as
ut = ∇ · (α(u)∇u) + f(u) in Ω× (0,∞),

∂u
∂ν = 0 on ∂Ω× (0,∞),

u(·, 0) = (u0, v0, w0)T in Ω,

(2.3)

where

α(u) =


d1 0 0

χv d2 0

0 0 d3

 , f(u) =


u( β1vu+v − γ1)

v( δ2wv+w −
β2u
u+v − γ2)

w(1− w − δ1v
v+w )

 . (2.4)

Because eigenvalues of α(u) are all positive and α(u) is a triangular matrix, then system (2.3)

is normally elliptic [42]. Hence local existence in (i) follows from Theorem 7.3 in [42].

Next we prove (ii). Define the operator

Lv = vt − d2∆v − χ∇ · (v∇u)− δ2vw

v + w
+
β2vu

u+ v
+ γ2v.

Because v0 ≥ 0 and ∂v
∂ν = 0, v = 0 is a lower solution of the v equation. Similarly, we get

u = 0 and w = 0 are two lower solutions of the u and w equations, respectively. Hence

u(x, t) ≥ 0, v(x, t) ≥ 0, w(x, t) ≥ 0 for ∀ (x, t) ∈ Ω× (0, Tmax). (2.5)

6



To further estimate u(x, t), v(x, t) and w(x, t), letting
∫

Ω u(x, t) = U(t),
∫

Ω v(x, t) =

V (t),
∫

Ωw(x, t) = W (t). Noting the Neumann boundary condition, we get

dU

dt
=

∫
Ω

∂u(x, t)

∂t
=

∫
Ω
u(

β1v

u+ v
− γ1),

dV

dt
=

∫
Ω

∂v(x, t)

∂t
=

∫
Ω
v(

δ2w

v + w
− β2u

u+ v
− γ2),

dW

dt
=

∫
Ω

∂w(x, t)

∂t
=

∫
Ω
w(1− w − δ1v

v + w
).

(2.6)

From the third equation of (2.6), we have

dW

dt
=

d

dt

∫
Ω
w(x, t) ≤

∫
Ω

(w − w2) ≤
∫

Ω
w − 1

|Ω|

(∫
Ω
w

)2

, (2.7)

which gives ∫
Ω
w(x, t) ≤ max

{∫
Ω
w0(x), |Ω|

}
:= C3. (2.8)

Since 
∂w
∂t = d34w + w(1− w − δ1v

v+w ) ≤ d34w + w, x ∈ Ω, t ∈ (0, Tmax),

∂w
∂ν = 0, x ∈ ∂Ω, t ∈ (0, Tmax),

w(x, 0) = w0(x) ≥ 0, x ∈ Ω.

(2.9)

In view of [41, Theorem 3.1], we obtain there exists positive constant C0 such that

w(x, t) ≤ C0 max{1, sup
0≤t<Tmax

‖w(·, t)‖1, ‖w0‖∞} := Mw. (2.10)

Then it follows from (2.6) that

d(β2β1U(t) + V (t) +W (t))

dt
=

∫
Ω
w(1− w) + (δ2 − δ1)

∫
Ω

vw

v + w
− γ2

∫
Ω
v − β2γ1

β1

∫
Ω
u

≤|Ω|
4

+ δ2Mw − γ2V (t)− β2γ1

β1
U(t)

≤|Ω|
4

+ δ2Mw + κMw|Ω| − κ(
β2

β1
U(t) + V (t) +W (t)),

where κ = min{γ1, γ2}. This implies that

β2

β1
U(t) + V (t) +W (t) ≤ |Ω|

4κ
+
δ2Mw

κ
+Mw|Ω| := C2, (2.11)

and hence

‖v(·, t)‖1 = V (t) ≤ C2, for ∀ t ∈ (0, Tmax). (2.12)

We also get that there exists positive constant C1 such that

‖u(·, t)‖1 = U(t) ≤ C1, for ∀ t ∈ (0, Tmax). (2.13)
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Combing (2.8), (2.12) and (2.13), it gives rise to (2.1).

Similarly, it follows from the first equation of (1.3) that
∂u
∂t = d14u+ u( β1vu+v − γ1) ≤ d14u+ β1u, x ∈ Ω, t ∈ (0, Tmax),

∂u
∂ν = 0, x ∈ ∂Ω, t ∈ (0, Tmax),

u(x, 0) = u0(x) ≥ 0, x ∈ Ω.

(2.14)

From [41, Theorem 3.1], we obtain there exists positive constant C̃0 such that

u(x, t) ≤ C̃0 max{1, sup
0≤t<Tmax

‖u(·, t)‖1, ‖u0‖∞} := Mu. (2.15)

Combing (2.5), (2.10) and (2.15), it gives rise to (2.2), and thus we complete the proof of part

(ii).

Next we recall some preliminary results which will be used in the sequel. First we review

some well-known results about the diffusion semigroup with homogeneous Neumann boundary

conditions (see [22]). For p ∈ (1,∞), Denote by A the sectorial operator defined by

Au := −∆u for u ∈ D(A) :=

{
ϕ ∈W 2,p(Ω) :

∂ϕ

∂ν
= 0 on ∂Ω

}
. (2.16)

The spectrum of A is a countable set of nonnegative real numbers 0 = λ1 < λ2 ≤ λ3 ≤ · · · and

p−independent. Denote X = Lp(Ω) for p ∈ (1,∞). In view of [44, Theorem 7.3.6], A+ 1 is a

sectorial operator defined on X and the spectrum of A+ 1 is contained in [1,∞), and thus the

operator −(A + 1) is the infinitesimal generator of an analytic semigroup of contractions on

Lp(Ω). Hence we can define the fractional power (A+ 1)θ , ((A+ 1)−θ)−1 and the fractional

power space Xθ , D((A+ 1)θ) for θ ≥ 0 with graph norm ‖x‖θ = ‖(A+ 1)θx‖X for ∀x ∈ Xθ.

In the following, we collect some properties of A which can be found in [22], and these

properties also hold for Ad which is defined as Adu = −d∆u with a scaling.

Lemma 2.2 [22]

(i) Assume that k ∈ {0, 1}, p ∈ (1,∞) and q ∈ [1,∞]. Then there exists some positive

constant C4 such that

‖u‖k,q ≤ C4‖(A+ 1)θu‖p, (2.17)

for any u ∈ D((A+ 1)θ), where θ ∈ (0, 1) satisfies

k − n

q
< 2θ − n

p
, q ≥ p.

(ii) ‖(A + 1)θe−t(A+1)u‖Lp(Ω) ≤ C5t
−θe−µt‖u‖Lp(Ω) for all u ∈ Lp(Ω), any t > 0 and some

µ > 0 and constant C5 > 0.
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(iii) For 1 ≤ p < q < ∞, there exists C6 > 0 and µ > 0 such that for all u ∈ Lp(Ω) the

general Lp − Lq estimate

‖(A+ 1)θe−t(A+1)u‖q ≤ C6t
−θ−n

2
( 1
p
− 1

q
)
e−µt‖u‖p, (2.18)

holds for any t > 0 and θ ≥ 0, where the associated diffusion semigroup {e−t(A+1)}t≥0

maps Lp(Ω) into D((A+ 1)θ).

3 Global existence and boundedness

In this section, we shall prove the global existence and boundedness for the considered model

(1.3). First we need to establish a uniform bound of ∇u(x, t) in L∞(Ω) for any t ∈ (0, Tmax).

Then the standard Morse-Alikakos iteration technique is employed to obtain the L∞ bound

of v(x, t). Finally, we get the global existence of the solution of system (1.3) by Amann’s

argument [42, 43].

Lemma 3.1 Let (u, v, w) be a solution defined on Ω× [0, Tmax) of system (1.3). Then there

exists a positive constant Mv such that

‖v(·, t)‖∞ ≤Mv for ∀ t ∈ (0, Tmax). (3.1)

Proof We first write the third equation of (1.3) as follows

ut − d1∆u+ u = ϕ(u, v, w), (3.2)

where ϕ(u, v, w) = β1uv
u+v − γ1u+ u. Then applying the variation of constants formula on (3.2)

gives

u(·, t) = e−t(Ad1
+1)u0 +

∫ t

0
e−(t−s)(Ad1

+1)ϕ(u(·, s), v(·, s), w(·, s))ds. (3.3)

Choosing p > n and θ ∈ (1
2(1 + n

p ), 1) and letting k = 1, q = ∞ in (2.17). Let ε be fixed

arbitrary positive constant. Then from (2.17) and Sobolev embedding L∞(Ω) ↪→ Lp(Ω), for

9



all t ∈ (ε, Tmax), there exist positive constants C8, C9, C10 and µ > 0 such that

‖u(·, t)‖1,∞ ≤C4‖(Ad1 + 1)θu(·, t)‖p

≤C8

∫ t

0
(t− s)−θe−µ(t−s)‖u(·, s)

( β1v(·, s)
u(·, s) + v(·, s)

− γ1

)
+ u(·, s)‖pds

+ C8‖(Ad1 + 1)θe−(Ad1
+1)tu0‖p

≤C9

∫ t

0
(t− s)−θe−µ(t−s)‖u(·, s)‖∞ds+ C9t

−θe−µt‖u0‖p

≤C10

∫ ∞
0

%−θe−µ%d%+ C10ε
−θ‖u0‖p

≤C10

(
ε−θ‖u0‖p +

Γ(1− θ)
µ1−θ

)
:= G,

(3.4)

which implies that ‖∇u(·, t)‖L∞(Ω) ≤ G for all t ∈ (0, Tmax).

Next, for any k ≥ 2, multiplying the second equation of (1.3) by vk−1 and integrating by

parts and combining Young’s inequality yields

1

k

d

dt

∫
Ω
vk + (k − 1)d2

∫
Ω
vk−2|∇v|2

= −(k − 1)χ

∫
Ω
vk−1∇v · ∇u+

∫
Ω
vk
( δ2w

v + w
− β2u

u+ v
− γ2

)
≤ (k − 1)χG

∫
Ω
vk−1|∇v|+ δ2

∫
Ω
vk

≤ (k − 1)d2

2

∫
Ω
vk−2|∇v|2 +

(k − 1)χ2G2

2d2

∫
Ω
vk + δ2

∫
Ω
vk.

(3.5)

From (3.5), we obtain

1

k

d

dt

∫
Ω
vk +

(k − 1)d2

2

∫
Ω
vk−2|∇v|2 ≤ (k − 1)χ2G2

2d2

∫
Ω
vk + δ2

∫
Ω
vk. (3.6)

Finally, since ‖v(·, t)‖1 ≤ C2, applying the standard Moser-Alikakos iteration technique

[41] on (3.6), we obtain the finiteness of ‖v(·, t)‖∞ for all t ∈ (0, Tmax), and thus the proof is

completed.

In view of Amann’s argument [42, 43], we can draw the main conclusions about the global

existence and boundedness of solutions to the spatial system (1.3) as follows

Theorem 3.2 Let Ω be a bounded domain in RN with boundary ∂Ω ∈ C1. Suppose that

the conditions of Lemma 2.1 are satisfied. Then system (1.3) has a unique positive global

classical solution ((u(x, t), v(x, t), w(x, t)) ∈ X defined on Ω × [0,∞) satisfying (u, v, w) ∈

C([0,∞), X)
⋂
C2,1(Ω × (0,∞),R3), and (u(x, t), v(x, t), w(x, t)) is bounded in Ω × (0,∞),

that is, there exists a positive constant M0 such that ‖u(·, t)‖∞+‖v(·, t)‖∞+‖w(·, t)‖∞ ≤M0.
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4 Stability of spatially homogeneous steady state

4.1 Stability analysis of the corresponding ODE

To investigate Turing instability of the spatial system (1.3), it is necessary to analyze the

stability of the corresponding temporal system:
u̇(t) = u( β1vu+v − γ1),

v̇(t) = v( δ2wv+w −
β2u
u+v − γ2),

ẇ(t) = w(1− w − δ1v
v+w ).

(4.1)

4.1.1 Existence of equilibria

In this subsection, we shall give the existence and uniqueness of positive equilibrium for

system (4.1) by analytical methods. Clearly system (4.1) has one extinction equilibrium

E0 := (0, 0, 0), one semi-trivial equilibria E1 := (0, 0, 1), one boundary equilibrium E2 :=(
0, (δ2−γ2)(δ2−δ1δ2+δ1γ2)

γ2δ2
, δ2−δ1δ2+δ1γ2

δ2

)
with δ2 > max{γ2, δ1δ2 − δ1γ2}. Biologically, we are

interested in positive equilibrium. In view of [4], system (4.1) has a unique positive equilibrium

E∗ := (u∗, v∗, w∗) = (β1−γ1γ1
, w∗(1−w∗)δ1−(1−w∗) ,

1
α(δ1+α(1−δ1))) if and only if the following assumption

is satisfied:

(A1) : β1 > γ1, α > 1, 0 < δ1 <
α

α− 1
,

where α = β1δ2
β1β2+β1γ2−β2γ1 .

4.1.2 Stability of positive equilibrium E∗

The necessary condition on the occurrence of Turing instability for the positive equilibrium

E∗ requires that it is stable for the corresponding non-spatial system (4.1). The stability of

E∗ is determined by the nature of eigenvalues of the following Jacobian matrix

J =


− β1u∗v∗

(u∗+v∗)2
β1u2∗

(u∗+v∗)2
0

− β2v2∗
(u∗+v∗)2

β2u∗v∗
(u∗+v∗)2

− δ2v∗w∗
(v∗+w∗)2

δ2v2∗
(v∗+w∗)2

0 − δ1w2
∗

(v∗+w∗)2
δ1v∗w∗

(v∗+w∗)2
− w∗

 :=


J11 J12 J13

J21 J22 J23

J31 J32 J33

 . (4.2)

The associate characteristic equation of (4.2) is given by

λ3 + s1λ
2 + s2λ+ s3 = 0, (4.3)
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where

s1 = w∗ +
(δ2 − δ1)v∗w∗

(v∗ + w∗)2
+

(β1 − β2)u∗v∗
(u∗ + v∗)2

, s3 =
β1δ2u∗v

2
∗w

2
∗

(u∗ + v∗)2(v∗ + w∗)2
,

s2 =
(β1(δ2 − δ1) + β2δ1)u∗v

2
∗w∗

(u∗ + v∗)2(v∗ + w∗)2
+

(β1 − β2)u∗v∗w∗
(u∗ + v∗)2

+
δ2v∗w

2
∗

(v∗ + w∗)2
.

(4.4)

Clearly s3 > 0. Then from s1 > 0, s1s2 − s3 > 0 we conclude that s2 > 0.

Theorem 4.1 Assume that (A1) holds.

(i) If

(A2) : s1 > 0, s1s2 − s3 > 0

is satisfied, then all roots of characteristic Eq. (4.3) have negative real parts and thus the

unique positive equilibrium E∗ of the non-spatial system (4.1) is locally asymptotically

stable. And vice versa.

(ii) If

s1 > 0, s1s2 − s3 < 0.

is satisfied, then characteristic Eq. (4.3) has one negative real root and a pair of complex

roots with positive real parts and thus E∗ is unstable.

(iii) If

s1 > 0, s1s2 − s3 = 0.

is satisfied, then characteristic Eq. (4.3) has a negative real root and a pair of simple

purely imaginary roots ±iξ (ξ > 0). Furthermore, if transversality condition{
(s3 − s1s2)′

2(s2
1 + s2)

}
δ1=δH1

6= 0

is satisfied, then system (4.1) undergoes temporal Hopf bifurcation near the unique pos-

itive equilibrium E∗ when parameter value δ1 crosses its critical value δH1 . Here δH1 can

be determined by the equation s1s2 − s3 = 0.

