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Abstract

In this paper we consider the equilibrium problem of interaction of three elastic bodies of different elastic properties. The
main body is the unit cube. On top of it is a thin layer/quboid of thickness $\eps$ of material whose stiffness is of order
$\frac{1}{\eps}$ that in the middle contains another cuboid which is of width and thickness $\eps$ that is made of material
with elasticity coefficients of order $\frac{1}{\eps"q}$ for $q>08. We show that the family of solutions of linearized elasticity
problems, when $\eps$ tends to zero, converges to a solution of a problem that is posed only on the unit cube with possibly
additional elastic terms on the boundary related to the plate/rod energy of the thin elastic parts. It turns out that there
are five different regimes related to different values of $q$ ($q\in \langle 0, 2\rangle, \{2\}, \langle 2, 4\rangle,\{4\},\langle
4, \infty\rangle$) with different limit problems. We further formulate a model posed on the unit cube that has the same
asymptotics when $\eps$ tends to zero as the full 3d problem posed on the union of the unit cube and thin cuboids. This
model then can be used as the approximating model in all regimes.
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Abstract

In this paper we consider the equilibrium problem of interaction of three elastic bodies of

different elastic properties. The main body is the unit cube. On top of it is a thin layer/quboid
of thickness € of material whose stiffness is of order % that in the middle contains another cuboid
which is of width and thickness ¢ that is made of material with elasticity coefficients of order
Eiq for ¢ > 0. We show that the family of solutions of linearized elasticity problems, when ¢
tends to zero, converges to a solution of a problem that is posed only on the unit cube with
possibly additional elastic terms on the boundary related to the plate/rod energy of the thin
elastic parts. It turns out that there are five different regimes related to different values of ¢
(¢ € (0,2),{2},(2,4),{4}, (4,00)) with different limit problems. We further formulate a model
posed on the unit cube that has the same asymptotics when ¢ tends to zero as the full 3d problem
posed on the union of the unit cube and thin cuboids. This model then can be used as the
approximating model in all regimes.

Keywords: linearized elasticity, interaction, thin, plate, rod

*mljulj@math.hr, Department of Mathematics, Faculty of Science, University of Zagreb
ftambaca@math.hr, Department of Mathematics, Faculty of Science, University of Zagreb

10
12
12
14
14
19



1 Introduction

Interaction of two or more continua appears in many real life situations. Thus it is very important
to have accurate model of interaction. In cases when one of continua is thin this turns out to be
more delicate. On one hand numerical approximation for thin bodies leads to large meshes which is
undesired property, on the other hand thin bodies allow efficient lower-dimensional models. However,
coupling of these lower-dimensional models with three-dimensional is nontrivial and difficult if the
lower-dimensional model is one-dimensional. Possible example is in hemodynamics. If you want to
model interaction of the vessel wall and the stent inserted in it and you want to use a one-dimensional
model for the stent struts (see [31]) and the vessel is thick enough so a two-dimensional model is
not adequate (as in [5]). In this application the stiffness of the stent struts is much larger than the
stiffness of the vessel wall, so it serves as motivation for the problem at hand. A similar and more
simple problem of interaction of elastic three-dimensional cube and a plate-like three-dimensional
body is already considered in [18], while its 2d-1d analogue is numerically investigated in [17].

In this paper we give rigorous derivation and justification of the following problem. Let € > 0 be a
small parameter that will describe the thickness of thin parts of the system. The elastic body consists
of the unit cube Q = [0,1] x [, 1] x [~1,0] with thin layer at the top Q° = [0,1] x [~3,1] x [0, ¢]

which contains the thin strip QE?E i [0,1] x [=5, §] x [0,¢]. The three parts of the domain2 (22, QE\Q5°
and ¢ are assumed to be made of different materials whose elasticity coefficients are related to the
small parameter £ with orders 1, é, Eiq, respectively. The parameter ¢ > 0 serves to relate the stiffness
of the elastic strip to the elastic properties of the cube and the thin plate. We fix the bottom of
the cube (3 = —1) and apply the forcing at the top (3 = ¢) of order €. We then perform the
asymptotic analysis when ¢ tends to zero including the convergence proof of the associated linearized
elasticity problem and obtain five different limit models depending on the value of ¢ > 0. All limit
models are given in the unit cube with additional terms at the top boundary. From [18] and the
analysis of the 3d—2d model the stiffness order % for the plate-like body Q°\Q%¢ corresponds to the
membrane behavior of the plate. Thus in all limit models the energy contains also the membrane
energy at the top of the cube. For ¢ = 2 the membrane energy of the rod is also included in the
limit energy, while for ¢ = 4 the flexural energy of the rod is included but only for the bending
in direction tangential to the top of the cube. There is no flexural energy related to the bending
in the normal direction since the plate gives no resistance to bending (displacement in the normal
direction). This is done in Section 3 and presented in Theorem 4. Note here that in derivations of
plate and rod theories they cannot sustain forcing of order €°, and appropriate scaling of forces is
necessary. However here the rod and the plate are supported by the three-dimensional cube and no
such problem appears.

In real life situations it is unclear which of these models to use. Thus it is important that we are
able to formulate a model, depending on ¢ and ¢, posed only on the unit cube (not including the
thin cuboids) that has the same asymptotics when ¢ tends to zero as the original three-dimensional
problem, see Theorem 10. The model contains the energy of the cube, the energy of the plate and the
energy of the rod. The energy of the plate is of the Naghdi type from [32] with membrane, shear and
flexural terms and given using both, displacement of the middle surface and infinitesimal rotation
of the cross-section, as unknowns in the problem. The rod model that is used is built in the same
manner also with membrane, shear and flexural terms and also with six unknowns, displacement of
the middle curve and infinitesimal rotation of the cross—section, see (2.2). This rod model corresponds
to the Naghdy/Timoshenko type rod model and can be found in [10]. See Theorem 1 for the main
result of the paper.

As already mentioned the problem of interaction of different continua or continua of different
dimensions is the area of great interest. For linearly elastic material there are several papers consid-
ering interaction of two continua, one of which is thin, see [7] and [6] for the flexural case, [4] and [18]
for whole family of regimes. In the case of curved domain and membrane and flexural shell models
the asymptotics is discussed in [3]. See also [1] for the variational approach to the thin inclusion
problem and [2] in both linear and nonlinear elasticity. For hyperelastic materials and membrane



regime for the thin part the the asymptotics of the 3d problem is discussed in [9] by I'-convergence
techniques. A similar analysis for micropolar elastic media is done in [28]. Interaction of the viscous
fluid and the linearly elastic plate is considered in [22, 19]. An example from electromagnetism can
be found in [24], from heat conduction in [16], for 1d elastic material in [20] and for modeling a thin
elastic sheet on a liquid in [21]. This topic is also related to the problem of modeling of joints within
both nonlinear and linearized elasticity, see [13, 11] or thin elastic interfaces, linear and nonlinear,
isotropic and functionally graded, with or without constraints, see [14, 15, 8, 23, 30] and reference
therein. For piezoelectric interfaces see [25, 27| and for thermoelasticity see [26, 29).