Proof (i) and (ii) follow directly from Routh-Hurwitz stability criterion. Next we shall prove

(iii). Since s1 > 0, s3 > 0, s1s2−s3 = 0, it follows from the properties of roots of cubic equation

we get characteristic Eq. (4.3) has a pair of simple purely imaginary roots ±iξ. Moreover, from

Vieta’s formula, we get ξ2 =
s3(δH1 )

δH1
= s2(δH1 ). Next we check the transversality condition at

the critical value δH1 . Let λ = ξ1(δ1) ± iξ2(δ1) be a pair of complex conjugate roots of (4.3)
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satisfying ξ1(δH1 ) = 0. Then substituting it into (4.3), separating real and imaginary parts

and differentiating yields{
dξ1(δ1)

dδ1

}
δ1=δH1

=

{
(s3 − s1s2)′

2(s2
1 + s2)

}
δ1=δH1

6= 0,

where ′ denotes the derivative with respect to δ1. Therefore the transversality condition is

satisfied, which implies that the proof of (iii) is complete.

Remark 4.2 There exists parameter values such that the assumptions (A1) and (A2) hold.

For example, let β1 = 10/3, β2 = 10, γ1 = 1, γ2 = 1, δ1 = 1, δ2 = 10. A direct calcula-

tion gives the unique positive equilibrium (0.4667, 0.2, 0.8) and s1 = 0.84 > 0, s3 = 0.896 >

0, s1s2 − s3 = 0.3674 > 0, which implies the unique positive equilibrium E∗ of system (4.1)

is locally asymptotically stable according to Theorem 4.2. In addition, there also exist several

sets of parameters such that system (4.1) is unstable via Hopf bifurcation (see the numerical

simulations of Section 6.3).

4.2 Turing instability of spatially homogeneous steady state E∗

Clearly, (u(x, t), v(x, t), w(x, t) = (u∗, v∗, w∗) satisfies spatial system (1.3) and the associated

boundary conditions, we refer it to be the spatially homogeneous steady state of system (1.3).

To interpret spatially heterogeneous distribution of the interaction species over the habitat,

we shall study the Turing instability of the spatial system (1.3) when the temporally stable

equilibrium E∗ loses its stability due to small amplitude heterogeneous perturbations around

E∗ [45]. In what follows, we always assume that (A1) and (A2) are satisfied.

Now, we mainly focus on such pattern formation is due to joint effect of spatial diffusion

and predator-taxis, which doesn’t exclude Turing pattern formation only induced by the

chemotactic factor χ at some special cases. In what follows, for the better observation of

pattern transition as time evolution on the spatial domain Ω and the simplicity of calculations,

we restrict our attention to (1.3) over a typical two-dimensional rectangle region Ω = [0, L]×

[0, L] ⊆ RN with N = 2. Linearizing (1.3) around the spatially homogeneous steady state

(u∗, v∗, w∗) yields 
∂Z
∂t = JZ +D∆Z, x ∈ Ω, t > 0,

∂Z
∂ν = 0, x ∈ ∂Ω, t > 0,

Z(x, 0) = Z0(x), x ∈ Ω,

(4.5)

where x = (x̃, ỹ), Z = (u− u∗, v − v∗, w − w∗)T and D = α(u)u=(u∗,v∗,w∗).
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Since Ω is a square domain given by [0, L]× [0, L], the solutions to the linearized system

(4.5) with Neumann boundary conditions are:

Z =
∑

(m,n)∈N2

cmne
λt cos(

mπx̃

L
) cos(

nπỹ

L
), k2 , (

mπ

L
)2 + (

nπ

L
)2 ≡ k2

x̃ + k2
ỹ, (4.6)

where cmn are the Fourier coefficients of the initial conditions; λ is the growth rate of pertur-

bation in time t; kx̃ and kỹ represent the wave numbers of the solutions on horizontal direction

and vertical direction, respectively; N represents nonnegative integer set. Substituting (4.6)

into (4.5) leads to the following characteristic equation

λ3 + r1(χ, k)λ2 + r2(χ, k)λ+ r3(χ, k) = 0, (4.7)

where

r1(χ, k) =d1k
2 + d2k

2 + d3k
2 + s1,

r2(χ, k) =(d1d2 + d2d3 + d3d1)k4 +

(
w∗ +

(δ2 − δ1)v∗w∗
(v∗ + w∗)2

− β2u∗v∗
(u∗ + v∗)2

)
d1k

2+(
w∗ −

δ1v∗w∗
(v∗ + w∗)2

+
β1u∗v∗

(u∗ + v∗)2

)
d2k

2 + d3k
2

(
(β1 − β2)u∗v∗

(u∗ + v∗)2
+

δ2v∗w∗
(v∗ + w∗)2

)
+ χ

β1u
2
∗v∗

(u∗ + v∗)2
k2 + s2,

r3(χ, k) =d1d2d3k
6 +

(
w∗ −

δ1v∗w∗
(v∗ + w∗)2

)
d1d2k

4 +

(
δ2v∗w∗

(v∗ + w∗)2
− β2u∗v∗

(u∗ + v∗)2

)
d1d3k

4

+
β1u∗v∗d2d3

(u∗ + v∗)2
k4 +

χd3β1u
2
∗v∗

(u∗ + v∗)2
k4 +

d1δ1δ2v
2
∗w

2
∗

(v∗ + w∗)4
k2 +

β1δ2u∗v
2
∗w∗d3

(u∗ + v∗)2(v∗ + w∗)2
k2

+

(
w∗ −

δ1v∗w∗
(v∗ + w∗)2

)(
d1

(
δ2v∗w∗

(v∗ + w∗)2
− β2u∗v∗

(u∗ + v∗)2

)
+ d2

β1u∗v∗
(u∗ + v∗)2

)
k2

+
χβ1u

2
∗v∗

(u∗ + v∗)2

(
w∗ −

δ1v∗w∗
(v∗ + w∗)2

)
k2 + s3

with s1, s2 and s3 are given in (4.4).

The stability of the spatially homogeneous steady state E∗ to perturbations of wavenumber

k is determined by the signs of the real parts of λ in the characteristic Eq. (4.7). Solving the

cubic equation for λ we get three branches of solutions λ1(k), λ2(k) and λ3(k). In view of the

principle of the linearized stability, E∗ = (u∗, v∗, w∗) is locally asymptotically stable if and

only if all eigenvalues of the characteristic Eq. (4.7) have negative real part. Then according

to the Routh-Hurwitz stability criteria, the steady state E∗ = (u∗, v∗, w∗) of system (1.3) is

locally asymptotically stable if and only if the following conditions hold for each wave number

k given by (4.6)

r1(χ, k) > 0, r3(χ, k) > 0, r1(χ, k)r2(χ, k)− r3(χ, k) > 0. (4.8)
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while (u∗, v∗, w∗) is linearly unstable if one of the conditions above fails for some wave number

k. Note that r1(χ, k) > 0 for all wave numbers k under the assumption (A2). Therefore we

get the necessary and sufficient condition for Turing instability is either

P (χ, k) ≡ r3(χ, k) < 0 or

Q(χ, k) ≡ r1(χ, k)r2(χ, k)− r3(χ, k) < 0
(4.9)

for some nonzero wavenumber k. For convenience, we rewrite P (χ, k) and Q(χ, k) as the

following forms, respectively:

P (χ, k) = P0k
6 + P1(χ)k4 + P2(χ)k2 + P3 (4.10)

Q(χ, k) = Q0k
6 +Q1(χ)k4 +Q2(χ)k2 +Q3, (4.11)

where the coefficients Pi, Qi, i = 0, 1, 2 are given in Appendix A. In the following, we choose

χ as a bifurcation parameter to study the two types of primary instability.

4.2.1 Turing bifurcation

As we know, below (above) the Turing bifurcation threshold value, the spatially homogeneous

steady state is stable and thus all the eigenvalues have negative real parts. At the Turing

bifurcation threshold, exactly one eigenvalue becomes zero at the critical value χTc with non-

zero critical wavenumber kcT , while the other two sets of eigenvalues still have negative real

parts [46, 47]. Since λ1(k), λ2(k), λ3(k) be the roots of the characteristic Eq. (4.7). Then from

the properties of the roots of a cubic equation we have the following equalities:
λ1(k) + λ2(k) + λ3(k) = −r1(χ, k),

λ1(k)λ2(k) + λ2(k)λ3(k) + λ3(k)λ1(k) = r2(χ, k),

λ1(k)λ2(k)λ3(k) = −r3(χ, k),

−(λ1(k) + λ2(k))(λ2(k) + λ3(k))(λ3(k) + λ1(k)) = r1(χ, k)r2(χ, k)− r3(χ, k).

Since at critical wavenumber kcT there exists only one of the roots of characteristic Eq. (4.7)

is equal to zero, without loss of generality we assume

λ1(k) |k=kcT = 0, Re(λ2(k)) |k=kcT< 0, Re(λ3(k)) |k=kcT< 0. (4.12)

Therefore at the critical wavenumber kcT we have r3(χTc , kcT ) = 0 which is equivalent to

P (χTc , kcT ) = 0. Furthermore, we get r1(χTc , kcT ) > 0, r2(χTc , kcT ) > 0 and thus Q(χTc , kcT ) =
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r1(χTc , kcT )r2(χTc , kcT ) − r3(χTc , kcT ) > 0. Now we can identify Turing bifurcation value χTc

which satisfies the Turing bifurcation condition as follows:

There exists kcT > 0 such that

P (χTc , kcT ) = 0, Q(χTc , kcT ) > 0, and P (χTc , k) 6= 0, Q(χTc , k) > 0 for k 6= kcT .

According to the above conditions, to determine the Turing bifurcation boundary, we first

need to find the threshold value χTc for which P (χTc , k) = 0 holds for a unique k. Now for all

χ, P (χ, 0) > 0 and also P (χ, k) > 0 for large values of k. At Turing bifurcation boundary, we

have

min
k
P (χ, k) = 0. (4.13)

Let z = k2. Then we have

P (χ, z) =P0z
3 + P1z

2 + +P2z + P3.

Solving ∂P (χ,z)
∂z = 0 yields the possible local extremum points of P (χ, k)

z =
−P1 +

√
P 2

1 − 3P0P2

3P0
:= z∗, (4.14)

which requires that P1 < 0, P 2
1 > 3P0P2 or P2 < 0 is satisfied, and

z̃ =
−P1 −

√
P 2

1 − 3P0P2

3P0
:= z∗, (4.15)

which requires that P1 < 0, P 2
1 > 3P0P2, P2 > 0 is satisfied.

A direct calculation shows that ∂2P (χ,z)
∂z2

|z=z∗= 2
√
P 2

1 − 3P0P2 > 0 and ∂2P (χ,z)
∂z2

|z=z∗=

−2
√
P 2

1 − 3P0P2 < 0, which implies that z∗ is a local minimum point. As P (χ, 0) = P3 > 0

and lim
z→∞

P (χ, z) = ∞, we infer that z∗ ∈ (0,∞) and satisfies minz P (χ, z) = P (χ, z∗) = 0.

Thus substituting (4.14) into (4.13) and simplifying, we get the critical value of χ should

satisfy the following critical condition

P3 =
1

27P 2
0

[P1(9P0P2 − 2P 2
1 ) + 2(P 2

1 − 3P0P2)
3
2 ]. (4.16)

Let a0 = 27P 2
0P3, P1 = a1+a2χ, P2 = a3+a4χ, where a1, a2, a3, a4 are given in the expressions

of P1 and P2. Substituting them into (4.16) yields

G2(χ) = 4H3(χ), (4.17)

where

G(χ) =2a3
2χ

3 + (6a1a
2
2 − 9a2a4P0)χ2 + (6a2

1a2 − 9(a1a4 + a2a3)P0)χ

+ a0 − 9a1a3P0 + 2a3
1,

H(χ) =a2
2χ

2 + (2a1a2 − 3a4P0)χ+ a2
1 − 3a3P0.
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Simplifying (4.17), it’s a quintic equation of variable χ. Assume

(A3) : a2
0 + 4a0a

3
1 − 18a0a1a3P0 − 27a2

1a
2
3P

2
0 + 108a3

3P
3
0 < 0

is satisfied. Then Eq. (4.17) has at least one positive root, without loss of generality, we may

assume that it has five positive roots, which are denoted by χc1, χ
c
2, χ

c
3, χ

c
4, χ

c
5, respectively.

Denote

χT = {χc1, χc2, χc3, χc4, χc5}. (4.18)

Then we get Turing bifurcation threshold value χTc can be found from the set χT , and the

positivity of the wavenumber k requires it should satisfy the following condition

(A4) : P c1 < 0, (P c1 )2 > 3P0P
c
2 or P c2 < 0,

where P c1 = a1 + a2χ
T
c and P c2 = a3 + a4χ

T
c with χTc ∈ χT .

The corresponding critical wave number k2
cT is given by

k2
cT =

9P0P3 − P c1P c2
2((P c1 )2 − 3P0P c2 )

. (4.19)

Moreover, from Eq. (4.11), it is clear that Q0 > 0 and Q3 > 0 under the assumption (A2).

Hence if we assume that

(A5) : Q1|χ=χT
c
> 0, Q2|χ=χT

c
> 0

is satisfied, then we obtain Q(χTc , k) > 0 for all wave numbers k. Therefore system (1.3)

undergoes Turing bifurcation at χTc near the unique positive steady state E∗.

4.2.2 Turing-spatiotemporal Hopf bifurcation

It is well known that spatiotemporal Hopf bifurcation of system (1.3) occurs when character-

istic Eq. (4.7) has only a pair of simple purely imaginary eigenvalues at critical value χHc with

non-zero critical wavenumber kcH , while the other eigenvalues have negative real parts and

the corresponding transversality condition should be satisfied [48]. Since its corresponding

non-spatial system (4.1) is always asymptotically stable, we call this kind of spatial Hopf

bifurcation as Turing-spatiotemporal Hopf bifurcation, which breaks both spatial symmetry

leading spatial pattern formation and temporal symmetry inducing periodic oscillations in

time. As analyzed above, we can identify Turing-spatiotemporal Hopf bifurcation value χHc
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which satisfies the Hopf bifurcation condition taking the following form:

There exists kcH > 0 such that

Q(χHc , kcH) = 0, P (χHc , kcH) > 0, and Q(χHc , k) 6= 0, P (χHc , k) > 0 for k 6= kcH ;

and for the unique pair of complex eigenvalues near the imaginary axis

µ(χ, k)± iτ(χ, k) satisfying µ′(χHc , kcH) 6= 0 and τ(χHc , kcH) > 0.

To determine the Turing-spatiotemporal Hopf bifurcation boundary, it is necessary to find the

threshold value χHc for which Q(χHc , k) = 0 holds for a unique k. As Q(χ, 0) > 0 and also for

large value of k. At the critical case, we need to find the threshold value χHc of parameter χ

at which Q(χ, k) has a zero minimum at k = kcH and kcH ∈ (0,∞). This implies that Q(χ, k)

satisfies

min
k
Q(χ, k) = 0. (4.20)

Similar to the analyses above, we get the condition for the marginal stability as follows

Q3 =
1

27Q2
0

[Q1(9Q0Q2 − 2Q2
1) + 2(Q2

1 − 3Q0Q2)
3
2 ]. (4.21)

Assume that

(A6) : b20 + 4b0b
3
1 − 18b0b1b3Q0 − 27b21b

2
3Q

2
0 + 108b33Q

3
0 < 0.

is satisfied. Here b0 = 27Q2
0Q3 and bi, i = 1, 2, 3, 4 are given in the expressions of Q1 = b1+χb2

and Q2 = b3 + χb4. Denote

χH = {χ̂c1, χ̂c2, χ̂c3, χ̂c4, χ̂c5}, (4.22)

where χ̂ci , i = 1, 2, 3, 4, 5 are possible positive roots of the following quintic equation

Ĝ2(χ) = 4Ĥ3(χ), (4.23)

where

Ĝ(χ) =2b32χ
3 + (6b1b

2
2 − 9b2b4Q0)χ2 + (6b21b2 − 9(b1b4 + b2b3)Q0)χ

+ b0 − 9b1b3Q0 + 2b31,

Ĥ(χ) =b22χ
2 + (2b1b2 − 3b4Q0)χ+ b21 − 3b3Q0.

Then we obtain that Turing-spatiotemporal Hopf bifurcation threshold value χHc should be

chosen from the set χH , and the positivity requirement of the wavenumber k such that it

should satisfy the following assumption

(A7) : Qc1 < 0, (Qc1)2 > 3Q0Q
c
2 or Qc2 < 0,
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where Qc1 = b1 + b2χ
H
c and Qc2 = b3 + b4χ

H
c with χHc ∈ χH .

And the corresponding critical wave number k2
cH is calculated by

k2
cH =

9Q0Q3 −Qc1Qc2
2((Qc1)2 − 3Q0Qc2)

. (4.24)

Noting that r1(χHc , kcH) > 0 and r3(χHc , kcH) > 0. Since r1(χHc , kcH)r2(χHc , kcH)−r3(χHc , kcH) =

0, we get r2(χHc , kcH) > 0. Therefore the characteristic equation (4.7) has a negative real

root λH1 (χHc , kcH) and a pair of purely imaginary eigenvalues λH2,3(χHc , kcH) given by

λH1 (χHc , kcH) = −r1(χHc , kcH) < 0, λH2,3(χHc , kcH) = ±i
√
r2(χHc , kcH).

Next we check the transversality condition. Let λH1 (χ, k) and λH2,3(χ, k) = µ(χ, k) ± τ(χ, k)

be the unique eigenvalues of (4.7) in a neighbourhood of χ = χHc . Then we know that λH1 , µ

and τ are real analytical functions of χ satisfying µ(χHc , kcH) = 0 and τ(χHc , kcH) > 0. In the

following, we need to prove the following transversality condition

∂µ(χ, k)

∂χ

∣∣∣∣
χ=χH

c ,k=kcH

6= 0. (4.25)

Substituting the eigenvalues λH1 (χ, k) and λH2,3(χ, k) = µ(χ, k)± τ(χ, k) into the characteristic

Eq. (4.7) and equating the real and imaginary parts yield
−r1(χ, k) = 2µ(χ, k) + λH1 (χ, k),

r2(χ, k) = µ2(χ, k) + τ2(χ, k) + 2µ(χ, k)λH1 (χ, k),

−r3(χ, k) = λH1 (χ, k)(µ2(χ, k) + τ2(χ, k)).

(4.26)

Differentiating the equations above with respect to χ gives

2µ′(χ, k) + λ′1(χ, k) = 0,

2µ(χ, k)µ′(χ, k) + 2τ(χ, k)τ ′(χ, k) + 2µ′(χ, k)λ1(χ, k) + 2µ(χ, k)λ′1(χ, k) =
β1u

2
∗v∗k

2

(u∗ + v∗)2
,

λ′1(χ, k)(µ2(χ, k) + τ2(χ, k)) + (2µ(χ, k)µ′(χ, k) + 2τ(χ, k)τ ′(χ, k))λ1(χ, k)

= −β1u
2
∗v∗d3k

4

(u∗ + v∗)2
− β1u

2
∗v∗k

2

(u∗ + v∗)2
(w∗ −

δ1v∗w∗
(v∗ + w∗)2

).

(4.27)

Since µ(χHc , kcH) = 0 and λ1(χHc , kcH) = −r1(χHc , kcH), solving (4.27) with χ = χHc yields

µ′(χHc , kcH) =− 1

2
λ′1(χHc , kcH) =

β1u
2
∗v∗k

2
cH

(τ2(χHc , kcH) + r2
1(χHc , kcH))(u∗ + v∗)2

×(
d1k

2
cH + d2k

2
cH +

δ2v∗w∗
(v∗ + w∗)2

+
(β1 − β2)u∗v∗

(u∗ + v∗)2

)
.
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So if we assume that

(A8) : d1k
2
cH + d2k

2
cH +

δ2v∗w∗
(v∗ + w∗)2

+
(β1 − β2)u∗v∗

(u∗ + v∗)2
6= 0

is satisfied, then the transversality condition (4.25) holds and system (1.3) undergoes spa-

tiotemporal Hopf bifurcation at χHc near the unique positive steady state E∗.

From Eq. (4.10), it is clear that P0 > 0 and P3 > 0. If we assume that

(A9) : P1|χ=χH
c
> 0, P2|χ=χH

c
> 0

is satisfied, then we obtain P (χHc , k) > 0 for all wave numbers k, which indicates stationary

Turing bifurcation cannot occur under this assumption when χ near χHc . Hence system (1.3)

undergoes Turing-spatiotemporal Hopf bifurcation at χHc near the unique positive steady state

E∗.

We summarize the above discussion as the following theorem.

Theorem 4.3 Assume that (A1) and (A2) are satisfied. Then we have the following results

about the Turing instability of the unique spatially homogeneous steady state E∗:

(i) If (A3), (A4) or (A6), (A7), (A8) are satisfied, then E∗ is linearly unstable when χ

crosses its critical value χTc or χHc ;

(ii) If (A3), (A4) and (A5) are satisfied, then system (1.3) undergoes Turing bifurcation at

χTc near E∗, namely, stationary pattern forms in this case, and the critical wave number

is given by (4.19);

(iii) If (A6), (A7), (A8) and (A9) are satisfied, then system (1.3) undergoes Turing-spatiotemporal

Hopf bifurcation at χHc near E∗, namely, oscillatory pattern forms in this case, and the

critical wave number is given by (4.24);

Proof The proof of (i)-(iii) can be found from the discussion above, so we omit it here for

brevity.

To interpret the chemotaxis-driven stationary pattern formation, we plot the functional

curve P (χ, k) as a function of the wavenumber k in Figure 1 (left) with the given parameters

β1 = 10/3, β2 = 10, γ1 = 1, γ2 = 1, δ1 = 1, δ2 = 10, d1 = 3.5, d2 = 0.02, d3 = 0.15. It is easy to

check that the assumptions (A1), (A2) and (A3) are satisfied. A direct calculation shows that

Eq. (4.17) has only one positive root χc1 = 1.6563 which satisfies the assumption (A4), and

the critical wavenumber is k2
cT = 7.2204. Furthermore, we obtain Q1|χ=χT

c =χc
1

= 4.6292 > 0
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Figure 1: (Left) Plots of P (χ, k) for different values of χ against k. (Right) Turing bifurcation

diagram for the system (1.3). Here the parameters are given in the text.

and Q2|χ=χT
c =χc

1
= 6.3573 > 0, which implies that the assumption (A5) is satisfied. Since

the values of Q1 and Q2 are also positive for other chemotaxis factors besides χ = χc1, we

get spatial Hopf bifurcation cannot occur at this case by noticing that Q0 > 0 and Q3 > 0.

Therefore from Theorem 4.3(i) and 4.3(ii) we get that the unique positive steady state E∗

is linearly unstable and stationary Turing pattern arises when χ crosses its critical value

χTc = χc1 = 1.6563. As is illustrated in Figure 1 (left), the value of P (χ, k) becomes negative for

a certain range of values of k when χ crosses its critical value 1.6563, which indicates spatial

pattern formation arises, that is, the parameter value χ affects spatial pattern formation

arises. In Figure 1 (right), we plot Turing bifurcation curve in the (χ, d2)-parameter space for

fixed β1 = 10/3, β2 = 10, γ1 = 1, γ2 = 1, δ1 = 1, δ2 = 10, d1 = 3.5, d3 = 0.15. Clearly, the

assumptions (A1) and (A2) are satisfied for the set of parameters. After check carefully, we

find Q1 > 0 and Q2 > 0 for arbitrary positive parameter values χ and d2. Thus the assumption

(A5) is satisfied and further we have Q(χ, k) > 0 for arbitrary wavenumber k and chemotaxis

coefficient χ, and thus Turing bifurcation curve is determined by solving Eq. (4.16). As can

be seen from Figure 1 (right), the parameter space is divided into two distinct regions by the

Turing bifurcation curve. In region I, the unique positive spatially homogeneous steady state

is the stable solution of system (1.3). Domain II is the region of pure Turing bifurcation, in

which Turing instability occurs and we call it Turing space.

To interpret the chemotaxis-driven oscillatory pattern formation, we plot the functional

curve Q(χ, k) as k is fixed in Figure 2 (left). Here we choose system parameters to be d1 =

0.0001, d2 = 0.0008, d3 = 0.0002, β1 = 3, β2 = 10, γ1 = 1.658, γ2 = 1, δ1 = 0.2, δ2 = 8. Clearly,
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the assumptions (A1), (A2) and (A6) are satisfied. Solving (4.23) gives a unique positive

root χ̂c1 = 3.5609 which satisfies the assumptions (A7) and (A8), and thus χHc = 3.5609. We

also obtain the critical wavenumber is k2
cH = 2.9411. Moreover, we calculate P1|χ=χH

c =χ̂c
1

=

1.8508 × 10−4 > 0 and P2|χ=χH
c =χ̂c

1
= 0.8269 > 0, which implies that the assumption (A9)

is also satisfied. In view of Theorem 4.3(iii), system (1.3) becomes unstable and oscillatory

pattern formation arises when χ crosses its critical value χHc = 3.5609, which is illustrated

in Figure 2 (left). In Figure 2 (right), we plot Turing-spatiotemporal Hopf bifurcation curve

in the (χ, d2)-parameter space for fixed β1 = 3, β2 = 10, γ1 = 1.658, γ2 = 1, δ1 = 0.2, δ2 =

8, d1 = 0.0001, d3 = 0.0002. Clearly, the assumptions (A1) and (A2) are satisfied for the set

of parameters. Additionally, we find P1 > 0 and P2 > 0 for χ ≥ 3.5 and d2 ≥ 0.0008. Thus

the assumption (A9) is satisfied and further we have P (χ, k) > 0 for arbitrary wavenumber k

and (χ, d2) ∈ [3.5,∞) × [0.0008,∞), and thus Turing-spatiotemporal Hopf bifurcation curve

is determined by solving Eq. (4.21). As can be seen from Figure 2 (right), the parameter space

is divided into two distinct domains by the Turing-spatiotemporal Hopf bifurcation curve. In

domain III, the unique positive spatially homogeneous steady state is the stable solution of

system (1.3). However, Domain IV is the domain of instable domain, in which oscillatory

instability occurs and we call it Turing-spatiotemporal Hopf space.
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5 Existence and stability of non-constant positive steady state

5.1 Existence of non-constant positive steady state

In this subsection, we shall study non-constant positive steady states to system (1.3), which

satisfy: 
d1∆u+ β1vu

v+u − γ1u = 0, x ∈ Ω,

∇ · (d2∇v + χv∇u) + δ2vw
v+w −

β2vu
u+v − γ2v = 0, x ∈ Ω,

d34w + w(1− w)− δ1vw
v+w = 0, x ∈ Ω,

∂u
∂ν = ∂v

∂ν = ∂w
∂ν = 0, x ∈ ∂Ω,

(5.1)

where u, v, w are functions of variable x ∈ Ω ⊆ R2 and all the parameters are the same as

those in (1.3). We assume that (A1) is satisfied so that E∗ = (u∗, v∗, w∗) is the unique positive

equilibrium to (4.1).

In the following, to find non-constant positive solutions to (5.1), we will give steady state

bifurcation analysis at E∗. We fix β1, β2, γ1, γ2, δ1, δ2, d1, d2, d3 and choose χ to be a bifurcation

parameter. We also assume that (A2) is satisfied so that the unique positive equilibrium E∗

is locally asymptotically stable for the non-spatial system (4.1). Then we want to determine

the threshold value of the predator-taxis χSmn such that non-constant positive steady state of

system (1.3) bifurcates from E∗ as the parameter χ crosses its threshold value χSmn, and also

study its stability to obtain some spatially inhomogeneous patterns.

Steady state bifurcation. In order to apply the abstract bifurcation theory of Crandall-

Rabinowitz [50], we give the following spaces:

X =

{
u ∈ H2(Ω)

∣∣∣∂u
∂ν

= 0,x ∈ ∂Ω

}
, Y = L2(Ω).

Then system (5.1) can be converted into the following abstract equation A(u, χ) = 0, (u, χ) ∈ X3 × R+, x ∈ Ω,

∂u
∂ν = 0, x ∈ ∂Ω,

(5.2)

where

A(u, χ) =


d1∆u+ β1vu

v+u − γ1u

d2∆v + χ∇v · ∇u+ χv∆u+ δ2vw
v+w −

β2vu
u+v − γ2v

d34w + w(1− w)− δ1vw
v+w

 .

Define

D1(u) =


d1 0 0

χv d2 0

0 0 d3

 , F(u,∇u, χ) = −


β1vu
v+u − γ1u

χ∇v · ∇u+ δ2vw
v+w −

β2vu
u+v − γ2v

w(1− w)− δ1vw
v+w

 ,
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and for i, j = 1, 2, aij(u, χ) = D1(u)δij , bi(x) = aij(u, χ)νj(x), b0(x) = 0, c(x) = δ(x) = I,

where δij is the Kronecker symbol and I is a unit matrix. Then (5.2) is equivalent to A(u, χ) = −aij(u, χ)∂i∂ju + F(u,∇u, χ) = 0, x ∈ Ω,

Bu = δ(x)[bi(x)∂iu + b0(x)u] + (I − δ(x))c(x)u = 0, x ∈ ∂Ω,
(5.3)

where ∂i = ∂
∂xi

and the summation convention is used.

Since aij(u, χ) = D1(u)δij , we can conveniently write (5.3) as A(u, χ) = −D1(u)∆u + F(u,∇u, χ) = 0, x ∈ Ω,

Bu = δ(x)[bi(x)∂iu + b0(x)u] + (I − δ(x))c(x)u = 0, x ∈ ∂Ω.
(5.4)

Moreover, for any fixed û = (û, v̂, ŵ) ∈ X3, the Fréchet derivative of A is given by (z =

(z1, z2, z3) ∈ X3)

DuA(û, χ)[z] = −D1(û)∆z−∆ûD2(z)−D3(∇û) · ∇z− J(û)z, (5.5)

where

D2(z) =


0 0 0

χz2 0 0

0 0 0

 , D3(∇û) =


0 0 0

χ∇v̂ χ∇û 0

0 0 0

 ,

and

J(û) =


f̂u f̂v f̂w

ĝu ĝv ĝw

ĥu ĥv ĥw

 =


β1v̂2

(û+v̂)2
− γ1

β1û2

(û+v̂)2
0

− β2v̂2

(û+v̂)2
δ2ŵ2

(v̂+ŵ)2
− β2û2

(û+v̂)2
− γ2

δ2v̂2

(v̂+ŵ)2

0 − δ1ŵ2

(v̂+ŵ)2
1− 2ŵ − δ1v̂2

(v̂+ŵ)2

 .

In view of [49, Proposition 3.1], we have

DuB(û, χ)[z] = δ(x)[bi(x)∂iz + b0(x)z] + (I − δ(x))c(x)z.

Lemma 5.1 DuA(û, χ) : X3 → Y3 is a Fredholm operator with zero index.

Proof Clearly for û ∈ X3, Trace (D1(û)) > 0 and Det(D1(û)) > 0. So operator DuA(û, χ) is

elliptic. In addition, according to Case 3 of Remark 2.5.5 in [49], here we see that i = j = 2,

αij(x) = δij (the Kronecker symbol), c(x) = I and a(x) = D1(û) with positive eigenvalues

d1, d2 and d3, bi(x) = a(x)αij(x)νj(x) with ν(x) := (ν1(x), ν2(x)) is the outer unit normal

vector field on ∂Ω. Then the Neumann boundary condition can be written as

0 = a(x)(∇z1 ∇z2 ∇z3)Tν(x) = bi(x)∂iz

24



with δ(x) = I3×3 and b0(x) = 0 at ∂Ω. Since δ(x) = I3×3 at x ∈ ∂Ω, the condition

(I − δ(x))a(x)δ(x) = 0 for x ∈ ∂Ω in Case 3 of [49, Remark 2.5.5] is satisfied. Note

that the eigenvalues of a(x) are positive, so the condition (2.6) with σ = 0 in Case 3

of [49, Remark 2.5.5] is satisfied. Therefore, by Remark 2.5.5 of [49], for any χ ∈ R+,

(DuA(û, χ), DuB(û, χ)) satisfies Agmon’s condition for arbitrary angles θ ∈ [−π
2 ,

π
2 ] (see Def-

inition 2.4 in [49]). Furthermore, by Remark 3.4.1 of [49], DuA(û, χ) : X3 → Y3 is Fredholm

with index 0, which implies that the proof of the lemma is complete.