2 Definition of the problem and the main result

2.1 Formulation of the full 3D model with thin domains

Let us first formulate the full three-dimensional problem with thin parts of the domain. Let € > 0 be
the small parameter which will describe thickness of thin parts of the domain. The domain Q3p..

consists of the cube Q = [0, 1]x[—3, 2]x[—1, 0] with the thin layer at the top Q. = [0, 1]x[—3, 3]x[0,¢]
which contains a thin strip Q.. = [0,1] x [=5, §] x [0,¢], see Figure 1. As a rule’ is related to the
variables z1 and w9, for instance 2’ = (x1,x2) and V' = [81 82]. Forcing in the problem comes from
the force density f : I'. — R? applied at the top surface I'. = [0,1] x [—3, 3] x {e}. The three parts
of the domain Q, Q. \ .. and Q. . are made of different material with elasticity tensors

1 1

C3D7 7Cplate7 *Crody
£ el

with Lamé coefficients A\3p, 3p, Aplates plate @and Arod, frod; Tespectively. The additional parameter
g > 0 is related to the stiffness of the elastic rod Q... In addition we fix the bottom of the cube.
Thus the three-dimensional problem is given by: find

u® € V(93D+5) = {’U € H1(93D+5) : U‘%:_l = 0}

such that

1 1
Cspe(u®) - e(v)dx + / Colate€(u®) - e(v)dx + / Croge(u®) - e(v)dx
Qap € Ja\Q. . el Jo..

(2.1)
= / f - vde, v e V(Q3pie).



2.2 Formulation of the 3D-2D-1D model

To formulate the associate 3D-2D-1D interface model we additionally define I' = [0, 1] x [, 2] x {0}
which replaces the thin layer Q. \ Q.. and v = [0, 1] x {0} x {0} which replaces the thin strip Q...
See Figure 2.

Figure 2: Domain of the 3D-2D-1D model.

Now the solution of the 3D-2D-1D model is the function from the product space
(u, &%) € V3q_24-14 = {(v, ) € H' (;R?) x HY(T;R?) :
’U‘x;;:—l = 07 U|F € Hl(r7 R3)7 (’U, JJ)"Y € Hl(f}/a RG)}

such that satisfies

2
/ Cspe(u®) - e(v)dx + / Cm (V'u® 4+ AQD®) - (Vv + Aw) do’ + % C;V'&* - V'wda!
Q r r

4274 / M [01u® + e1 x @] - [01v + €1 x W] dxy +&*74 / HO, & - Oywdrr (2.2)
vy

;
= / f-vda, (v, W) € V3q-2d-1d-
I

Here Aw = [el X W eg X '[[7] and

ErodA 0 N 0 ,UfrodK 0 0
M = 0 Mr(;i; 0 ) H= 0 Eroalz 0 )
0 0 tad 0 0 FEroals

where A is the area, Is and I3 are moments of inertia and K is the torsional rigidity of the cross—
section of the rod; s and ag depend on the properties of the cross—section, see [10] for details. Note
that in our geometry setting the cross—section is the square of size 1 and then A =1, I = I3 = 1—12
and K torsional rigidity of the unit square (no closed formula). Note also that ¢ in (2.2) naturally
corresponds to the coefficients in the equation related to the physical cross—section, namely the area
of the cross-section A is equal €2, while the moments of inertia and torsional rigidity are of order
e?. As already noted in the introduction in the limit for the rod only relevant will be extension and
bending tangential to the plate. Thus from matrices M and H only relevant will be m1; = EyoqA
and h22 = %Erodfg.
Furthermore the elasticity tensors C,, and Cy, Cy : R3%2 — R3*2 are given by

CnC -
c;C-

AC-D + HplateC * da

D
D =A(JC)-JD + Byc - d,



where

. C A D 3Ix2 2%2 2 _ 0 1
C_[CT], D_[dT]eR , C,D e R**“ ¢,d € R?, J= 10|

The matrix By € R2*2 is assumed to be positive definite and the elasticity tensor A is given by

2)\plate,ufplate 2%2
AD = )\plate + 2Mplate (I D)I * 2,uplateD7 Dek ’
where Apjate and piplate are the Lamé coefficients. We assume that 3Apiate + 2/plate, Mplate > 0.

The main result of this paper is given in the following theorem. Namely we show that the
asymptotics of the solution 3D model (2.1) and the 3D-2D-1D model (2.2) are the same for all
q > 0. This implies that we can replace the full three-dimensional model with the problem on a more
simple domain.

Theorem 1. Let ¢ > 0. Let (u®3%).~q € V(Q3pyic) be a family of solutions of (2.1) and let
(us3d=2d—1d gedd=2d=1dy e Voy o0 14 be a family of solutions of (2.2). Then for each q > 0
families (u3q)eso and (w3424 o have the same limit. That limit differs depending on
the five different regimes regarding the value of q: q € (0,2),{2},(2,4),{4}, (4,00), given in both
Theorem 4 and Theorem 10. Additionally, as € — 0, it holds

3d 3d—2d—1d |2
[u>" —u’ 11 (umsy = 0-

Proof. Follows from Theorem 4 and Theorem 10. O

3 Limits of the 3d equations

In this section we do the asymptotic analysis of the full 3D model (2.1). For that we need the Korn
inequality, uniform with respect to ¢, for the domain

11
Q3D+E - [07 1] X I:_272:| X [_175]'

Lemma 2 (Lemma 2 in [18]). There is Cx > 0 such that for all € € [0,1] and for all v € V(Q3p4c)
one has

2 2
CK||v||H1(QSD+s§R3) < He(v)||L2(QsD+s;R3X3)'
In order to get the a priori estimates, uniform with respect to €, for the family of solutions of

(2.1), as usual, we now rescale the domain 3p4. on the domain independent of €, Q.1 = [0, 1] X
[—1,1] x [—1,1], using the map R : Qa1 — Q3p+e, given by

( (xla (1 - {5)(1'2 + 1) $3) (‘T27$3) € [_17 _%] X [_170]a
(1'1,51‘2,173) (.’17271173) € [1_%)% X [_170]7
€ _ (xla 1 _5 €r2 — 1) + 3) (1‘2,.ZU3> € [571] X [_170]7
R (21, w9, 23) = (z1,(1—¢) xg +1) — 5353) (z2,3) € [-1,—3] x [0, 1],
(z1,€29,23), (v2,x3) € [—5, 3] x [0,1],
(z1,(1—e)(x2 — 1) + 3,em3), (z2,23) € [5,1] x [0,1]
Respectively, we also need the following notation, see Figure 3,
[ 1] 11 1
Q3D,— = [071} X —1,—5 X [—1,0], Q?’D,O = [O, 1] X —5,5 X [—1,0], Q3D,+ = [0, 1] X 5,1 X [—1,0],
1] 11 1
Q*:[Oal}x _17_5 X[())l]’ QO_[O 1] 272 X[Oal]v QJr:[Ovl]x 571 X[())l]a
1] 11 |
=[0,1] x _—1,—5_ x1, T{=10,1] x [—2,2} x1, TL=1[0,1]x [2,1] x 1.

5
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Figure 3: Domain of the rescaled full 3D problem.

Now the rescaled displacement u(e) = u® o R belongs to V(Qa1) = {v € H' (4 R3) : v|p=—1 =0}
and satisfies (after the change of variables in (2.1))

Bip(u(e)) = Lsp(v), v € V(Qan), (3.1)
where
ip(v) = (1—5)/ f-vdx’—l—f-:/ f-vdd,
ri g
Bip(wv) = (1-) [ Cupelplw)ipalohdote [ Cpelpplu): e5polv)ds
Q3p,+ Q3p,0
+(1—¢) Cplate€™ (u) - € (v)dr + &> 1 [ Croaef(u) - € (v)dx,
Q4 Qo
where

e5p . (v) =ei(v) + 11— 892(0) + e3(v),

€ipa(v) = e1(0) + —e(v) +es(v),

1 1
— 8eg(v) + geg(v),

1 1
eo(v) = e1(v) + —ex(v) + —e3(v),
and e;(v) is the matrix function with derivatives, from symmetrized gradient, with respect to variable
x; only.
13
e(v) = B Zaﬂ)j (e; ® e;te; €.
j=1
Note that in (3.1) notation ngD _ eans the the integrals over Q3p 4 and 23p _ have to be summed.