To look for non-constant positive solutions of (5.1) that bifurcate from the spatially ho-

mogeneous steady state u∗ = (u∗, v∗, w∗) we need to check the following necessary condition

N (DuA(u∗, χ)) 6= 0, (5.6)

where N represents the null space. Picking û = u∗ in (5.5), it is easy to see that the null

space in (5.6) consists of some solutions to the following elliptic equations
d1∆u+ J11u+ J12v = 0, x = (x̃, ỹ) ∈ Ω,

d2∆v + χv∗∆u+ J21u+ J22v + J23w = 0, x = (x̃, ỹ) ∈ Ω,

d3∆w + J32v + J33w = 0, x = (x̃, ỹ) ∈ Ω,

∂u
∂ν = ∂v

∂ν = ∂w
∂ν = 0, x = (x̃, ỹ) ∈ ∂Ω.

(5.7)

To verify (5.6), i.e. find the non-zero solution of (5.7), we substitute the following eigen-

expansion in two-dimensional domain [0, L]× [0, L] with Nuemann boundary conditions

u(x̃, ỹ) =
∑

(m,n)∈N2

amn cos(
mπx̃

L
) cos(

nπỹ

L
),

v(x̃, ỹ) =
∑

(m,n)∈N2

bmn cos(
mπx̃

L
) cos(

nπỹ

L
),

w(x̃, ỹ) =
∑

(m,n)∈N2

cmn cos(
mπx̃

L
) cos(

nπỹ

L
),

where N = {0, 1, 2, · · · } is nonnegative integer set and amn, bmn, cmn are the Fourier coeffi-

cients, into (5.7) which yields
−d1k

2 + J11 J12 0

−χv∗k2 + J21 −d2k
2 + J22 J23

0 J32 −d3k
2 + J33




amn

bmn

cmn

 =


0

0

0

 , (5.8)

where k2 = (mπL )2 + (nπL )2,m, n ∈ N. Clearly (m,n) = (0, 0) can be ruled out because the

assumption (A2) is satisfied. For each pair (m,n) ∈ N2 \ {(0, 0)}, (5.7) has nonzero solution
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(u, v, w) if and only if the coefficient matrix of (5.8) is singular or equivalently

χ = χSmn =
(d1d2J33 + d1d3J22 + d2d3J11)k4 − d1d2d3k

6

J12(d3k2 − J33)v∗k2
−

(d1J22J33 − d1J23J32 + d2J11J33 + d3J11J22 − d3J12J21)k2 + s3

J12(d3k2 − J33)v∗k2
,

(5.9)

where s3 is given in (4.4).

So if χ = χSmn then condition (5.6) is satisfied. Since the rank of coefficient matrix of

Eq. (5.8) equals two when χ = χSmn, we conclude that dim(N (DuA(u∗, χ))) = 1. When

χ = χSmn, solving (5.8) yields

amn =
(d3k

2 − J33)J12

(d1k2 − J11)J32
, bmn =

d3k
2 − J33

J32
, cmn = 1,

which is a set of basis vector of the null space N (DuA(u∗, χ)). Thus we get

N (DuA(u∗, χ
S
mn)) = span{(ūmn, v̄mn, w̄mn)}, (5.10)

and

ūmn = amn cos(
mπx̃

L
) cos(

nπỹ

L
), v̄mn = bmn cos(

mπx̃

L
) cos(

nπỹ

L
), w̄mn = cos(

mπx̃

L
) cos(

nπỹ

L
).

(5.11)

Applying the Crandall-Rabinowitz local theory in [50], we now prove in the following

theorem that the steady state bifurcation occurs at (ū, v̄, w̄, χSmn) for each pair (m,n) ∈

N2 \ {(0, 0)}, which establishes the existence of nonconstant positive steady states to (5.1).

Theorem 5.2 Assume that (A1) and (A2) are satisfied. Furthermore suppose that for arbi-

trary two pairs of integers (m,n), (m̃, ñ) ∈ N2 \ {(0, 0)},

χSmn 6= χSm̃ñ, ∀ (m,n) 6= (m̃, ñ) and m2 + n2 6= m̃2 + ñ2. (5.12)

Let Z be any closed complement of N (DuA(u∗, χ
S
mn)) = span{(ūmn, v̄mn, w̄mn)} in X3 defined

by

Z =

{
(u, v, w) ∈ X× X× X

∣∣∣ ∫
Ω
uūmn + vv̄mn + ww̄mndx̃dỹ = 0

}
. (5.13)

Then for each pair (m,n) ∈ N2 \ {(0, 0)}, there exist an open interval I = (−κ, κ) and

two continuously differentiable functions χmn(s) : I → R satisfying χmn(0) = χSmn and

(ξmn(s, x̃, ỹ), ζmn(s, x̃, ỹ), ηmn(s, x̃, ỹ)) : I → Z with (ξmn(0, x̃, ỹ), ζmn(0, x̃, ỹ), ηmn(0, x̃, ỹ)) =

(0, 0, 0) and a unique one-parameter curve Γmn(s) = {(umn(s, x̃, ỹ), vmn(s, x̃, ỹ), wmn(s, x̃, ỹ),

χmn(s))
∣∣s ∈ (−κ, κ)} of non-constant positive steady states to (5.1) that bifurcate from (u∗, v∗, w∗)
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at χ = χSmn. Furthermore, the solutions are continuously differentiable of s and can be written

as follows

χmn(s) = χSmn +O(s), s ∈ (−κ, κ),

(umn(s, x̃, ỹ), vmn(s, x̃, ỹ), wmn(s, x̃, ỹ)) =(u∗, v∗, w∗) + s(ūmn, v̄mn, w̄mn)+

s(ξmn(s, x̃, ỹ), ζmn(s, x̃, ỹ), ηmn(s, x̃, ỹ)), s ∈ (−κ, κ)

(5.14)

where (ūmn, v̄mn, w̄mn) is given by (5.11).

Proof According to Crandall-Rabinowitz local theory in [50], all necessary conditions except

the following have been verified

DχuA(u∗, χ)[ūmn, v̄mn, w̄mn] |χ=χS
mn
/∈ Im(DuA(u∗, χ

S
mn)). (5.15)

We’ll prove by contradiction that (5.15) is satisfied. For this purpose, we suppose that condi-

tion (5.15) fails, then there exists a nontrivial solution (u, v, w) which satisfies
d1∆u+ J11u+ J12v = 0, (x̃, ỹ) ∈ Ω,

χSmnv∗∆u+ d2∆v + J21u+ J22v + J23w = k2v∗amn cos(mπx̃L ) cos(nπỹL ), (x̃, ỹ) ∈ Ω,

d3∆w + J32v + J33w = 0, (x̃, ỹ) ∈ Ω,

∂u
∂ν = ∂v

∂ν = ∂w
∂ν = 0, (x̃, ỹ) ∈ ∂Ω.

(5.16)

Multiplying the first three equations in (5.16) by cos(mπx̃L ) cos(nπỹL ) and integrating them over

Ω by parts and noting that the Neumann boundary conditions, we have
−d1k

2 + J11 J12 0

−χSmnv∗k2 + J21 −d2k
2 + J22 J23

0 J32 −d3k
2 + J33



∫

Ω u cos(mπx̃L ) cos(nπỹL )dx̃dỹ∫
Ω v cos(mπx̃L ) cos(nπỹL )dx̃dỹ∫
Ωw cos(mπx̃L ) cos(nπỹL )dx̃dỹ


= (0,

k2L2v∗amn
4

, 0)T.

(5.17)

The coefficient matrix of Eq. (5.17) is singular and the rank is equal to two because of (5.9),

while the rank of the augmented matrix of Eq. (5.17) is equal to three, then this leads to a

contradiction, which manifests condition (5.15) is satisfied. Moreover, from (5.12), we get the

uniqueness of the bifurcating nonconstant steady state. In view of Theorem 1.7 of [50], the

proof of the theorem is completed.
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5.2 Stability of the non-constant positive steady state

Here the stability or instability refers to that of the bifurcated inhomogeneous steady state

regarded as an equilibrium solution to model (1.3). Based on the arguments in Corollary

1.13 of [51], In what follows, we shall derive criterion and explicit formulas to determine the

direction of steady state bifurcation and stability of the bifurcating solution for the predator-

taxis system (1.3). Since the operator A is C4-smooth, according to Theorem 1.18 in [50],

(umn(s, x̃, ỹ), vmn(s, x̃, ỹ), wmn(s, x̃, ỹ), χmn(s)) are C3-smooth functions of s, and therefore

we can expand them as follows:
umn(s, x̃, ỹ) = u∗ + samn cos(mπL x̃) cos(nπL ỹ) + s2φ1(x̃, ỹ) + s3φ2(x̃, ỹ) + o(s3),

vmn(s, x̃, ỹ) = v∗ + sbmn cos(mπL x̃) cos(nπL ỹ) + s2ψ1(x̃, ỹ) + s3ψ2(x̃, ỹ) + o(s3),

wmn(s, x̃, ỹ) = w∗ + s cos(mπL x̃) cos(nπL ỹ) + s2ρ1(x̃, ỹ) + s3ρ2(x̃, ỹ) + o(s3),

χmn(s) = χSmn + sK1 + s2K2 + o(s2),

(5.18)

where (φi, ψi, ρi) ∈ Z and Ki are constants for i = 1, 2, o(s3) terms in umn(s, x̃, ỹ), vmn(s, x̃, ỹ)

and wmn(s, x̃, ỹ) are taken in X-topology, o(s2) in term χmn(s) is a constant. It is easy to see
d1∆umn(s, x̃, ỹ) = −samnd1k

2 cos(mπL x̃) cos(nπL ỹ) + s2d1∆φ1 + s3d1∆φ2 + o(s3),

d2∆vmn(s, x̃, ỹ) = −sbmnd2k
2 cos(mπL x̃) cos(nπL ỹ) + s2d2∆ψ1 + s3d2∆ψ2 + o(s3),

d3∆wmn(s, x̃, ỹ) = −sd3k
2 cos(mπL x̃) cos(nπL ỹ) + s2d3∆ρ1 + s3d3∆ρ2 + o(s3).

(5.19)

Moreover, from the Taylor’s expansion, we have

f(umn(s, x̃, ỹ), vmn(s, x̃, ỹ), wmn(s, x̃, ỹ))

= f̄ + s
((
f̄uamn + f̄vbmn + f̄w

)
cos(

mπx̃

L
) cos(

nπỹ

L
)
)

+ s2
(
f̄uφ1 + f̄vψ1 + f̄wρ1+

1

2

(
f̄uua

2
mn + f̄vvb

2
mn + f̄ww + 2f̄uvamnbmn + 2f̄uwamn + 2f̄vwbmn

)
cos2(

mπx̃

L
) cos2(

nπỹ

L
)
)

+ s3
(
f̄uφ2 + f̄vψ2 + f̄wρ2 + (f̄uuamn + f̄uvbmn)φ1 cos(

mπx̃

L
) cos(

nπỹ

L
)+

(f̄uvamn + f̄vvbmn)ψ1 cos(
mπx̃

L
) cos(

nπỹ

L
) + (f̄ww + f̄uwamn + f̄vwbmn)ρ1×

cos(
mπx̃

L
) cos(

nπỹ

L
) + (f̄vwψ1 + f̄uwφ1) cos(

mπx̃

L
) cos(

nπỹ

L
) +

1

6

(
f̄uuua

3
mn + 3f̄uuva

2
mnbmn

+ 3f̄uvvamnb
2
mn + f̄vvvb

3
mn + f̄www + 3f̄vvwb

2
mn + 3f̄vwwbmn + 3f̄uuwa

2
mn + 3f̄uwwamn+

6f̄uvwamnbmn
)

cos3(
mπx̃

L
) cos3(

nπỹ

L
)
)

+ o(s3),

(5.20)

where f̄u = ∂f
∂u

∣∣
(u,v,w)=(u∗,v∗,w∗)

, f̄uu = ∂2f
∂u2

∣∣
(u,v,w)=(u∗,v∗,w∗)

, f̄uuu = ∂3f
∂u3

∣∣
(u,v,w)=(u∗,v∗,w∗)

. Simi-

lar meanings for f̄v, f̄w, f̄uv, f̄vv, f̄uw, f̄vw, f̄ww, f̄uuv, f̄uvv, f̄vvv, f̄www, f̄vvw, f̄vww, f̄uuw, f̄uww, f̄uvw.
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For g and h, we also use this kind of denotation. Similarly, we can obtain the Taylor expres-

sions of g(umn(s, x̃, ỹ), vmn(s, x̃, ỹ), wmn(s, x̃, ỹ)) and h(umn(s, x̃, ỹ), vmn(s, x̃, ỹ), wmn(s, x̃, ỹ)).

∇ · (vmn(s, x̃, ỹ)∇umn(s, x̃, ỹ))

= s
(
− v∗amnk2 cos(

mπx̃

L
) cos(

nπỹ

L
)
)

+ s2
(

(
mπ

L
)2amnbmn sin2(

mπx̃

L
) cos2(

nπỹ

L
)+

(
nπ

L
)2amnbmn cos2(

mπx̃

L
) sin2(

nπỹ

L
)− k2amnbmn cos2(

mπx̃

L
) cos2(

nπỹ

L
) + v∗∆φ1

)
+

s3
(
− mπ

L

(
amn

∂ψ1

∂x̃
+ bmn

∂φ1

∂x̃

)
sin(

mπx̃

L
) cos(

nπỹ

L
)− nπ

L

(
amn

∂ψ1

∂ỹ
+ bmn

∂φ1

∂ỹ

)
×

cos(
mπx̃

L
) sin(

nπỹ

L
) + v∗∆φ2 + bmn∆φ1 cos(

mπx̃

L
) cos(

nπỹ

L
)− k2amnψ1×

cos(
mπx̃

L
) cos(

nπỹ

L
)
)

+ o(s3).

(5.21)

By evaluating K1 in the fourth equation of (5.18), we have

Lemma 5.3 Suppose that all conditions in Theorem 5.2 are satisfied. Then for each pair

(m,n) ∈ N2 \ {(0, 0)}, K1 = 0 and the bifurcation curve Γmn(s) is pitch-fork.

Proof Substituting (5.18)-(5.21) into the second equation of (5.1) and collecting s2-terms

yields the following equality:

d2∆ψ1 + ḡuφ1 + ḡvψ1 + ḡwρ1 +
1

2

(
ḡuua

2
mn + ḡvvb

2
mn + ḡww+

2ḡuvamnbmn + 2ḡuwamn + 2ḡvwbmn
)

cos2(
mπx̃

L
) cos2(

nπỹ

L
)

= −χSmn
(

(
mπ

L
)2amnbmn sin2(

mπx̃

L
) cos2(

nπỹ

L
) + v∗∆φ1+

(
nπ

L
)2amnbmn cos2(

mπx̃

L
) sin2(

nπỹ

L
)− k2amnbmn cos2(

mπx̃

L
) cos2(

nπỹ

L
)
)

+

K1v∗amnk
2 cos(

mπx̃

L
) cos(

nπỹ

L
), (x̃, ỹ) ∈ Ω,

∂φ1

∂ν
=
∂ψ1

∂ν
=
∂ρ1

∂ν
= 0, (x̃, ỹ) ∈ ∂Ω.

(5.22)

Multiplying the first equation in (5.22) by cos(mπx̃L ) cos(nπỹL ) and integrating it over Ω by

noting that Neumann boundary conditions yields

K1 =
4

amnv∗k2

((
ḡu − χSmnv∗k2

) ∫
Ω
φ1 cos(

mπx̃

L
) cos(

nπỹ

L
)dx̃dỹ +

(
ḡv − d2k

2
)
×∫

Ω
ψ1 cos(

mπx̃

L
) cos(

nπỹ

L
)dx̃dỹ + ḡw

∫
Ω
ρ1 cos(

mπx̃

L
) cos(

nπỹ

L
)dx̃dỹ

)
.