The problem (3.1) is just rescaled classical linearized elasticity problem. Thus the existence and
uniqueness of its solution immediately follows.

Theorem 3. The problem (3.1) has unique solution.

Remark 1. In what follows we will (with or without mention) use several identifications of function
spaces. Firstly, as usual in plate modelling,

{veL?(Q_): 050 =0} = L*(T_),

6



and analogously for L*(T';), where

1 1
I'_ = [O, 1] X I:_17_2:| x 0, F+ = [07 1] X |:271:| x 0.

As usual in rod modelling,

{v € L*(Q) : Oyv = d3v = 0} = L2(7).
Spaces HY(I'_), HY(I'y) and H'(v) are analogously identified. Secondly, the limit functions u’
will be shown to satisfy u® € H'(Q3p +) and ou’ = 0 in L?(Q3p ). By the trace theorem applied

on Q3p + this implies that ul| gyl = ul| 29— 1. Thus we can neglect the middle part and identify
2 2

the spaces
{UEH1(93D7,)QH1(93D7+) 211’ 1 :U|x2:%}§H1(Q)

Te=—7%

(each half of the cube € corresponds to one of the domains Q3p y and Q3p ). Finally, in similar
manner as above, we identify spaces

{fve H(Q_)NH'(Q4) : 850 =0in Q_UQ,, |, 1=, 1} = HY(T).

In the following theorem we formulate the main result of this section, the asymptotic behavior of
the family of solutions of the problem (3.1). We obtain five different limit models corresponding to
different values of the parameter ¢ similarly as in [18]. Corresponding function spaces to these five
models are as follows:

VIi={ve HY(QR?) : vy 1 = 0,0, € HY(D), 0 = 1,2},
VI ={veVv! v e H(y)},
VIII = {’U S VII v = 0},
VIV = {v e VI .0y € H2 (7)Y,
VV = {’U S VIV 101100 = 0}.
Obviously
vV cvlVcviti cylhcy!
with V! imposing regularity on the plate I, V! imposing additional regularity at the rod ~, V1!
imposing extensional rigidity of the rod v, VIV imposing further regularity for the flexural displace-

ment of the rod but only in the ey direction (!) and finally VY imposing flexural stiffness of the
rod.

Theorem 4. Let (u®). € V(Quy) be a family of solutions of (3.1). Let ¢ > 0. Then
Hu€ - U’H%{l(Q;E@) - Oa
where u® is the unique solution of one of the following problems

1) for q € (0,2), u® € V! is the unique solution of
/ Cspe(u?) - e(v)dx + / Ae' (u°) - € (v)da' = / f-vdd, veVl (3.2)
Q r r
II) for q =2, u® € VI is the unique solution of
/ Cspe(u?) - e(v)dz + / Ae' (u) - & (v)dz' + / Eroqttl - 01v1day = / f-vodd,  (3.3)
Q r o' r

which holds for allv € VI,



III) for q € (2,4), u® € VI is the unique solution of
/ Cspe(u?) - e(v)dx + / Ae' (u) - € (v)da' = / f - vdd, (3.4)
Q r r

which holds for all v € VI,

IV) for q =4, u® € VIV is the unique solution of

/ Cspe(u?) - e(v)dx + / Ae' (u?) - € (v)da’ +/ Ef;dcf)llug - O1vedry = / f-vd, (3.5)
Q r v r

which holds for allv € VIV

V) for q € (4,00), u® € VV is the unique solution of
/ Cspe(u?) - e(v)dz + / Ae' (u?) - € (v)da' = / f - vd, (3.6)
Q r r

which holds for allv € VV.
Furthermore we have the following convergences

u® — u’ strongly in L2(Q3D,0; R3),

u® — u’ strongly in L*(Q+;R?),

Veeipo(u®) — e*P? strongly in L*(Q3p 0; R¥?), (3.7)
e (uf) — et strongly in L*(Q4; R3*3),

el 2ef(uf) — e strongly in L*(Qo; R3*3),

Oud  1(01ud + doul) 0
e:t _ . 82u8 0

>\platc 0 0
)‘plate+2ﬂp1ate (alul + 82u2)

and the value €® depends on the value q: € = 0 for q & {2,4},

1 0 0
el = 81u(1) 0 % 0
for g =2, and
1 0 0
e’ = —x2811u3 0 m 0
for g = 4.

Remark 2. Note that for the limit function u} the only information we have is that it belongs to
H(Q). By the trace theorem, it also belongs to L*(T), but we cannot extract any more information
in domain . This is related to the fact that in cases ¢ > 4 condition in space and terms in limit
models are related to flexural effects of the rod in direction es only.



Corollary 1.  a) For alle € (0,1], all ¢ > 0 and all v € V(Q) one has

1
CK(HUHJZLIl(Q:sD,i;RB) + €HUH%Q(Q3D,0;R3) - E”vv”%2(Q3D,0;R3X3) - 5”82””%2(03/3,0;11%3)
2 2 1 2
+ellvllz2 oy re) +EIVOIT2(0, rexs) + g”a3UHL2(Qi;R3)

+52||,U||%,2(QO;R3) +52||81v||%2(QO;R3) + ||82v||%2(QO;R3) + ||83v||%2(QO;R3)> < B%(v,v).
b) For alle € (0,1], all ¢ > 0 and all v € V(Qqu) one has

1
H'U|‘%2(p1i;R3) < HUH%?(QSD,i;R?’) + ||53?)||%2(Q3D,i;]1g3) +5H"’H%2(Qi;1[g3) + g||83’0||%2(9i;1g3)»

5””“%2(1’*(1);RS) < 5||v||%2(Q3D’0;R3) + €||a3v||%2(Q3D70;R3) + 52||’U||%2(QO;R3) + ||33?)||%2(QO;R3)~
¢) For alle € (0,1], all ¢ > 0 and all v € V(Qqu) one has

10022 02, < C (10132000001 + 19013200005 + 102003200 055) )

01320 m5) < © (1012005 + 10500 im0 + 19500 Fage ) -
d) For alle € (0,1], all g > 0 and all v € V(Qqy), a = 1,2 one has

Hvauiz(go)

< C (lealBap.e) + 19500220y 0) + 1050al3a(0sy + 1020all32(0s) + 1020al32(q)) -
Proof. a) Here we use Lemma 2. Since ¢ < 1 we have that % and Eiq are larger or equal to 1, so we can
estimate the symmetrized gradient by the potential energy in (2.1). Then we rescale the obtained
estimate to the canonical domain via R°.

b) The first statement is proven in Corollary 3b) in [18], while the second one is analogous,
multiplied by e.

c¢) Using the Newton-Leibniz theorem as in Corollary 3b) in [18] we obtain

2 2 2
[0lz2 (5 o3y < € (H”|m2:i$ 1220 42y + ”82””L2<93D,0;R3)) :

Now the trace theorem on §23p + implies the first estimate in c).
For the second estimate we take x € {23p + and again apply the Newton-Leibniz theorem and
the homogeneous boundary condition on x3 = —1 to obtain

z3 0 3
'U(x) = U(l'la X2, 0) + / O3vdxg = / Osvdxs + / Osvdxs.
0 —1 0

Then we integrate and estimate to obtain the second estimate in c).
d) Again we use the Newton—Leibniz formula for x €

0 xr3 —1/2 T2
v(z) :/ Jsvdrs +/ O3vdws +/ Oyvdas —I—/ Osvdxs
-1 0 T2 -1/2

and after integration and estimates we obtain d). O

For the test function v = u(¢) in (3.1) we have

Bip(u(e),u(e)) = Lip(u(e)) < [fllrzwy)llwl@)lzwy) + el Fllra ) llel@) 2wy



Now the application of the estimate b) and then a) from Corollary 1, after noting that all terms in
the right hand side of b) appear in the left hand side of the estimate a), implies

Bip(u(e), u(e)) = Lip(u(e)) < [Ifllr2ey)llul@)l 2y tell Fllzaey) llule)l 2y < C\/BED(U(s),u(e))-

This implies that all terms in B5,(u(e), u(e)) and all terms in the left hand side of estimates a) and
¢) in Corollary 1 are bounded. Weak compactness then implies that on a subsequences we have some
weak convergences listed in the following corollary.