(5.23)
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Substituting (5.18)-(5.21) into the first and third equations of (5.1) and collecting their s2-

terms give us

d1∆φ1 + f̄uφ1 + f̄vψ1 + f̄wρ1 + 1
2

(
f̄uua

2
mn + f̄vvb

2
mn + f̄ww+

2f̄uvamnbmn + 2f̄uwamn + 2f̄vwbmn
)

cos2(mπx̃L ) cos2(nπỹL ) = 0, (x̃, ỹ) ∈ Ω,

d3∆ρ1 + h̄uφ1 + h̄vψ1 + h̄wρ1 + 1
2

(
h̄uua

2
mn + h̄vvb

2
mn + h̄ww+

2h̄uvamnbmn + 2h̄uwamn + 2h̄vwbmn
)

cos2(mπx̃L ) cos2(nπỹL ) = 0, (x̃, ỹ) ∈ Ω,

∂φ1
∂ν = ∂ψ1

∂ν = ∂ρ1
∂ν = 0, (x̃, ỹ) ∈ ∂Ω.

(5.24)

Multiplying the first two equations in (5.24) by cos(mπx̃L ) cos(nπỹL ) and noting that Neumann

boundary conditions and integrating them over Ω by parts yield(
− d1k

2 + f̄u

)∫
Ω
φ1 cos(

mπx̃

L
) cos(

nπỹ

L
)dx̃dỹ + f̄v

∫
Ω
ψ1 cos(

mπx̃

L
) cos(

nπỹ

L
)dx̃dỹ+

f̄w

∫
Ω
ψ1 cos(

mπx̃

L
) cos(

nπỹ

L
)dx̃dỹ = 0,

h̄u

∫
Ω
φ1 cos(

mπx̃

L
) cos(

nπỹ

L
)dx̃dỹ + h̄v

∫
Ω
ψ1 cos(

mπx̃

L
) cos(

nπỹ

L
)dx̃dỹ+(

− d3k
2 + h̄w

)∫
Ω
ρ1 cos(

mπx̃

L
) cos(

nπỹ

L
)dx̃dỹ = 0.

(5.25)

Noting that (φ1, ψ1, ρ1) ∈ Z as defined in (5.13), we have

amn

∫
Ω
φ1 cos(

mπx̃

L
) cos(

nπỹ

L
)dx̃dỹ + bmn

∫
Ω
ψ1 cos(

mπx̃

L
) cos(

nπỹ

L
)dx̃dỹ+∫

Ω
ρ1 cos(

mπx̃

L
) cos(

nπỹ

L
)dx̃dỹ = 0.

(5.26)

From (5.25) and (5.26), we arrive at the following equations:
−d1k

2 + f̄u f̄v f̄w

h̄u h̄v −d3k
2 + h̄w

amn bmn 1



∫

Ω φ1 cos(mπx̃L ) cos(nπỹL )dx̃dỹ∫
Ω ψ1 cos(mπx̃L ) cos(nπỹL )dx̃dỹ∫
Ω ρ1 cos(mπx̃L ) cos(nπỹL )dx̃dỹ

 =


0

0

0

 . (5.27)

Noting that f̄w = J13 = 0 and h̄u = J31 = 0. The determinant of the coefficient matrix M in

system (5.27) is

Det(M) = (−d1k
2 + f̄u)h̄v + f̄v(−d3k

2 + h̄w)amn − (−d1k
2 + f̄u)(−d3k

2 + h̄w)bmn

= (−d1k
2 + f̄u)h̄v + f̄v(−d3k

2 + h̄w)
(d3k

2 − h̄w)f̄v
(d1k2 − f̄u)h̄v

− (d1k
2 − f̄u)(d3k

2 − h̄w)
d3k

2 − h̄w
h̄v

> 0.

Hence we have∫
Ω
φ1 cos(

mπx̃

L
) cos(

nπỹ

L
) =

∫
Ω
ψ1 cos(

mπx̃

L
) cos(

nπỹ

L
) =

∫
Ω
ρ1 cos(

mπx̃

L
) cos(

nπỹ

L
) = 0,
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which implies that K1 = 0 and thus we finish the proof of the lemma.

Next, we present another version stability result about the unique positive spatially ho-

mogeneous steady state E∗ in this subsection, which is useful for analyzing the stability of

the bifurcating non-constant steady states.

Lemma 5.4 Assume that (A1) and (A2) hold. Furthermore suppose that δ1v∗ < (v∗ + w∗)
2

and (β2−β1)u∗
(u∗+v∗)2

< δ2w∗
(v∗+w∗)2

are satisfied. Denote

χ0 = max
(m,n)∈N2\{(0,0)}

{χSmn, χHmn}, (5.28)

where χSmn is given in (5.9) and χHmn is given in (5.29) which specified within the proof. Then

the unique positive spatially homogeneous steady state E∗(u∗, v∗, w∗) is locally asymptotically

stable if χ > χ0 and it is unstable if χ < χ0.

Proof From the assumptions δ1v∗ < (v∗ +w∗)
2 and (β2−β1)u∗

(u∗+v∗)2
< δ2w∗

(v∗+w∗)2
, we have δ1v∗w∗

(v∗+w∗)2
−

w∗ < 0 and (β2−β1)u∗v∗
(u∗+v∗)2

− δ2v∗w∗
(v∗+w∗)2

< 0. A direct calculation yields that

r3(χ, k) > 0 if and only if χ > χSmn,

r1(χ, k)r2(χ, k)− r3(χ, k) > 0 if and only if χ > χHmn,

where χSmn is given in (5.9) and

χHmn =− (d1(d1d2 + d1d3) + (d2 + d3)(d1d2 + d2d3 + d3d1))k6

(d1 + d2)v∗J12k4 − (J11 + J22)k2
+

((d1 + d2 + d3)d1(J22 + J33) + d1d2J11 + d2
2(J11 + J33) + d2d3J33 + d1d3J11)k4

(d1 + d2)v∗J12k4 − (J11 + J22)k2

+
((d2 + d3)d3(J11 + J22)− (d1d2 + d2d3 + d3d1)s1)k4

(d1 + d2)v∗J12k4 − (J11 + J22)k2

+
(d1s1(J22 + J33)− (d1 + d2 + d3)s2 + d2s1(J11 + J33) + d3s1(J11 + J22))k2

(d1 + d2)v∗J12k4 − (J11 + J22)k2

+
(d1(J22J33 − J23J32) + d2J11J33 + d3(J11J22 − J12J21))k2 − s1s2 + s3

(d1 + d2)v∗J12k4 − (J11 + J22)k2
,

(5.29)

where Jij with i, j = 1, 2, 3 are given in (4.2). Therefore (u∗, v∗, w∗) is locally asymptotically

stable if for each pair (m,n) ∈ N2 \ {(0, 0)} such that χ > χ0, while is unstable if there

exists one pair (m,n) ∈ N2 \ {(0, 0)} such that χ < χSmn or χ < χHmn, that is, if χ < χ0 over

(m,n) ∈ N2 \ {(0, 0)}. This completes the proof.
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Remark 5.5 From Lemma 5.4, we know that system (1.3) undergoes Turing instability when

the chemotactic factor χ crosses the critical value χSmn. On the other hand, Theorem 5.2

says that there exists a unique one-parameter curve Γmn(s), s ∈ (−κ, κ) corresponding to the

non-constant positive steady states of system (1.3) bifurcates from E∗(u∗, v∗, w∗) at χ = χSmn,

which shows that the existence of non-constant positive steady state is close related to Turing

instability and pattern formation.

Remark 5.6 Lemma 5.4 also implies that the predator-taxis may annihilate the spatial pat-

terns and induce the unique coexistence steady state even thought the chemotaxis coefficient

is sufficiently large, which is also illustrated in [31] and [32]. This phenomenon is possibly

occurs in predator-prey interactive population models because some predators know how to

hunt evasive prey. For example, fish predators know how to pursue and capture evasive prey

once they find, which have been disclosed recently by Matthew J. McHenry in [52].

We proceed to the stability analysis of the bifurcating solutions (umn(s, x̃, ỹ), vmn(s, x̃, ỹ),

wmn(s, x̃, ỹ), χmn(s)) with s ∈ (−κ, κ). Since 0 is a simple eigenvalue of operator

D(u,v,w)A(u∗, v∗, w∗, χ
S
mn) with one-dimensional eigenspace N (D(u,v,w)A(u∗, v∗, w∗, χ

S
mn)) =

span{(ūmn, v̄mn, w̄mn)} given in (5.10). According to the arguments in [51, Corollary1.13],

this branch of solutions will be asymptotically stable if the real part of any eigenvalue λ of the

following linearized system of (5.1) around (umn(s, x̃, ỹ), vmn(s, x̃, ỹ), wmn(s, x̃, ỹ), χmn(s)) is

negative:

D(u,v,w)A(umn(s, x̃, ỹ), vmn(s, x̃, ỹ), wmn(s, x̃, ỹ), χmn(s))(u, v, w) = λ(s)(u, v, w), (5.30)

for (u, v, w) ∈ X × X × X. We now give the following stability results of the bifurcating

non-constant positive steady states.

Theorem 5.7 Assume that all conditions in Theorem 5.2 and Lemma 5.4 are satisfied. Let

Γmn(s) = {(umn(s, x̃, ỹ), vmn(s, x̃, ỹ), wmn(s, x̃, ỹ), χmn(s))}, s ∈ (−κ, κ) be the bifurcation

branch given by (5.14). Denote χ0 = max
(m,n)∈N2\{(0,0)}

{χSmn, χHmn} which is the same as given in

(5.28), and assume that χSmn 6= χHmn for all (m,n) ∈ N2 \ {(0, 0)} holds. Then the following

statements hold:

(i) If χ0 = χHm1n1
> max

(m,n)∈N2\{(0,0)}
χSmn, then Γmn(s) near (u∗, v∗, w∗, χ

S
mn) is always unsta-

ble for each pair (m,n) ∈ N2 \ {(0, 0)}.
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(ii) If χ0 = χSm0n0
> max

(m,n)∈N2\{(0,0)}
χHmn, then we have the following results

(ii.a) when Ξ0 = 1 + J23J32
(J33−d3k20)2

+
J12(J21−χS

m0n0
v∗k20)

(J11−d1k20)2
> 0, Γm0n0(s), s ∈ (−κ, κ) near

(u∗, v∗, w∗, χ
S
m0n0

) is locally asymptotically stable when K2 < 0 and it is unstable when

K2 > 0;

(ii.b) when Ξ0 = 1 + J23J32
(J33−d3k20)2

+
J12(J21−χS

m0n0
v∗k20)

(J11−d1k20)2
< 0, Γm0n0(s), s ∈ (−κ, κ) near

(u∗, v∗, w∗, χ
S
m0n0

) is locally asymptotically stable when K2 > 0 and it is unstable when

K2 < 0;

(ii.c) Γmn(s) near (u∗, v∗, w∗, χ
S
mn) is always unstable for pairs of integers (m,n) ∈ N2 \

{(0, 0)} satisfying (m,n) 6= (m0, n0) and m2 + n2 6= m2
0 + n2

0;

Proof To prove (i), according to the standard eigenvalue perturbation theory in [53], we shall

study the limit of eigenvalue system (5.30) for each pair (m,n) ∈ N2 \ {(0, 0)} as s→ 0, that

is, the following eigenvalue problem
d1∆u+ J11u+ J12v = λ̂u, x = (x̃, ỹ) ∈ Ω,

d2∆v + χSmnv∗∆u+ J21u+ J22v + J23w = λ̂v, x = (x̃, ỹ) ∈ Ω,

d3∆w + J32v + J33w = λ̂w, x = (x̃, ỹ) ∈ Ω,

∂u
∂ν = ∂v

∂ν = ∂w
∂ν = 0, x = (x̃, ỹ) ∈ ∂Ω.

(5.31)

Multiplying (5.31) the first three equations by cos(mπx̃L ) cos(nπỹL ) and then integrating them

over Ω by parts and noting Neumann boundary conditions, we obtain
−d1k

2 + J11 − λ̂ J12 0

−χSmnv∗k2 + J21 −d2k
2 + J22 − λ̂ J23

0 J32 −d3k
2 + J33 − λ̂



∫

Ω u cos(mπL x̃) cos(nπL ỹ)dx̃dỹ∫
Ω v cos(mπL x̃) cos(nπL ỹ)dx̃dỹ∫
Ωw cos(mπL x̃) cos(nπL ỹ)dx̃dỹ


= (0, 0, 0)T.

(5.32)

Clearly λ̂ is an eigenvalue of (5.31) if and only if the coefficient determinant of (5.32) is equal

to zero, i.e., ∣∣∣∣∣∣∣∣
−d1k

2 + J11 − λ̂ J12 0

−χSmnv∗k2 + J21 −d2k
2 + J22 − λ̂ J23

0 J32 −d3k
2 + J33 − λ̂

∣∣∣∣∣∣∣∣ = 0,

which gives the following characteristic equation

λ̂3 + r1(χSmn, k)λ̂2 + r2(χSmn, k)λ̂+ r3(χSmn, k) = 0, (5.33)
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where the coefficients ri(χ
S
mn, k), i = 1, 2, 3 are the coefficients ri(χ, k) i = 1, 2, 3 defined

in (4.7) evaluated at χ = χSmn. It is easy to see that characteristic eq. (5.33) has a root

with positive real part if r3(χSmn, k) < 0 or r1(χSmn, k)r2(χSmn, k) − r3(χSmn, k) < 0, which

means if χSmn < max
(m,n)∈N2\{(0,0)}

{χSmn, χHmn} = χ0 = χHm1n1
for (m,n) ∈ N2 \ {(0, 0)} or χ0 =

χSm0n0
> max

(m,n)∈N2\{(0,0)}
χHmn satisfying (m,n) 6= (m0, n0) and m2+n2 6= m2

0+n2
0, we infer from

Lemma 5.4 that the characteristic Eq. (5.33) always has at least an eigenvalue with positive

real part. According to the standard eigenvalue perturbation theory (see, for example [53]),

the linearized system (5.30) has a corresponding eigenvalue with positive real part when s is

sufficiently small, which implies the non-constant steady state Γsmn is always unstable near

(u∗, v∗, w∗, χ
S
mn). Therefore, the proof of (i) and (ii.c) are completed.

Next, we proceed to investigate the stability result about the bifurcating nonconstant

steady state (um0n0(s, x̃, ỹ), vm0n0(s, x̃, ỹ), wm0n0(s, x̃, ỹ)) of (ii). In view of Corollary 1.13 in

[51], there exist an interval Î with χSm0n0
∈ Î and two continuously differentiable functions

λ : I = (−κ, κ) → R, µ : Î → R with λ(0) = 0 and µ(χSm0n0
) = 0 such that λ(s) is an

eigenvalue of (5.30) and µ(χ) is an eigenvalue of the following eigenvalue problem

D(u,v,w)A(u∗, v∗, w∗, χ)(u, v, w) = µ(χ)(u, v, w), (u, v, w) ∈ X× X× X. (5.34)

Furthermore we know from [51] that the eigenfunction of (5.34) can be represented by

u(χ, x̃, ỹ) = (u(χ, x̃, ỹ), v(χ, x̃, ỹ), w(χ, x̃, ỹ)), which depends on χ continuously differentiable

and is uniquely determined by

(u(χSm0n0
, x̃, ỹ), v(χSm0n0

, x̃, ỹ), w(χSm0n0
, x̃, ỹ))

= (am0n0 cos(
m0πx̃

L
) cos(

n0πỹ

L
), bm0n0 cos(

m0πx̃

L
) cos(

n0πỹ

L
), cos(

m0πx̃

L
) cos(

n0πỹ

L
))

and u(χ, x̃, ỹ)− (u(χm0n0 , x̃, ỹ), v(χm0n0 , x̃, ỹ), w(χm0n0 , x̃, ỹ)) ∈ Z, where am0n0 , bm0n0 and Z

are defined in (5.11) and (5.13) respectively. It follows from (5.34) that
d1∆u+ J11u+ J12v = µu, (x̃, ỹ) ∈ Ω,

d2∆v + χv∗∆u+ J21u+ J22v + J23w = µv, (x̃, ỹ) ∈ Ω,

d3∆w + J32v + J33w = µw, (x̃, ỹ) ∈ Ω,

∂u
∂ν = ∂v

∂ν = ∂w
∂ν = 0, (x̃, ỹ) ∈ ∂Ω.