In the sequel we will use compactness argument for different bounded e-families and extract
subsequences. For each extraction we will keep the same notation k or ;. At the end, due to the
uniqueness of the obtained limits, we will get that actually the whole families converge.

Corollary 2. For all ¢ > 0 there are sequences (¢1)r C [0,1] and (u*)y C V(Qqu) and limits
u® € L2(Qu\ 0 BY), €800 € [2(3p,0: RP9), e € L2(Q RP), o € L2(; %), 0= 1,2 and
e’ € L?(Q0; R3*3) such that e — 0 and
(i) ub — uf weakly in H'(Q3p +;R?),
(ii) ub — uf weakly in L*(Q3p,0; R?),
(117) duf =0 strongly in L*(Q3p.0; R?),
(iv) ub — uf weakly in L?(Q4;R3),

(v) dzuk — 0 strongly in L*(Q+;R?), (3.8)
(vi) \/ae?b,o(uk) — e3P0 weakly in L*(Q3p.0; R**3),

(vii) e} (uF) — et weakly in L?(Qa; R33),

(viii) 85uk — w’ weakly in L?(Qo; R?), B € {2,3},
(iz) e it (uf) —&° weakly in L*(Qo; R3*3).

3.1 Preliminary analysis

From the convergences (ii) and (iii) in (3.8) we see that du’ = 0 in Q3p p, i.e., u° is independent of

x9. Thus the traces of u® on z9 = :I:% coincide. Therefore the limit u° restricted to Qs D+ USQ3poU
23p,— belongs to a space isomorphic to H L(Q;R3), see Remark 1. Similarly, from convergences (iv)
and (v), u restricted to _ and Q, belongs to spaces isomorphic to L?(I'_;R3) and L?(I';RR3),
respectively.

From (iv) and (vii) in (3.8) we obtain that

1
+ 0.0 + _ 0.0 _ _ 0 0
e = Oy, €99 = Oauy, €19 = €51 = 5(31% + Oauj)

(all equations are on ), so by the 2D Korn inequality

2 2
Z 001 Vas || 71 (01 ir3) < C(H”l”%zmi) + H'UZH%Q(Qi) + Z 1001 Vay + Oz vy H%%Qi))

a1,a2=1 aq,a9=1

| =

we have that u?,ud € HY(I'_,R3) and u{,ud € H*(T'1;R?). Using the 2D Korn inequality we also
conclude
(uf,ug) = (uf,uh)  weakly in H'(Qy; R?),

(uf, ub) — (19, u9) weakly in H'(Q_;R?).

Now we apply Corollary 1.d) to (uf)x to conclude that for a = 1,2, (HugHQLQ(QO;W))k is bounded

k

k)i converges to ul weakly in L2(Qp) (up to a subsequence). By the uniqueness

as well, thus (u
of the limit, we can partly identify the limits w” from (3.8) by wh = dpuld, a = 1,2,8 = 2,3.

10



Furthermore 811/5’ — 01u in H1(y), which implies z—:kalulg — 0 in H~'(Qg). This, together with
q

the last convergence in (3.8) multiplied by ; for ¢ > 0, implies Ooul — 0 in H=1(Qp). Since we

already know that dyu¥ is bounded in L2(), we finally conclude

Douk — 0 weakly in L(Q).

9
Directly from the last convergence in (3.8) on position (2, 2) multiplied by ¢/ we obtain Douk — 0 in
L?(€p). This is enough to conclude that daul = duy = 0 on Q. Thus we have proved the following
result.

Lemma 5. We have that u® — u® weakly in L*(Q) and

Ooul = 0ud =0 in Qo, dzud = 93ud =0 in Qq.

This lemma then implies that traces of limits u{ and u3 on Q4 and Q_ on {zo = £3} coincide
and that on 4 U limit functions u{ and u} belong to the space isomorphic to H!(I') (in the view
of Remark 1). Finally, the limit u® belongs to a space isomorphic to,

Vii={ve H(UR?) 1 vlpe1 =0,0,]r € HY(T;R?),a=1,2}.

Let us insert v € V(Qan) such that v = 0 for 2o > —3 in (3.1) (then only integrals over Q2_ and
Q3p,— are nonzero). Then we multiply the equation (3.1) by e, and let e, — 0.We obtain

/ Cplate€® ™ - €3(v)dz = 0.
Q_

This is the same situation as in the plate equation derivation, see [18, Section 3.2]. Then (Cpjate€™ )iz =
0,72 =1,2,3. The same can be obtained for {2,. We conclude that
81'LL(1) %((%ug + 82u(1)) 0
et = : B 0 . (3.9)

Aplate 0 0
Aplate+2ﬂplate (alul + 82u2)

Also, using notation €'(v) = e;(v) + e2(v) we get
Colatce™ - € (v) = Ae'(u0) - €' (v), e H (['4;R?) (3.10)
and
CplateejE ce3(v) =0, ve Hl(Qi;Rg‘). (3.11)
In order to prove the strong convergence we additionally define

A(k) == (1 — ) / Csp (eggi(uk) - e(uo)) : (eggi(uk) . e(uo)) dz

Q3p,+

+ / Cop (VEresh . (uh) — e*20) - (Verelh, . (uF) — €*70) da
Q3p0 ' ’

+(1—¢p) /Qi Cplate <ej§ (ub) — ei) . (ejf(uk) _ ei) dz

q

1-4 1-4
+/ Crod <5k 2eO(Uk) - e()) : <6k Qeo(uk) — e0> dz.
Qo
Then we use the equation (3.1) to replace the quadratic terms and obtain

AR =(1-e0) [ Cane(u) - (ofu?) - 26 4 (u")) da

Q3p,+

—I—/ C3pe3P0. (eSD’O — 2\/epesk, jE(uk)) dx
Q3p.o ’

+ (1 —eg) Cplatee™ - (ei — 2e%F (uk)) dx + _%eg(uk)) dx

0 0 1
Croq€ -(e —2¢g,
Qyp

Qo

+ (1 —eg) fovdd +ep | Fvdd.
'y o

11



Now we let k to infinity and use (3.8) and (3.9) to obtain that A(k) — A, where

A= —/ Cspe(u’) - e(u’)dr — / Cspe®l 0. e3P0y
Q3p,+ Q3D,0 (3.12)

— / A€’ (u®) - €/ (u®)dr' — [ Croqe” - e%dx + / f-vda.
r r

Qo

It is clear that A > 0 as the limit of a nonnegative sequence. In all cases that follow the obtained
limit model implies that the limit A is equal to zero. The form of A will then imply that both or

0 3D,0 €k k €k k €k (a0, k
one of the terms e’ and e are equal to zero, and that e;}, ,(u”), \/Epesp, L (u”), e (u”) and
q9

Ep 2eg(u¥) converge strongly in L? on corresponding domains. Then together with uniqueness of
the solution, we obtain strong convegences for all e—families from (3.7).

3.2 Thecase 0 <qg<?2

As noted in the previous subsection, the limit function belongs to V. Let us take a test function
v € V(Qan) such that dz3v = 0in Q4, dyv = 0 in Q3p, dov = O3v = 0 in Qy and let € to zero. In
the limit, using (3.10), we obtain

0 /(0 / I -’U:L', )
/QC;;De(u )-e(v)dx+/r.,49 (u”) - €'(v)dx —/Ff dx’, (3.13)

which by density holds for all v € V!, This is the same model as obtained in [18, Section 3.2.], for
which the well-posedness is proved by coercivity inequality suited for natural norm in the space V/:

le(v) |72 (qpsxs) + 1€/ (0) 172 (rpexsy > ¢ (H")H?P(Q;R?*) vl ey + o2l ey + ||U3||%2(r)) - (3.14)

This shows uniqueness of the limit u°. From (3.13) and (3.12) we obtain that A = 0, and that both
terms e’ and e3PV are equal to zero, so all desired strong convergences hold and the all e-families
converge.

3.3 The case ¢ =2

From (1,1) coordinate of the last convergence in (3.8) we obtain dyu} — diul in L?(Qp). Thus,
el = O1uf and vl € HY(y) (G2ul = d3ul = 0), so the limit u® belongs to

V= {ve H(QGR?) 1 v|ye1 =0,v4|r € H{(T;R),v1 € H'(7)} = {v e V! : vy € H'(7)}.

Let us multiply (3.1) by & and let e, — 0. We obtain

CplateejE -ez(v)dr + Croq€” (e2(v) + e3(v))dx = 0. (3.15)
Q4 Qo

Due to (3.11), the first integral is equal to zero. Thus

; Croa€” - (e2(v) + e3(v))dz = 0. (3.16)

By inserting v = 1 (x1)xge; for arbitrary 1 € H'([0,1]), we obtain

/ eotp(x1)dz = 0. (3.17)
Qo

Similarly we obtain

/ eVs1p(x1)dz = 0. (3.18)
Qo

12



Next we insert v = 1(z1)r2e + ¥(r1)rses in (3.16) for arbitrary ¢» € H'([0,1]). After algebraic
simplifications, we obtain

A A
0 0 rod 0 rod 0
/520( 2 33)1/]( 1) Qo )\rod Hrod 11¢( 1) Qo )\rod Hrod ! 1¢( 1) ( )

From (3.17)-(3.19), for v € H(7,R3) (i.e., v € H'(Q% R3) such that v = d3v = 0) we obtain

Croa€’ - €1 (v)dz = / (Aroq tr e + 2ur0de?1)8101 + 2,ur0de?281v2 + 2urode(1)381v3dx
o ‘o (3.20)

:/ Emde?lalvldx:/ Emdalu(fc‘)lvlda::/Emdc‘?lu?(‘)lvldxl.
Qo Qo v

Let us now take a test function v € V() in (3.1) such that dsv = 0 in Q4, v = 0 in Q3p 0,
Oov = 03v = 0 in Qp and let ¢ to zero. By using (3.20) we obtain

/ﬂCsDe(uO).e(v)dx+/r,4e/(uo).e,(v)dm,Jr/

Emdé)lu‘l)awldxl = / f . ’del, (3.21)
¥ r

which by density holds for all v € V1,
From (3.14) and the trace theorem for v; on I', we obtain the bound
He(v)H%Q(Q;R?’”) + ||e,(’0)||%2(r;R3x3) + ||311)1H%2(7)
>c (HUH%P(Q;R?’) + Hvl\@{l(r) + ”UQH%P(F) + ||713H%2(r)> + Haﬂfl”%%,) (3.22)
> ¢ (ol + 10135y + loall3a ey + sl oy + o120y ) -

This shows coercivity inequality for natural norm in the space V!, so we conclude uniqueness of the
limit 4°, and that the whole e-family converges to the same limit.
For the strong convergence, let us firstly define matrix

1 0 0
_>\ro
ErOd = 0 2(A1'0d+/jrod) )? : (323)
0 O 2(>‘rodf/jflrod)

For such matrix it is easy to see that it holds

Ewqa 0 0
CrodErod = 0 00 )
0 0 0

and consequently
CrodErod ' Erod = Erod and CrodErod -F = 07
for each F € M®*3 with element on the position (1,1) equal to zero.
Let us define matrices &° := alu(l)Erod and & = ¥ — &°
position (1,1) in the matrix &Y is equal to zero, so we have

. Since € = 911, the element on the

on

Croa€? - €® = Croa (éo n éo) . (éo + éo) = Crod8 - 80 4 Croqe? - & = Eroq (011)? 4 Croad® - &0

By inserting this in (3.12), by using (3.21), we obtain that

A= —/ C3pe’P0 . e3P 0qy — Croqe” - €'dx
Q3p.0 Qo
is equal to zero. Thus e3P0 = & = 0 and
81U(1) 0 0
e =& = alu?Emd = 0 mf)w? 0
0 0 o ol

As in the previous case, we also conclude desired strong convergences.
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3.4 Thecase2<qg<4
From the last convergence in (3.8) we obtain that d;u{ = 0 on €, thus the limit belongs to
vHT .~ {ve H(UR?) & v|per1 = 0,04 € H(I;R?), 0101 =0on vy} = {v € VI 91v; =0 on 7}.

Let us choose test functions v” + epv! with v% v! € V(Qu) for (3.1) such that d3v° = 0
in Qp, v =0 in Q3p.0, v? € H?(Qp;R3) dependent only on x1, 9190 = 0 on Qp, and v! =
(—1‘28108 — ($3 — %) alvg)el on Q(]- Then

5" (00 +exv') = e1(v”) + ea(v') + e3(v') + eper(v') = epen (v').

A
Thus 6]1 2egf (v? + exv!) — 0 strongly in L?. Therefore in the limit of (3.1) we obtain
/CgDe(UO) -e(vo)dzv+/Ae'(u0)-e'(vo)d:c' = / f - v0da’, (3.24)
) r r

which by density holds for all v € VI,
From (3.22) for v € VI we obtain the bound

HG(U)|’%2(Q;R3x3)+He/(U)HQL2(F;R3x3) zc (HUH?W(Q;R% + ||1)1H%11(r) + ||U2H%11(r) + H7)3H2L?(F) + HU1H12L11(7)) :

(3.25)
so we again conclude well-posedness, uniqueness of the limit u°, and that the whole e-family converges
to the same limit. From (3.24) and (3.12) we obtain that A = 0, and that both terms e° and e3P
are equal to zero, so all desired strong convergences hold.

3.5 The case ¢ =14
Lemma 6. Let the family (v¥).s0 C H'(Qo;R?) satisfies

Ve — Vg weakly in H'(Q) a=1,2, (3.26)
O01v5 — 01v§ — ¢1 weakly in L*(Qp), (3.27)
DoV — o weakly in L*(Qp), (3.28)
D305 — ¢3 weakly in L*(Qp), (3.29)
1
geg(vE) — e’ weakly in L*(Qo; R3*3), (3.30)
where w = ﬁ fQO wdx. Additionally, let va|y,——1/2 be independent of x3. Then:
a) it holds
811)% 821]5: 831)% 0 0 0
Vov® — 811)%638’{ = 0105 Oav5 Ogv5| — |O1va 0 0| weakly in LQ(QO;R‘QXQ),