(5.35)
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Differentiating (5.35) with respect to χ and then letting χ = χSm0n0
, we have

d1∆u̇+ J11u̇+ J12v̇ = µ̇(χSm0n0
)am0n0 cos(m0πx̃

L ) cos(n0πỹ
L ), (x̃, ỹ) ∈ Ω,

d2∆v̇ − v∗am0n0k
2
0 cos(m0πx̃

L ) cos(n0πỹ
L ) + χSm0n0

v∗∆u̇+ J21u̇+ J22v̇ + J23ẇ

= µ̇(χSmn)bm0n0 cos(m0πx̃
L ) cos(n0πỹ

L ), (x̃, ỹ) ∈ Ω,

d3∆ẇ + J32v̇ + J33ẇ = µ̇(χSmn) cos(m0πx̃
L ) cos(n0πỹ

L ), (x̃, ỹ) ∈ Ω,

∂u
∂ν = ∂v

∂ν = ∂w
∂ν = 0, (x̃, ỹ) ∈ ∂Ω,

(5.36)

where k2
0 = (m0π

L )2 + (n0π
L )2, the dot sign · in (5.36) denotes the differentiation with respect

to χ evaluated at χ = χSm0n0
, that is, u̇ = ∂u(χ,x̃,ỹ)

∂χ

∣∣
χ=χS

m0n0

, the same meanings for v̇ and ẇ.

Multiplying the first three equations in (5.36) by cos(m0πx̃
L ) cos(n0πỹ

L ) and integrating them

we obtain
J11 − d1k

2
0 J12 0

J21 − χSm0n0
v∗k

2
0 J22 − d2k

2
0 J23

0 J32 J33 − d3k
2
0



∫

Ω u̇ cos(mπL x̃) cos(nπL ỹ)dx̃dỹ∫
Ω v̇ cos(mπL x̃) cos(nπL ỹ)dx̃dỹ∫
Ω ẇ cos(mπL x̃) cos(nπL ỹ)dx̃dỹ


= (µ̇(χSm0n0

)am0n0

L2

4
, µ̇(χSm0n0

)bm0n0

L2

4
+
k2

0v∗am0n0L
2

4
, µ̇(χSm0n0

)
L2

4
)T.

(5.37)

We denote by Â the augmented matrix of the algebraic system (5.37). Then we have

Â =


J11 − d1k

2
0 J12 0 µ̇(χSm0n0

)am0n0
L2

4

J21 − χSm0n0
v∗k

2
0 J22 − d2k

2
0+ J23 µ̇(χSm0n0

)bm0n0
L2

4 +
k20v∗am0n0L

2

4

0 J32 J33 − d3k
2
0 µ̇(χSm0n0

)L
2

4



→


J11 − d1k

2
0 J12 0 µ̇(χSm0n0

)am0n0
L2

4

0 J32 J33 − d3k
2
0 µ̇(χSm0n0

)L
2

4

J21 − χSm0n0
v∗k

2
0 J22 − d2k

2
0 J23 µ̇(χSm0n0

)bm0n0
L2

4 +
k20v∗am0n0L

2

4



→


J11 − d1k

2
0 J12 0 µ̇(χSm0n0

)am0n0
L2

4

0 J32 J33 − d3k
2
0 µ̇(χSm0n0

)L
2

4

0 Θ1 J23 Θ2

 ,

(5.38)

where Θ1 = J22 − d2k
2
0 −

J21−χS
m0n0

v∗k20
J11−d1k20

J12 and Θ2 = µ̇(χSm0n0
)bm0n0

L2

4 + k2
0v∗am0n0

L2

4 −
J21−χS

m0n0
v∗k20

J11−d1k20
µ̇(χSm0n0

)am0n0
L2

4 . From (5.37), we know that the coefficient matrix is singular.

Since the algebraic system (5.37) is solvable, it follows from (5.38) that

J32

Θ1
=
J33 − d3k

2
0

J23
=
µ̇(χSm0n0

)L
2

4

Θ2
. (5.39)
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Solving the second equality in (5.39) gives us

$µ̇(χSm0n0
) = υ,

where

$ =(J11 − d1k
2
0)2(J33 − d3k

2
0)2 + J23J32(J11 − d1k

2
0)2+

J12(J33 − d3k
2
0)2(J21 − χSm0n0

v∗k
2
0)
)

=(J11 − d1k
2
0)2(J33 − d3k

2
0)2
(

1 +
J23J32

(J33 − d3k2
0)2

+
J12(J21 − χSm0n0

v∗k
2
0)

(J11 − d1k2
0)2

)
,

(5.40)

and

υ = J12(J11 − d1k
2
0)(J33 − d3k

2
0)2k2

0v∗ < 0. (5.41)

So if we denote

Ξ0 = 1 +
J23J32

(J33 − d3k2
0)2

+
J12(J21 − χSm0n0

v∗k
2
0)

(J11 − d1k2
0)2

,

then we have µ̇(χSm0n0
) < 0 if Ξ0 > 0 while µ̇(χSm0n0

) > 0 if Ξ0 < 0. In view of Theorem 1.16

in [51], near s = 0 the two functions λ(s) and −sχ̇m0n0(s)µ̇(χSm0n0
) have the same sign. More

precisely, we have

lim
s→0

−sχ̇m0n0(s)µ̇(χSm0n0
)

λ(s)
= 1. (5.42)

Therefore, if Ξ0 > 0, then sgn(λ(s)) = sgn(K2) because of K1 = 0; while if Ξ0 < 0, then

sgn(λ(s)) = −sgn(K2). Here K2 can be evaluated in terms of system parameters and we

include the details in Appendix B. This completes the proof of part (ii.a) and (ii.b).

6 Numerical simulations

In this section, we devote to the numerical studies of dynamic behavior of system (1.3) in a

two-dimensional bounded domain Ω ⊆ R2 and want to investigate the effect of predator-taxis

χ on the formation of two kinds of nontrivial patterns, that is, stationary Turing pattern

and oscillatory pattern, emerging from bifurcations χTc , χHc , respectively. Here the finite-

difference simulations use forward time and centred spatial differences for the interior points

with appropriate care at the boundary to accommodate Neumann boundary conditions in

two dimensional space domain [55]. For this purpose, we discrete in time, with time stepsize

δt = τ > 0 and space stepsizes δx = δy = h > 0, using the following explicit-forward difference
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Figure 3: Formation of stationary Turing pattern of system (1.3) with different predator-taxis rates

for top-predator species u: aχ = 1.6; bχ = 1.23; cχ = 0.53. The other system parameters are the

same as those in Figure 1 (left).

Euler scheme:

uk+1
i,j = uki,j + τd1∆uki,j + τf1(uki,j , v

k
i,j , w

k
i,j),

vk+1
i,j = vki,j + τd2∆vki,j + τχvki,j∆u

k
i,j + τχ5 vki,j · 5uki,j + τf2(uki,j , v

k
i,j , w

k
i,j),

wk+1
i,j = wki,j + τd3∆wki,j + τf3(uki,j , v

k
i,j , w

k
i,j),

where the discretization of the gradient term and the Laplacian term take the following form

5 uki,j =
1

h
(ar(i, j)u

k
i+1,j − uki,j , au(i, j)uki,j+1 − uki,j)T,

∆uki,j =
1

h2
[al(i, j)u

k
i−1,j + ar(i, j)u

k
i+1,j + ad(i, j)u

k
i,j−1 + au(i, j)uki,j+1 − 4uki,j ].

Here (i, j) denote the lattice sites and h is the lattice constant. The matrix elements of

al, ar, ad, au are unity except at the boundary. When (i, j) is at the left boundary, that

is i = 0, we define al(i, j)u
k
i−1,j = uki+1,j , which guarantees zero-flux of individuals in the

left boundary. Similarly, we define ar(i, j), ad(i, j), au(i, j) such that the no-flux boundary

is satisfied. Here to ensure the stability of numerical computation, the selected stepsize,

space stepsize and diffusion coefficients should satisfy the Courant-Friedrichs-Lewy stability

criterion, i.e.,
(
di

(
1

(δx)2
+ 1

(δy)2

)
δt ≤ 1

2

)
for i = 1, 2, 3.

Also it is well known that the system dynamics depends on the choice of the initial con-

ditions. If the initial spatial distribution of the two species is spatially homogenous, then

the distribution of species would stay homogeneous for any time, and no spatial pattern can

emerge, which is not interesting. To get a nontrivial spatiotemporal dynamics, the initial

condition has been taken as a small random perturbation to the homogeneous steady state of

the system for the subsequent simulations if we don’t make a special statement. It is to be

37



predator v

0 5 10 15 20

x

0

2

4

6

8

10

12

14

16

18

20

y

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

prey w

0 5 10 15 20

x

0

2

4

6

8

10

12

14

16

18

20

y

0.9935

0.994

0.9945

0.995

0.9955

0.996

0.9965

0.997

0.9975

Figure 4: Formation of stationary pattern of system (1.3) in two-dimensional domains for the

three species u, v, w by steady-state bifurcation near the unique spatially homogeneous steady state

(0.6999, 0.3, 0.9954). Here χ = 1.5 < χ0 = χS7,7 ≈ 1.9544. The other system parameters are given

as β1 = 10/3, β2 = 9, γ1 = 1, γ2 = 1, δ1 = 0.02, δ2 = 9.5, d1 = 10, d2 = 0.02, d3 = 0.1. Initial datas

are (u0, v0, w0) = (0.6999 + 0.01 cos 7πx
L cos 7πy

L , 0.3 + 0.01 cos 7πx
L cos 7πy

L , 0.9954 + 0.01 cos 7πx
L cos 7πy

L )

with L = 20.

noted here that, the time at which we stopped the simulations is sufficient to assume that the

patters attained the stationary state and they do not change further with time.

6.1 Stationary Turing pattern

The results are shown in Figure 3 and as expected, we obtain a stationary Turing pattern.

The system parameters are chosen the same as those used in Figure 1(left), which located in

the Turing domain II of Figure 1(right). With these parameters, it is easy to check that all as-

sumptions in Theorem 4.5(ii) are satisfied. As can be seen from Figure 3, the unique spatially

homogeneous steady state (u∗, v∗, w∗) = (0.4667, 0.2000, 0.8000) loses its stability to Turing b-

ifurcation when the predator-taxis rate χ crosses its threshold value χTc = χc1 ≈ 1.6563. These

numerical simulations support the related results obtained in Theorem 4.5(ii). Moreover, we

also find that the Turing pattern undergoes pattern transition from spot pattern to long stripe

pattern via the mixture of spots and short strips as the decreases of the chemotaxis rate χ,

which can be interpreted by the amplitude equations of pattern. Here we choose time stepsize

δt = 0.01 and space stepsizes δx = δy = 0.4 to satisfy the Courant-Friedrichs-Lewy stability

conditions.

Figure 4 is devoted to verify the effectiveness of our Theorem 5.7. It is easy to check that

all conditions in Theorem 5.7 are satisfied under this set of parameters. By calculation, we

find Q(χ, k) > 0 for all χ > 0 and k > 0, which means that χ0 = max
(m,n)∈N2\(0,0)

{χSmn, χHmn} =
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Figure 5: Formation of stationary pattern of system (1.3) in two-dimensional domains for the

three species u, v, w by steady-state bifurcation near the unique spatially homogeneous steady state

(0.6999, 0.3, 0.9954) with L = 30. Here all the system parameters and the initial datas are the same

as in Figure 4.

max
(m,n)∈N2\(0,0)

{χSmn}. Furthermore, from the expression of χSmn, we find that the value of χSmn

varies from nonnegative to positive at first and then to nonnegative again as the increase

of wavenumber k, so it will attain maximum at some finite wavenumber k. By calculation,

we obtain max
(m,n)∈N2\(0,0)

{χSmn} = χS7,7 = 1.9544. Moreover, Ξ0 = 0.9986 > 0 and K2 =

−3.3213×108 < 0 when χ0 = χS7,7 = 1.9544 and L = 20. Therefore a bunch of stable spatially

inhomogeneous steady states Γ7,7(s) for s ∈ (−κ, κ) bifurcates from (0.6999, 0.3, 0.9954) as χ

is close to its critical value χ0 according to Theorem 5.7. Numerical simulations in Figure 4

support the theoretical findings about the stability of the bifurcating steady states. Here the

time stepsize and the space stepsizes are chosen as δt = 0.01 and δx = δy = 1 to satisfy the

Courant-Friedrichs-Lewy stability criterion. In Figure 5, we observe different kinds of stable

stationary Turing patterns with different spatial size L = 30 via steady state bifurcation near

E∗(u∗, v∗, w∗), here the system parameters and initial conditions are chosen the same as in

Figure 4. This shows that spatial size L can affect pattern structure.

6.2 Oscillatory pattern

Our next set of numerical simulations are devoted to demonstrate that system (1.3) admits

oscillatory patterns through spatiotemporal Hopf bifurcations. Here the system parameters

are chosen in Turing spatio-temporal Hopf bifurcation domain IV of Figure 2 (right). We

shall show that the spatially homogeneous steady state (u∗, v∗, w∗) = (0.35, 0.4325, 0.9368)

loses its stability to time-periodic orbits under this set of parameter values. As is shown in

Figure 6, we observe oscillatory pattern formation as the chemotaxis rate χ = 4.0 crosses the
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Figure 6: Formation of oscillatory pattern of system (1.3) for the three species u, v, w over Ω =

(0, 80) × (0, 80) (bottom) and the time history of three populations ů, v̊ and ẘ (top), where ů :=

u(5, 5, t), v̊ := v(5, 5, t), ẘ := w(5, 5, t). Here χ = 4.0 > χHc = 3.5609 and the other system parameters

are the same as in Figure 2 (left).
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Figure 7: Formation of oscillatory pattern of system (1.3) in two-dimensional domains with

different lengths for top-predator species u (top) and the corresponding time history (bottom):

a L = 8, b L = 9, c L = 12. The system parameters are γ2 = 1, γ1 = 1.5, β1 = 2, β2 =

10, δ1 = 0.5, δ2 = 6, χ = 10, d1 = 0.002, d2 = 0.01, d3 = 0.001. Here χHc = 0.384.
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Figure 8: Formation of oscillatory pattern of system (1.3) in two-dimensional domains with different

chemotactic factors for top-predator species u: χ = 8 (left), χ = 8.8 (middle), χ = 9.5 (right). The

other system parameters are the same as in Figure 7.
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critical value χHc = 3.5609, which is oscillatory not only in space but also periodic in time. We

also observe different kinds of oscillatory patterns in two-dimensional domains with different

lengths in Figure 7 and different chemotactic factors in Figure 8. Here the time stepsize

δt = 0.01 and space stepsizes δx = δy = 1 are chosen to satisfy the Courant-Friedrichs-Lewy

stability conditions. As can be seen from Figure 7 and Figure 8, the change of spatial size L or

the chemotactic factor χ has an important effect on the bandwidth of the periodic oscillatory

pattern.

6.3 Non-Turing pattern

In this subsection, we investigate non-Turing pattern through numerical simulation. For this

purpose, the parameters are chosen in the temporal Hopf bifurcation region which is a non-

Turing domain. As we know, the type of model dynamics depends on the choice of initial

data. If we choose a purely homogeneous initial conditions then the system stays homogeneous

forever and no spatial pattern emerges, if we choose a weakly perturbed initial conditions then

the pattern also evolves to the homogeneous distribution eventually. To get a inhomogeneous

spatial pattern, following [11, 54], here we choose a strongly perturbed unsymmetrical initial

species distribution as follows:

(IC)Stro.Pert. :


u(x̃, ỹ, 0) = u∗ − ε1(x̃− 100)− ε2(ỹ − 100),

v(x̃, ỹ, 0) = v∗ − ε3(x̃− 150)− ε4(ỹ − 50),

w(x̃, ỹ, 0) = w∗ − ε5(x̃− 0.1ỹ − 125)(x̃− 0.1ỹ − 275),

where ε1 = 1.5 × 10−4, ε2 = 1.0 × 10−5, ε3 = 1.0 × 10−5, ε4 = 2.0 × 10−4, ε5 = 1.5 × 10−7.