811}5 — 81’1)38) 6QU§ 83’1)3 gf)l 0 0

furthermore, the convergence of components converging to zero is strong;

b) the limit function v is a constant, the limit function vy is independent of variables xo,x3 and
belongs to H*(0,1) and the limit function ¢; is independent of variables x2,x3 and belongs to
H'Y(0,1);

c) the limit functions satisfy following conditions:
aely = —On1va, Bzely = =011

d) if the convergence (3.30) is strong, then all convergences in a) are also strong.
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Proof. From assumptions, we have

e 1ovf — € weakly in L%(€), (3.31)
e 20005 — €Yy weakly in L?(Qp), (3.32)
e205v5 — €9 weakly in L?(Q), (3.33)
e 10105 + e 2000 — €l weakly in L*(€), (3.34)
e 1 01v§ 4 e 20305 — €y weakly in L?(€), (3.35)
£ 720005 + 20305 — €35 weakly in L%(€). (3.36)
From (3.26) specially

VS, = Vg, strongly in L*(Qy) a=1,2. (3.37)

From (3.31), (3.32) and (3.33) multiplied by ¢, &2, €2 respectively we obtain
Oy, davs, d3v5 — 0 strongly in L%(€). (3.38)

Thus dyv; = Gavg = ¢p3 = 0. From (3.26) we have £01v5 — 0 strongly in L?()y). Then from (3.34)
multiplied by 2 we obtain

O] — 0 = vy strongly in L%(Qp).
From (3.27) after differentiating and multiplying by € we have
eVOv5 = eV (9105 — 01v5) — 0 strongly in H ' (Qo; R?).
Then from (3.35) multiplied by €2, after differentiation we obtain
Vosv] — 0 strongly in H~1(Qg; R?).

Since from (3.26) we have 9305 — d3v1 weakly in L?(£)), by using the Lions lemma we conclude that
03v5 — O3vq strongly in L?(Qp), and that VOsv; = 0. Together with dyv; = dov1 = 0 this implies
that vy is affine in x3. Since by assumption v1|,,—_1/5 is independent of x3 this implies that dzv1 = 0
and thus v is a constant.

By (3.34) and (3.35) we have

£03(c 710105 4 e 720005) — e0a(e 1 O1VS + £ 20305) = 91 (D305 — Dav§) — 0 strongly in H ().
Comparing with (3.36) differentiated and multiplied by €2, we obtain that
O13v5, 01205 — 0 strongly in H~1(Qy). (3.39)

Let us now prove that d3v5 — 0 strongly in L?(Q). From (3.26) we have that d3v§ converges
strongly in H~1(Q). From (3.39) and (3.38), respectively we have that 91305 — 0 and da3v5 — 0,
both strongly in H~1(£). Finally, from (3.36) and (3.33) we have

D3305 = £203( 20905 + £ 20505) — 205 (e 20305) — 0 strongly in H~1(Qy).

From Lions lemma, 0305 converges strongly in L?()) to d3ve which is a constant since Vdsvy = 0.
Thus v is an affine function in x3 with coefficients in x1, a.e. Since, by assumption, va|, —_1/9 is
independent of 3, v is a function of x1 only. Thus

O3v5 — 0 = O3v2 strongly in L%(€). (3.40)

By multiplying (3.36) by €2, we obtain that dyv§ — 0 = ¢9 strongly in L?*(Qp).
From (3.39) and (3.38), respectively, we obtain that

O (61U§ — 61’038)) = O19veg, O3 (61v§ — 81U§) = 813U§ —0 strongly in H_l(Qo).
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Thus 02¢1 = d3¢1 = 0 and ¢ is independent of xo, x3. Since
o1 (311J§ + 5_1831){) =0 (81'1}3 — 81U§) + 03 (6_181’0?) R (3.41)

convergences (3.31) and (3.27) applied on the term on the right hand side and convergence (3.35)
multiplied by e applied on the left hand side imply that in the limit we have the equality

0= D1¢1 + D3¢

Let ¢ and 0 be such that £ = £(z1) € C2°((0,1)), 6 = 0(x2,23) € C((0,1)?), |,

[071}2 edm, — ].. In

(3.41) we now have

1 1
/ $101&dxy = | $100,&dx = — / ey, 050¢dx = / ( / —e?lﬁgﬁdaz’> &dx.
0 Qo Qo 0 [0,1]2

Since x1 — f[o 12 —ef,030dx’ belongs to L?(0,1) due to arbitrariness of & we conclude that ¢; €
H(0,1).
Taking derivative with respect to z1 of (3.34) multiplied by £ we obtain

onvs + 5718211@ —0 strongly in Hil(QO) (3.42)

Using convergences (3.26) and (3.31) in the limit we obtain d11v2 + 02eY;. For the same ¢ and 6 as

above we obtain
1
012001 édx = — / e9,0:06dx = / / —2000dx’ | Eduy.
Qo QO 0 [071]2

As before this implies v € H(0,1).

Let us now assume that the convergence in (3.30) is strong, i.e. all convergences (3.31)—(3.36) are
strong.

From (3.26) 0;v5 converges strongly in H~1(Qg). Taking derivative with respect to z; of (3.32)
multiplied by €2 we obtain that 0a1v5 converges strongly in H (). From (3.40) we know that d3v5
converges strongly to zero in L?(§)g), which implies that d31v5 converges strongly in H~!(Qq). Now
(3.42) with strong convergence in (3.31) implies that 01105 converges strongly in H~1(£)). Lions
lemma now implies that 9;v§ converges strongly in L?(£).

From (3.27) d1v§ — 0105 converges strongly in H (). Since V(d1v§ — 01v5) = Vv we can
apply the same arguments as for 0;v5 above to conclude that convergence in (3.27) is strong. 0

1
/ 81v261§dx1 =
0

Lemma 7. Let vo|y,—_1/2 be independent of x3. Then there is g > 0 such that or all ¢ € (0,e0] and
all v € HY(Qo; R3) one has

CK(HWH?W(QO) + [[oall3 () + 10103 = Brvsl|72 (0 sy + 102031172 (g me) + H<93U3||%2(90;R3)>

< S5 3oy + 0120 + lezlaayy
where w = ﬁ fQo wdzx.
Proof. Let us suppose the opposite. Then there exists a sequence still labelled by (v®).~¢ such that
HUfH?{l(QO) + va”%ﬂ(ﬂo) + [|01v3 _TQ)%H%Q(QO;RQ") + H32U§H%2(QO;RB) + |’83U§H%2(QO;R3) =1, (343)

such that the terms on the right hand side of the inequality tend to zero. More precisely, we have
Ve, — Vg weakly in H*(Qo) o =1,2,
0§ — 01v5 — ¢y weakly in L%(Qp),
0205 — @2 weakly in L%(€),
0305 — ¢3 weakly in L%(Qy), (3.44)
%e%('va) —0 strongly in L?(Qq; R3*3),

v, =0 strongly in L?(Q) a=1,2.
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From the last convergence we have v1 = vy = 0. Further, all assumptions of the Lemma 6 are
satisfied. Thus all convergences in (3.44) are strong and ¢o = ¢3 = 0.

%eg(va) — 0 specially € = 0. From part ¢) of Lemma 6, we have that 9;¢; = 0. Together
with part b) of the same lemma, ¢; is a constant, so we have

From

1 1 E—
1= — dr = lim — 01v5 — 01v8)dx = 0.
Thus the left hand side of (3.43) converges to 0, so we obtained a contradiction. O

We apply Lemmas 6 and 7 on u®* since for ¢ > 4 the assumptions are fulfilled. We conclude that

uf is a constant and that u9 € H?(Qp; R?) depends only on x1. Thus u” belongs to

VIV = {v e HY(QR?) : vlpy=1 = 0,v4|r € H'(T;R?), 0101 = 0 on 7,05 € H?(7)}
={ve VHE  yy € Hz('y)}.

We also conclude that dyu3® — d1u3* weakly converges to ¢y € H 1(Q0) on g, dependent only on z;.
From part ¢) of Lemma 6 we conclude that

1 1
;(68’“)11 — 6?1 = eﬁ — {L‘Qanug — <{L‘3 — 2> 81¢1, (3.45)
for a function ef] € L?(9;R?) dependent only on .