Snapshots of the spatial distribution under the initial conditions (IC)Stro.Pert. as time evolu-

tion are shown in Figure 9, where the parameter are chosen as: γ1 = 1,γ2 = 1, β1 = 10/3,

β2 = 10, δ1 = 3.2, δ2 = 10, χ = 0.1, d1 = 0.01, d2 = 0.02 and d3 = 0.03. It is easy to check

that this set of parameter set belongs to a Non-Turing domain because the equilibrium E∗

of the corresponding ODE system (4.1) is unstable according to Theorem 4.1 (ii). As can be

seen from Figure 9, at the beginning, the spiral wave grows steadily as the time evolution (cf.

Figures 9a and 9b). After a period of time, the center of spiral wave loses its stability and

results in some irregular spatial structures grow steadily at its center (cf. Figure 9d). Then

the destruction of center also triggers the spirals lose their stability on the boundary as time

further evolution (cf. Figure 9e). Furthermore, the new spirals emerge in the center of the

domain (cf. Figures 9f) and persist for some while (cf. Figures 9g and 9h). Finally the ir-

regular spatial pattern occupies the whole domain (cf. Figure 9i). Here the evolution process
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d e f

g h i

Figure 9: Non-Turing pattern evolution of top-predator species u of system (1.3) for different times.

The system parameters are given in the text.
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a b c

d e f

Figure 10: Non-Turing pattern transition of system (1.3) with different parameter values δ1

for the top-predator species u: a δ1 = 2.445, b δ1 = 2.45, c δ1 = 2.455, d δ1 = 2.46, e

δ1 = 2.465 and f δ1 = 2.5. The other system parameters are given in the text.
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of spatial pattern is slightly different from the observation in [54] because the destruction of

spiral waves not only occurs in their centers but also in their boundary and some new spirals

emerge in the center of domain accompanying time evolution.

To further investigate the effect of parameter δ1 on Non-Turing pattern formation, we

choose a set of different parameter values δ1 = 2.445, 2.45, 2.455, 2.46, 2.465, 2.5 and the

other parameters are fixed. As can be seen from Figure 10, when parameter δ1 is very close to

its Hopf bifurcation critical value δH1 = 2.4271, spiral wave pattern grows steadily as the slight

increase of parameter value δ1 (cf. Figures 10a and 10b). However, as δ1 goes further beyond

its critical value, the spiral wave structure is very sensitive to the change of parameter value δ1

and results in losing its stability gradually and surrounded by irregular spatial structures (cf.

Figures 10c and 10d); the irregular spatial structures gradually occupy the majority domain

as the value of parameter δ1 further increases (cf. Figure 10e), and finally the irregular spatial

pattern prevails over the whole domain (cf. Figure 10f). In a word, the parameter value δ1

controls the appearance or disappearance of the spirals.

7 Conclusion and discussion

In this investigation, we explore a reaction-diffusion-chemotaxis food chain model with predator-

taxis effect, where the predator is top predator. By virtue of the theory of semigroups of linear

operators and some important embedding inequalities, we have established the global exis-

tence and boundedness of solution of the original system with arbitrary spatial dimension

N . Then by choose predator-taxis rate as bifurcation parameter, we study two types of pri-

mary instability: Turing bifurcation and Turing-spatiotemporal Hopf bifurcation. According

to our theoretical analyses, two kinds of important patterns are observed by numerical sim-

ulations. Finally, we also investigate the existence of non-constant positive steady state by

using abstract bifurcation theory. From the obtained results, we find chemotaxis can induce

non-constant positive steady state bifurcates from the spatially homogeneous steady state via

steady state bifurcation.

On the other hand, although from the stationary Turing pattern generating analysis,

specified in Section 4, the conditions admitting Turing bifurcation and stimulating stationary

Turing pattern formation for system (1.3) have been achieved, it is still not easy to find out

how to select the proper Turing pattern structures with Neumannn boundary conditions. As

a consequence, in coming future, one can derive the amplitude equations of Turing patterns

close to the onset of some significant system parameter, which will probably interpret the
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stability of diverse forms of Turing patterns with the structural transitions among them. In

addition, we only consider the anti-predator behavior of the intermediate predator v to the

top predator u. However, most of the bottom prey w possesses the ability to escape the risk

of being preyed by the predator v. Then it is difficult to prove the global existence of the

solution mathematically because the w-equation involving the gradient term ∇v. We leave it

for future work.

Appendix A: The coefficients of Eq. (4.10) and Eq. (4.11)

P0 =d1d2d3, P3 = s3,

P1 =

(
w∗ −

δ1v∗w∗
(v∗ + w∗)2

)
d1d2 +

(
δ2v∗w∗

(v∗ + w∗)2
− β2u∗v∗

(u∗ + v∗)2

)
d1d3 +

β1u∗v∗d2d3

(u∗ + v∗)2
+
χβ1u

2
∗v∗d3

(u∗ + v∗)2
,

P2 =

(
w∗ −

δ1v∗w∗
(v∗ + w∗)2

)(
d1

(
δ2v∗w∗

(v∗ + w∗)2
− β2u∗v∗

(u∗ + v∗)2

)
+ d2

β1u∗v∗
(u∗ + v∗)2

)
+
d1δ1δ2v

2
∗w

2
∗

(v∗ + w∗)4
+

β1δ2u∗v
2
∗w∗d3

(u∗ + v∗)2(v∗ + w∗)2
+

χβ1u
2
∗v∗

(u∗ + v∗)2

(
w∗ −

δ1v∗w∗
(v∗ + w∗)2

)
.

Q0 =d1(d1d2 + d1d3) + (d2 + d3)(d1d2 + d2d3 + d3d1), Q3 = s1s2 − s3, (A.1)

Q1 =(d1 + d2 + d3)d1

(
w∗ +

(δ2 − δ1)v∗w∗
(v∗ + w∗)2

− β2u∗v∗
(u∗ + v∗)2

)
+ d1d2

β1u∗v∗
(u∗ + v∗)2

+

d2
2

(
w∗ −

δ1v∗w∗
(v∗ + w∗)2

+
β1u∗v∗

(u∗ + v∗)2

)
+ d2d3

(
w∗ −

δ1v∗w∗
(v∗ + w∗)2

)
+ d1d3

β1u∗v∗
(u∗ + v∗)2

+ (d2 + d3)d3

(
(β1 − β2)u∗v∗

(u∗ + v∗)2
+

δ2v∗w∗
(v∗ + w∗)2

)
+ (d1d2 + d2d3 + d3d1)s1+

χ(d1 + d2)
β1u

2
∗v∗

(u∗ + v∗)2
,

Q2 =(d1 + d2 + d3)s2 + d1s1

(
w∗ +

(δ2 − δ1)v∗w∗
(v∗ + w∗)2

− β2u∗v∗
(u∗ + v∗)2

)
+

d2s1

(
w∗ −

δ1v∗w∗
(v∗ + w∗)2

+
β1u∗v∗

(u∗ + v∗)2

)
+ d3s1

(
(β1 − β2)u∗v∗

(u∗ + v∗)2
+

δ2v∗w∗
(v∗ + w∗)2

)
− d1

(
δ1δ2v

2
∗w

2
∗

(v∗ + w∗)4
+

(
w∗ −

δ1v∗w∗
(v∗ + w∗)2

)(
δ2v∗w∗

(v∗ + w∗)2
− β2u∗v∗

(u∗ + v∗)2

))
− d2

β1u∗v∗
(u∗ + v∗)2

(
w∗ −

δ1v∗w∗
(v∗ + w∗)2

)
− d3

β1δ2u∗v
2
∗w∗

(u∗ + v∗)2(v∗ + w∗)2

+ χ

(
δ2v∗w∗

(v∗ + w∗)2
+

(β1 − β2)u∗v∗
(u∗ + v∗)2

)
. (A.2)
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Appendix B: The calculation of K2

First of all, substituting the asymptotic expressions (5.18)-(5.21) into the second equation of

(5.1) and collecting s3-terms yields the following equality:

d2∆ψ2 + ḡuφ2 + ḡvψ2 + ḡwρ2 + (ḡuuamn + ḡuvbmn)φ1 cos(
mπx̃

L
) cos(

nπỹ

L
)+

(ḡuvamn + ḡvvbmn)ψ1 cos(
mπx̃

L
) cos(

nπỹ

L
) + (ḡww + ḡuwamn + ḡvwbmn)×

ρ1 cos(
mπx̃

L
) cos(

nπỹ

L
) + (ḡvwψ1 + ḡuwφ1) cos(

mπx̃

L
) cos(

nπỹ

L
)+

1

6

(
ḡuuua

3
mn + 3ḡuuva

2
mnbmn + 3ḡuvvamnb

2
mn + ḡvvvb

3
mn + ḡwww + 3ḡvvwb

2
mn+

3ḡvwwbmn + 3ḡuuwa
2
mn + 3ḡuwwamn + 6ḡuvwamnbmn

)
cos3(

mπx̃

L
) cos3(

nπỹ

L
)

= χSmn
(mπ
L

(
amn

∂ψ1

∂x̃
+ bmn

∂φ1

∂x̃

)
sin(

mπx̃

L
) cos(

nπỹ

L
) +

nπ

L

(
amn

∂ψ1

∂ỹ
+ bmn

∂φ1

∂ỹ

)
×

cos(
mπx̃

L
) sin(

nπỹ

L
)− v∗∆φ2 − bmn∆φ1 cos(

mπx̃

L
) cos(

nπỹ

L
) + k2amnψ1×

cos(
mπx̃

L
) cos(

nπỹ

L
)
)

+K2v∗amnk
2 cos(

mπx̃

L
) cos(

nπỹ

L
), (x̃, ỹ) ∈ Ω,

∂φi
∂ν

=
∂ψi
∂ν

=
∂ρi
∂ν

= 0, (x̃, ỹ) ∈ ∂Ω, i = 1, 2. (B.1)

Multiplying the first equation in (B.1) by cos(mπx̃L ) cos(nπỹL ) and integrating it over Ω yields

v∗amnk
2

4
K2 = (ḡv − d2k

2)

∫
Ω
ψ2 cos(

mπx̃

L
) cos(

nπỹ

L
)dx̃dỹ + (ḡu − v∗k2χSmn)×∫

Ω
φ2 cos(

mπx̃

L
) cos(

nπỹ

L
)dx̃dỹ + ḡw

∫
Ω
ρ2 cos(

mπx̃

L
) cos(

nπỹ

L
)dx̃dỹ − χSmnbmnk2×∫

Ω
φ1 cos(

2mπx̃

L
) cos(

2nπỹ

L
)dx̃dỹ +

ḡuvamn + ḡvvbmn + ḡvw − χSmnk2amn
4

×∫
Ω
ψ1dx̃dỹ +

ḡuuamn + ḡuvbmn + ḡuw
4

∫
Ω
φ1dx̃dỹ +

ḡww + ḡuwamn + ḡvwbmn
4

∫
Ω
ρ1

+ χSmn
mπ

L

(mπamn
2L

( ∫
Ω
ψ1 cos(

2mπx̃

L
)dx̃dỹ +

∫
Ω
ψ1 cos(

2mπx̃

L
) cos(

2nπỹ

L
)dx̃dỹ

)
+
mπbmn

2L

( ∫
Ω
φ1 cos(

2mπx̃

L
)dx̃dỹ +

∫
Ω
φ1 cos(

2mπx̃

L
) cos(

2nπỹ

L
)dx̃dỹ

))
+

χSmn
nπ

L

(nπamn
2L

( ∫
Ω
ψ1 cos(

2nπỹ

L
)dx̃dỹ +

∫
Ω
ψ1 cos(

2mπx̃

L
) cos(

2nπỹ

L
)dx̃dỹ

)
+
nπbmn

2L

( ∫
Ω
φ1 cos(

2nπỹ

L
)dx̃dỹ +

∫
Ω
φ1 cos(

2mπx̃

L
) cos(

2nπỹ

L
)dx̃dỹ

))
−
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χSmnbmn(
nπ

L
)2

∫
Ω
φ1 cos(

2nπỹ

L
)dx̃dỹ − χSmnbmn(

mπ

L
)2

∫
Ω
φ1 cos(

2mπx̃

L
)dx̃dỹ+

3L2

128

(
ḡuuua

3
mn + 3ḡuuva

2
mnbmn + 3ḡuvvamnb

2
mn + ḡvvvb

3
mn + ḡwww + 3ḡvvwb

2
mn

+ 3ḡvwwbmn + 3ḡuuwa
2
mn + 3ḡuwwamn + 6ḡuvwamnbmn

)
. (B.2)

Similarly, Substituting (5.18)-(5.19) into the first and third equation in (5.1) and collecting

their s3-terms yield

d1∆φ2 + f̄uφ2 + f̄vψ2 + f̄wρ2 + (f̄uuamn + f̄uvbmn)φ1 cos(mπx̃L ) cos(nπỹL )+

(f̄uvamn + f̄vvbmn)ψ1 cos(mπx̃L ) cos(nπỹL ) + (f̄ww + f̄uwamn + f̄vwbmn)ρ1×

cos(mπx̃L ) cos(nπỹL ) + (f̄vwψ1 + f̄uwφ1) cos(mπx̃L ) cos(nπỹL ) + 1
6

(
f̄uuua

3
mn + 3f̄uuva

2
mnbmn

+3f̄uvvamnb
2
mn + f̄vvvb

3
mn + f̄www + 3f̄vvwb

2
mn + 3f̄vwwbmn + 3f̄uuwa

2
mn + 3f̄uwwamn+

6f̄uvwamnbmn
)

cos3(mπx̃L ) cos3(nπỹL ) = 0, (x̃, ỹ) ∈ Ω,

d3∆ρ2 + h̄uφ2 + h̄vψ2 + h̄wρ2 + (h̄uuamn + h̄uvbmn)φ1 cos(mπx̃L ) cos(nπỹL )+

(h̄uvamn + h̄vvbmn)ψ1 cos(mπx̃L ) cos(nπỹL ) + (h̄ww + h̄uwamn + h̄vwbmn)ρ1×

cos(mπx̃L ) cos(nπỹL ) + (h̄vwψ1 + h̄uwφ1) cos(mπx̃L ) cos(nπỹL ) + 1
6

(
h̄uuua

3
mn + 3h̄uuva

2
mnbmn

+3h̄uvvamnb
2
mn + h̄vvvb

3
mn + h̄www + 3h̄vvwb

2
mn + 3h̄vwwbmn + 3h̄uuwa

2
mn + 3h̄uwwamn+

6h̄uvwamnbmn
)

cos3(mπx̃L ) cos3(nπỹL ) = 0, (x̃, ỹ) ∈ Ω.

(B.3)

Noting that Neumann boundary conditions ∂φi
∂ν = ∂ψi

∂ν = ∂ρi
∂ν = 0, (x̃, ỹ) ∈ ∂Ω, we multiply the

two equations in (B.3) by cos(mπx̃L ) cos(nπỹL ) and integrate them over Ω, which implies that

0 =(f̄u − d1k
2)

∫
Ω
φ2 cos(

mπx̃

L
) cos(

nπỹ

L
)dx̃dỹ + f̄v

∫
Ω
ψ2 cos(

mπx̃

L
) cos(

nπỹ

L
)dx̃dỹ

+ f̄w

∫
Ω
ρ2 cos(

mπx̃

L
) cos(

nπỹ

L
)dx̃dỹ +

f̄uvamn + f̄vvbmn + f̄vw
4

∫
Ω
ψ1dx̃dỹ+

f̄uuamn + f̄uvbmn + f̄uw
4

∫
Ω
φ1dx̃dỹ +

f̄ww + f̄uwamn + f̄vwbmn
4

∫
Ω
ρ1dx̃dỹ +

3L2

128
×(

f̄uuua
3
mn + 3f̄uuva

2
mnbmn + 3f̄uvvamnb

2
mn + f̄vvvb

3
mn + f̄www+

3f̄vvwb
2
mn + 3f̄vwwbmn + 3f̄uuwa

2
mn + 3f̄uwwamn + 6f̄uvwamnbmn

)
, (B.4)

0 = h̄u
∫

Ω φ2 cos(mπx̃L ) cos(nπỹL )dx̃dỹ + h̄v
∫

Ω ψ2 cos(mπx̃L ) cos(nπỹL )dx̃dỹ+

(h̄w − d3k
2)
∫

Ω ρ2 cos(mπx̃L ) cos(nπỹL )dx̃dỹ + h̄uvamn+h̄vvbmn+h̄vw
4

∫
Ω ψ1dx̃dỹ+

h̄uuamn+h̄uvbmn+h̄uw
4

∫
Ω φ1dx̃dỹ + h̄ww+h̄uwamn+h̄vwbmn

4

∫
Ω ρ1dx̃dỹ + 3L2

128×(
h̄uuua

3
mn + 3h̄uuva

2
mnbmn + 3h̄uvvamnb

2
mn + h̄vvvb

3
mn + h̄www+

3h̄vvwb
2
mn + 3h̄vwwbmn + 3h̄uuwa

2
mn + 3h̄uwwamn + 6h̄uvwamnbmn

)
.