Let us choose arbitrary test function v € V(Quy) for (3.1), multiply the equation by €2, and let
e — 0. We obtain

A Croa€” - (€2(v) + e3(v))dz = 0. (3.46)

Firstly, in (3.46) we choose a test function v = %%qﬁg (71)ey, for arbitrary ¢ € H'([0,1]), to obtain
/ (Mrodedt + (Arod + 2hr0d) €92 + Arod€ds) Tag2(21)dz = 0. (3.47)
Qo

For a test function v = x5 (z3 — &) @3(z1)es — %(ﬁ;{(%‘l)eg, for arbitrary ¢3 € H'([0,1]), from (3.46)

we obtain .
/Q (Arode(l)l + (Arod + 2Mrod)€(2)2 + Arodegi’)) (x?) - 2> ¢3($1)d$ = 0. (3-48)
0

We obtain results analogous to (3.47) and (3.48) for term ()\rode?l + Arod€95 + (Arod + 2,umd)egg),
and sum everything to obtain

/Qo(egg +€33) <x2¢>2(x1) + <a:3 - ;) ¢3(:c1)> da

)\rod 0 1
" Jay Arod + frod - = dz.
/QO Arod + frod ‘i ($2¢2(x1) + <$3 2) ¢3($1)) T

Let us choose test functions v° + epv! with v° v! € V(Qu) for (3.1) such that d3v° = 0
in Qp, v’ =0 in Q3p.0, v? € H?(Qp;R3) dependent only on x1, 9190 = 0 on g, and v! =
(—x20108 — (mg — %) 01v9)e1. Then on ) we have

(3.49)

e;f (V0 +epv') = e1(v?) + ea(vh) + ez(v!) + eper(v) = erer (v?).

After letting £ — 0 we obtain

/ Cape(u?) - e(v®)d + / Ae/ (w0 - ' (09)dx + [ Croae® - er(v))da = / Foolda'. (3.50)
Q r T

Qo
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By (3.49) and (3.45), the last term on the left hand side can be rewritten as

1
Crodeo : el(vl)dx = / (()‘rod + 2Mr0d)e(1)1 + )‘rod(e(2)2 + 633)) <—$2311v8 - <l‘3 - > 811Ug> dx
Qo

2
0 0 1 0
= / Erodell (—x2811v2 — (1‘3 — ) 8111)3> dx
Qo
1
= / Eroq (eﬁ — 29011u3 — (:E3 - > 31%) <—$23111}3 - <$3 - 2> allvg) dx

FE,
/ rod 011’&(2) . allvgdilfl —|—/ f;d 61’(/11 anvgdl‘l.
Y

Qo

Let us observe (3.50) for the test function function v" with v{ = v§ = 0:

ErO
/CgDe vdeg)d:c+/ d(?lwl-anvgdx:/fgvgdx'.
Q, 12 r

Let us choose arbitrary v € H'(Qay1) with v|z,——1 = 0, dov = 0 on Q3p,o, A3V =0 on Oy, Oov =
O3v = 0 on Qq. Let us take Zes € V! as a function isomorphic to ves, see Remark 1. Since v in § is
of capacity zero, there exists a sequence (7,,), C V! with ,, = 0 on 7 such that strongly converges to
v in HY(Q) (see Theorem 2.44, [12]). When in the last equation we plug in functions v, C H*(Qa11)
(isomorphic to elements of sequence (7,,),) and let n — oo, we obtain

/C3De l/eg)d:z:—/fgydx',
r

Erod

L 12

for all v € H?([0,1]). Consequently, 91901 = 0. Thus the model for ¢ = 4 reads: find u® € V!V such
that for all v € V!V one has

/CgDe(uo) d:c+/Ae (v)dz' +/ r°d811u2 O11vedry = /f vdx'. (3.51)
Q v

SO

O1¢1 - Onvdzry =0

From (3.25) and the trace theorem for v2 on I', we obtain the bound

||e(v)\|%2(Q;R3x3) + ||e/(”)\|%2(r;R3x3) + ”8117}2”12(7)
> ¢ (1013 gy + 0110y + o2l oy + losliFaqey + ol gy ) + I9uvelagy  (3.52)
> ¢ (ol ams + loalBp ey + ooy + leslZaqey + o1y + Healiagy ) -

This shows coercivity inequality for natural norm in the space VIV, so we conclude uniqueness of
the limit u°, and that the whole e-family converges to the same limit.

For the strong convergence, we use similar idea as in the case ¢ = 2. We define matrices &° :=
9, Eroq and &% = e — &°, where matrix E,oq is defined in (3.23). We analogously conclude that

0 .0 042 0 20
Crod€ - € = Fioq(ei;)” + Croq€” - €.

Since eﬁ and ug are both only x1 dependent, it holds

E
/ FEroa (6?1)2 dr = / FEroa (eﬁ — x2811u3)2 dr = / FEroa (eﬁ)2 dx +/ rod (811u8)2 dx.
Qo QO QO Q0 12

By inserting the last two equations in (3.12), by using (3.51), we obtain that

2 bt =
A= —/ C3pe’P0 . e3P 0qy — / FELoq (eﬁ) dr — Croqe’ - &%dz.
Q3p0 Qo Qo
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is equal to zero. Thus e3D:0 {{1 e’ =0, 6(1)1 = —$2311U8, and
—x2011ud 0 0
0 _ ~0 o >\rod 0
e =e = O 2()‘rod+;u‘rod)x2811u2 N O 0
rod
O 0 2(/\rod+ﬂrod) $2811U2

As in the previous cases, we also conclude desired strong convergences. Additionally, the statement
d) in Lemma 6 then implies the strong convergence of ug, in H'(£).

3.6 The case ¢ >4

From the last convergence in (3.8) we conclude E—e0 F(uf) — 0 strongly in L?(Qq; R3*3). We apply
Lemma 6 (parts a), ¢) and d)) to conclude

Du* — 0 strongly in L?(Qo;R?),
O3utt — 0 strongly in L?(Qo;R?),
81uik —0 strongly in L2(QO’ RS)’
onug®, dnus® —0 strongly in H™'(Qo; R?).

Furthermore, we conclude that the limit belongs to

Vi={ve HY(QGR?) 1 v|ge1 = 0,v4|r € HY(T;R?), 0101 = 0 on v, 01102 = 0 on 7}
:{UGVIV : 8111)22001(17}.

Let us choose arbitrary v € H'(Qu) with dav = 0 on Q3p o, O3 = 0 on Qg, dov = J3v = 0 on
Q. Let us take Zeg € V! as a function isomorphic to ves. Again by [12, Theorem 2.44], there exists
a sequence (), C V! with 7, = 0 on ~ such that strongly converges to 7 in H'(Q). Then for the
test functions vyes in (3.1) (where functions v, are isomorphic to elements of sequence (7y),)) we

obtain
/C3De e(ves dm—/fgz/d:n

We now choose arbitrary vi,vs € H?(Qay) with v, = 0 on Q3p0, 03vq = 0 0n Oy, Ogvg = O304 =0
on g, and with 01v1 = 011v2 = 0 on Q. For test functions of the form vie; + voes — cxodi1v9€1 We
obtain

/ C3De vlel + 1}262 dﬂ? + / .Ae ) e'(vlel + ’U2€2)dl‘/ = / fivl + fQUQdSU/.
T

Summing the last two equations, by density we obtain the model: find u® € VV such that for all
v € VV one has

/ Cape(u?) - e(v)dz + / Ae () - & (v)da’ = /F fvd. (3.53)

Q
From (3.52) for v € VV we obtain the bound

le(®)lIz2(@msxs) + €/ ()72rmsxs) + 1011vallZ2 ) (3.54)
(ol quzy + lonllr ey + el gy + a2y + ol + oaliags))

so we again conclude well-posedness, uniqueness of the limit «°, and that the whole e-family converges

to the same limit. From (3.53) and (3.12) we obtain that A = 0, and that both terms e° and e3P-°
are equal to zero, so all desired strong convergences hold.
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4 Limits of the 3d-plate-rod model

In this model we analyze, case by case, a simplified model (2.2) in which the thin parts are replaced
by the plate and rod equations.