(B.5)
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Since (φ2, ψ2, ρ2) ∈ Z as defined in (5.13), we get

amn
∫

Ω φ2 cos(mπx̃L ) cos(nπỹL )dx̃dỹ + bmn
∫

Ω ψ2 cos(mπx̃L ) cos(nπỹL )dx̃dỹ+∫
Ω ρ2 cos(mπx̃L ) cos(nπỹL )dx̃dỹ = 0.

(B.6)

Combining (B.4)-(B.6), we have that
f̄u − d1k

2 f̄v f̄w

h̄u h̄v h̄w − d3k
2

amn bmn 1



∫

Ω φ2 cos(mπx̃L ) cos(nπỹL )dx̃dỹ∫
Ω ψ2 cos(mπx̃L ) cos(nπỹL )dx̃dỹ∫
Ω ρ2 cos(mπx̃L ) cos(nπỹL )dx̃dỹ

 =


C1

C2

0

 , (B.7)

where

C1 =− f̄uvamn + f̄vvbmn − f̄vw
4

∫
Ω
ψ1dx̃dỹ −

f̄uuamn + f̄uvbmn + f̄uw
4

∫
Ω
φ1dx̃dỹ−

f̄ww + f̄uwamn − f̄vwbmn
4

∫
Ω
ρ1dx̃dỹ −

3L2
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(
f̄uuua

3
mn + 3f̄uuva

2
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3f̄uvvamnb
2
mn + f̄vvvb

3
mn + f̄www + 3f̄vvwb

2
mn + 3f̄vwwbmn + 3f̄uuwa

2
mn+

3f̄uwwamn + 6f̄uvwamnbmn

)
,

C2 =− h̄uvamn + h̄vvbmn − f̄vw
4

∫
Ω
ψ1dx̃dỹ −

h̄uuamn + h̄uvbmn + h̄uw
4

∫
Ω
φ1dx̃dỹ−

h̄ww + h̄uwamn − h̄vwbmn
4

∫
Ω
ρ1dx̃dỹ −

3L2

128

(
h̄uuua

3
mn + 3h̄uuva

2
mnbmn+

3h̄uvvamnb
2
mn + h̄vvvb

3
mn + h̄www + 3h̄vvwb

2
mn + 3h̄vwwbmn + 3h̄uuwa

2
mn+

3h̄uwwamn + 6h̄uvwamnbmn

)
.

Since the coefficient determinant det(M) > 0, solving (B.7) by Cramer’s rule, we obtain that∫
Ω
φ2 cos(

mπx̃

L
) cos(

nπỹ

L
)dx̃dỹ =

D1

D0
,∫

Ω
ψ2 cos(

mπx̃

L
) cos(

nπỹ

L
)dx̃dỹ =

D2

D0
,

∫
Ω
ρ2 cos(

mπx̃

L
) cos(

nπỹ

L
)dx̃dỹ =

D3

D0
, (B.8)

where

D1 =

∣∣∣∣∣∣∣∣
C1 f̄v f̄w

C2 h̄v h̄w − d3k
2

0 bmn 1

∣∣∣∣∣∣∣∣ ,D2 =

∣∣∣∣∣∣∣∣
f̄u − d1k

2 C1 f̄w

h̄u C2 h̄w − d3k
2

amn 0 1

∣∣∣∣∣∣∣∣ ,

D3 =

∣∣∣∣∣∣∣∣
f̄u − d1k

2 f̄v C1

h̄u h̄v C2

amn bmn 0

∣∣∣∣∣∣∣∣ ,D0 =

∣∣∣∣∣∣∣∣
f̄u − d1k

2 f̄v f̄w

h̄u h̄v h̄w − d3k
2

amn bmn 1

∣∣∣∣∣∣∣∣ .
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Next, to evaluate K2, we need to evaluate the following integrals:∫
Ω
φ1dx̃dỹ,

∫
Ω
ψ1dx̃dỹ,

∫
Ω
ρ1dx̃dỹ,

∫
Ω
φ1 cos(

2mπx̃

L
) cos(

2nπỹ

L
)dx̃dỹ,∫

Ω
ψ1 cos(

2mπx̃

L
) cos(

2nπỹ

L
)dx̃dỹ,

∫
Ω
φ1 cos(

2mπx̃

L
)dx̃dỹ,∫

Ω
ψ1 cos(

2mπx̃

L
)dx̃dỹ,

∫
Ω
φ1 cos(

2nπỹ

L
)dx̃dỹ,

∫
Ω
ψ1 cos(

2nπỹ

L
)dx̃dỹ.

Noting that K1 = 0 and the Neumann boundary conditions, integrating (5.22) and (5.24) over

Ω by parts yields 
f̄u f̄v f̄w

ḡu ḡv ḡw

h̄u h̄v h̄w



∫

Ω φ1dx̃dỹ∫
Ω ψ1dx̃dỹ∫
Ω ρ1dx̃dỹ

 =


C3

C4

C5

 , (B.9)

where

C3 =− L2

8

(
f̄uua

2
mn + f̄vvb

2
mn + f̄ww + 2f̄uvamnbmn + 2f̄uwamn + 2f̄vwbmn

)
,

C4 =− L2

8

(
ḡuua

2
mn + ḡvvb

2
mn + ḡww + 2ḡuvamnbmn + 2ḡuwamn + 2ḡvwbmn

)
,

C5 =− L2

8

(
h̄uua

2
mn + h̄vvb

2
mn + h̄ww + 2h̄uvamnbmn + 2h̄uwamn + 2h̄vwbmn

)
.

Solving (B.9) gives us∫
Ω
φ1dx̃dỹ =

E1

E0
,

∫
Ω
ψ1dx̃dỹ =

E2

E0
,

∫
Ω
ρ1dx̃dỹ =

E3

E0
, (B.10)

where

E1 =

∣∣∣∣∣∣∣∣
C3 f̄v f̄w

C4 ḡv ḡw

C5 h̄v h̄w

∣∣∣∣∣∣∣∣ , E2

∣∣∣∣∣∣∣∣
f̄u C3 f̄w

ḡu C4 ḡw

h̄u C5 h̄w

∣∣∣∣∣∣∣∣ , E3 =

∣∣∣∣∣∣∣∣
f̄u f̄v C3

ḡu ḡv C4

h̄u h̄v C5

∣∣∣∣∣∣∣∣ , E0 =

∣∣∣∣∣∣∣∣
f̄u f̄v f̄w

ḡu ḡv ḡw

h̄u h̄v h̄w

∣∣∣∣∣∣∣∣ .
Multiplying the equations in (5.22) and (5.24) by cos(2mπx̃

L ) and then integrating them over

Ω by parts yields
−d1(2mπ

L )2 + f̄u f̄v f̄w

ḡu − χSmnv∗(2mπ
L )2 −d2(2mπ

L )2 + ḡv ḡw

h̄u h̄v −d3(2mπ
L )2 + h̄w



∫

Ω φ1 cos(2mπx̃
L )dx̃dỹ∫

Ω ψ1 cos(2mπx̃
L )dx̃dỹ∫

Ω ρ1 cos(2mπx̃
L )dx̃dỹ


= (C6, C7, C8)T, (B.11)
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where

C6 =− L2

16

(
f̄uua

2
mn + f̄vvb

2
mn + f̄ww + 2f̄uvamnbmn + 2f̄uwamn + 2f̄vwbmn

)
,

C7 =− L2

16

(
ḡuua

2
mn + ḡvvb

2
mn + ḡww + 2ḡuvamnbmn + 2ḡuwamn + 2ḡvwbmn

)
+

m2π2

4
χSmnamnbmn,

C8 =− L2

16

(
h̄uua

2
mn + h̄vvb

2
mn + h̄ww + 2h̄uvamnbmn + 2h̄uwamn + 2h̄vwbmn

)
.

Solving (B.11) yields∫
Ω
φ1 cos(

2mπx̃

L
) =
F1

F0
,

∫
Ω
ψ1 cos(

2mπx̃

L
) =
F2

F0
,

∫
Ω
ρ1 cos(

2mπx̃

L
) =
F3

F0
, (B.12)

with

F1 =

∣∣∣∣∣∣∣∣
C6 f̄v f̄w

C7 −d2(2mπ
L )2 + ḡv ḡw

C8 h̄v −d3(2mπ
L )2 + h̄w

∣∣∣∣∣∣∣∣ ,

F2 =

∣∣∣∣∣∣∣∣
−d1(2mπ

L )2 + f̄u C6 f̄w

ḡu − χSmnv∗(2mπ
L )2 C7 ḡw

h̄u C8 −d3(2mπ
L )2 + h̄w

∣∣∣∣∣∣∣∣ ,

F3 =

∣∣∣∣∣∣∣∣
−d1(2mπ

L )2 + f̄u f̄v C6

ḡu − χSmnv∗(2mπ
L )2 −d2(2mπ

L )2 + ḡv C7

h̄u h̄v C8

∣∣∣∣∣∣∣∣ ,

F0 =

∣∣∣∣∣∣∣∣
−d1(2mπ

L )2 + f̄u f̄v f̄w

ḡu − χSmnv∗(2mπ
L )2 −d2(2mπ

L )2 + ḡv ḡw

h̄u h̄v −d3(2mπ
L )2 + h̄w

∣∣∣∣∣∣∣∣ .
Multiplying the equations in (5.22) and (5.24) by cos(2nπx̃

L ) and then integrating them

over Ω by parts yields
−d1(2nπ

L )2 + f̄u f̄v f̄w

ḡu − χSmnv∗(2nπ
L )2 −d2(2nπ

L )2 + ḡv ḡw

h̄u h̄v −d3(2nπ
L )2 + h̄w



∫

Ω φ1 cos(2nπỹ
L )dx̃dỹ∫

Ω ψ1 cos(2nπỹ
L )dx̃dỹ∫

Ω ρ1 cos(2nπỹ
L )dx̃dỹ


= (C9, C10, C11)T (B.13)
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where

C9 =− L2

16

(
f̄uua

2
mn + f̄vvb

2
mn + f̄ww + 2f̄uvamnbmn + 2f̄uwamn + 2f̄vwbmn

)
,

C10 =− L2

16

(
ḡuua

2
mn + ḡvvb

2
mn + ḡww + 2ḡuvamnbmn + 2ḡuwamn + 2ḡvwbmn

)
+

n2π2

4
χSmnamnbmn,

C11 =− L2

16

(
h̄uua

2
mn + h̄vvb

2
mn + h̄ww + 2h̄uvamnbmn + 2h̄uwamn + 2h̄vwbmn

)
.

Solving (B.13) yields∫
Ω
φ1 cos(

2nπỹ

L
) =
G1

G0
,

∫
Ω
ψ1 cos(

2nπỹ

L
) =
G2

G0
,

∫
Ω
ρ1 cos(

2nπỹ

L
) =
G3

G0
, (B.14)

G1 =

∣∣∣∣∣∣∣∣
C9 f̄v f̄w

C10 −d2(2nπ
L )2 + ḡv ḡw

C11 h̄v −d3(2nπ
L )2 + h̄w

∣∣∣∣∣∣∣∣ ,

G2 =

∣∣∣∣∣∣∣∣
−d1(2nπ

L )2 + f̄u C9 f̄w

ḡu − χSmnv∗(2nπ
L )2 C10 ḡw

h̄u C11 −d3(2nπ
L )2 + h̄w

∣∣∣∣∣∣∣∣ ,

G3 =

∣∣∣∣∣∣∣∣
−d1(2nπ

L )2 + f̄u f̄v C9

ḡu − χSmnv∗(2nπ
L )2 −d2(2nπ

L )2 + ḡv C10

h̄u h̄v C11

∣∣∣∣∣∣∣∣ ,

G0 =

∣∣∣∣∣∣∣∣
−d1(2nπ

L )2 + f̄u f̄v f̄w

ḡu − χSmnv∗(2nπ
L )2 −d2(2nπ

L )2 + ḡv ḡw

h̄u h̄v −d3(2nπ
L )2 + h̄w

∣∣∣∣∣∣∣∣ .
Finally, multiplying the equations in (5.22) and (5.24) by cos(2nπx̃

L ) cos(2nπx̃
L ) and then

integrating them over Ω by parts yields
−4d1k

2 + f̄u f̄v f̄w

ḡu − 4χSmnv∗k
2 −4d2k

2 + ḡv ḡw

h̄u h̄v −4d3k
2 + h̄w



∫

Ω φ1 cos(2nπx̃
L ) cos(2nπỹ

L )dx̃dỹ∫
Ω ψ1 cos(2nπx̃

L ) cos(2nπỹ
L )dx̃dỹ∫

Ω ρ1 cos(2nπx̃
L ) cos(2nπỹ

L )dx̃dỹ


= (C12, C13, C14)T, (B.15)
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where

C12 =− L2

32

(
f̄uua

2
mn + f̄vvb

2
mn + f̄ww + 2f̄uvamnbmn + 2f̄uwamn + 2f̄vwbmn

)
,

C13 =− L2

32

(
ḡuua

2
mn + ḡvvb

2
mn + ḡww + 2ḡuvamnbmn + 2ḡuwamn + 2ḡvwbmn

)
+

m2π2 + n2π2

8
χSmnamnbmn,

C14 =− L2

32

(
h̄uua

2
mn + h̄vvb

2
mn + h̄ww + 2h̄uvamnbmn + 2h̄uwamn + 2h̄vwbmn

)
.

Solving (B.15) yields∫
Ω
φ1 cos(

2mπx̃

L
) cos(

2nπỹ

L
)dx̃dỹ =

H1

H0
,

∫
Ω
ψ1 cos(

2mπx̃

L
) cos(

2nπỹ

L
)dx̃dỹ =

H2

H0
,∫

Ω
ρ1 cos(

2mπx̃

L
) cos(

2nπỹ

L
)dx̃dỹ =

H3

H0
, (B.16)

where

H1 =

∣∣∣∣∣∣∣∣
C12 f̄v f̄w

C13 −4d2k
2 + ḡv ḡw

C14 h̄v −4d3k
2 + h̄w

∣∣∣∣∣∣∣∣ ,H2 =

∣∣∣∣∣∣∣∣
−4d1k

2 + f̄u C12 f̄w

ḡu − 4χSmnv∗k
2 C13 ḡw

h̄u C14 −4d3k
2 + h̄w

∣∣∣∣∣∣∣∣ ,

H3 =

∣∣∣∣∣∣∣∣
−4d1k

2 + f̄u f̄v C12

ḡu − 4χSmnv∗k
2 −4d2k

2 + ḡv C13

h̄u h̄v C14

∣∣∣∣∣∣∣∣ ,

H0 =

∣∣∣∣∣∣∣∣
−4d1k

2 + f̄u f̄v f̄w

ḡu − 4χSmnv∗k
2 −4d2k

2 + ḡv ḡw

h̄u h̄v −4d3k
2 + h̄w

∣∣∣∣∣∣∣∣ .
Finally, In light of (B.8), (B.10), (B.12), (B.14) and (B.16), we are able to evaluate K2 in

(B.2) in terms of system parameters.
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