Theorem 8. The problem (2.2) has unique solution.

The result follows by Lax-Milgram lemma using the V3q_9q_1q—€llipticity of the form which follows
from the following estimate.

Lemma 9. There is C > 0 such that for all (v,W) € V3q_2q_1q one has
H"’”%{l(Q;RS) + ||v||§{1(r;R3) + ||U~7H§{1(F;R3) + HvH%Il(*\/;RS) + ‘|1‘~’||§{1(7;R3)
< C(HG(U)H%Z(Q;Mw) + V"0 + AD|| o ppaxe) + VD 20 paxey
+ (010 + €1 X B2y ps) + ||alw|y§2(m3)).
Proof. First we use the estimate [18, Lemma 9] for the estimate
101171 o.may 1010 sy H 1D 1 sy < C(He(v)H%2(Q;R3X3)+||VIU+AQI’H%Q(F;R3X2)+||v/'lb||%2(1‘;R3X2)>'

Then using the trace inequality terms ||v||z2(,grs) and [|[@||z2(,;rs) are also estimated. Then the addi-
tional terms ||01v+eq x U"JH%Q(WRg) + Hal'LBH%Q(WRg) are used to estimate [|[v|[ g1 (y;rs) and ”wHHl(V;W)E']

Also in an usual way, since [|[v||z2rrsy < Clle(v)| r2(qrsx3) by the trace theorem and the Korn
inequality, we obtain the a priori estimates for the terms in the elastic energy of the system. Then
the following convergences hold.

Corollary 3. There is a sequence (¢x)x such that e, — 0 and u® € V (), eg,eﬁ € L2(T;R3*2) and
e"R““,e{% € L%(v;R?) such that
ut — yf weakly in H'(Q; R3),
(V'u®s + Ao®) — e weakly in L*(T; R3*?),
e, Vo&r — e{; weakly in LQ(I‘;R3X2), (4.1)
E,{:_q/z (O1u’* + e x @) — ef weakly in L?(v;R?),
5i_Q/281G)5’“ - eé weakly in L?(v;R3).
Theorem 10. Let (u®,®%). C V3q_2q4_14 be the family of solutions of (2.2). Let ¢ > 0. Then
ut — u’ strongly in H(Q;R?),
(V'us + AD) — e strongly in L*(I; R3*?),

e Vo — eé strongly in L*(I';R3*?),

5,&2_61)/2 (O1u™F + e1 X @) — e} strongly in L*(v; R3), (4.2)
615:47(1)/281&)6’“ — eé strongly in L*(y; R3),

usk — ud strongly in H'(T), «a=1,2,

usk — ud strongly in L*(7), a=1,2.

The limit function u® belongs to VI and is unique as well as ey, eé (both depending on q), and

alu? %(alug + 821&?)
ep = 81u8 + 82u(1) (‘32u8 , eé =0.
0 0
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I) For g €(0,2), u® € VI is the unique solution of (3.2) and e = eé =0.
II) For q=2, u® € V! is the unique solution of (3.3), ejl; =0 and
81u(1)
eg =10
0
III) For q € (2,4), u® € VI is the unique solution of (3.4) and e} = e{z =0.
IV) For q =4, u® € VIV is the unique solution of (3.5), er =0 and
0
f_
ep = 0
811u8
V) For g € (4,00), u® € VV is the unique solution of (3.6) and e} = eé =0.
Additionally,
o for q > 2, ui — u strongly in H(7);
o for q > 2, &5 — Oy strongly in H(v);
o for q >4, &5 — 01uy strongly in H'(v).

From the first convergence in (4.1) and the trace theorem we obtain u®* — u° in L?(I'; R?). From
the second convergence in (4.1), by observing all components, we obtain

dut — (€P)11, Oug® — @3 = (ep)ar, Orug" + Wb — (ef)a,

P P
Opu* +@5" — (ep)i2,  Ouz" — (€p)az,  Douz" — OF — (ep)s,
all weakly in L?(T'). By the 2d Korn type inequality

”v||H1(F;R2) < C(He(v)HLZ(F;RQX?) + ||U||L2(F;1R2))

applied on the coordinates (€)11, (€%)21 + (€})12, and (€}3)22, we obtain that, on a subsequence
not relabeled, ugt — v in H!(I';R3). By the trace theorem ug* — ul in L?(y;R). Thus the limit
u? belongs to V!. Furthermore we now get that &3* — @3 weakly in L*(T') and

(eP)11 = D, (eB)22 = Daus, (P12 + (€F)21 = druf + Dous. (4.3)
Let us take v = 0 and for arbitrary w € H'(I'; R3) with @ = 0 on 7, let (.). be a sequence of

smooth functions converging strongly to @ in H'(I'; R3) such that . = 0 on [0,1] x [—¢,¢]. After
inserting such u and . into (2.2) and letting € — 0, we obtain

/ Conell - (AD) dz’ = 0 (4.4)
I

for all @ € HY(T;R?®) with @ = 0 on 7. By varying @, we obtain (€)3; = ()32 = 0, and
(€)1 — (e)12 = 0. From (4.3) then we have (€3)o1 = (€8)12 = 3(d1u + douf). Also (4.4) holds
for arbitrary @ € L?(I'; R?) as well. Then for arbitrary v € H'(T'; R?) we have

Cmelp - Vv = A€ (u°) - € (v).

Thus we have just proved the following lemma.
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Lemma 11. The limit function u® belongs to V!,

8111,(1) %(Ehug + 82u‘f)
ef = | 0ul+ ol Do) )
0 0

Cmel - V'v = Ae/(u) - € (v) for any v € HY(T;R?) and the following convergences hold

usk — ul weakly in HY(I'), a=1,2,
ugk — ud weakly in L*(y), a=1,2,
o5k — &Y weakly in L*(I).

In order to prove the strong convergences we additionally define

Ak) == / Cspe(u —u) - e(u* — u®)dx + / Co (VU + AD® — €}) - (V'u® + AG° — ep) da’
Q r

+ % /FCfV/ (E(:JE — ef> : (5&5 — e£> dx’

+ / M (81_‘1/2 [éﬁu‘g +e1 X (:JE] — e’ﬁ) . <51_Q/2 [81u5 +e1 X (:JE] — e%) dx1
.

+/H £279/29, ¢ —el). 52*‘1/2(91&5—ef dxy.
1 ( B h)

After eliminating quadratic terms using the equation (2.2), due to Corollary 3 and Lemma 11, we
obtain that A(k) converges to the limit

A= /Ff -uldx’ — /chsDe(uo) ce(u’)dz — /F,Ae’(uo) ¢/ (u)da!

4.5)

1 (

13 / Cfej; : eﬁdm' - /Me% -epdr; — /Heé . e{%dxl.
r v v

It is clear that A > 0 as the limit of a nonnegative sequence. In all cases that follow the obtained

limit model implies that the limit A is equal to zero. It will imply that some or all e{;,e}’g,eé are

zero and that all convergences in (4.1) are strong. Also, since the limit problems are the same as
obtained in previous section, for which we proved uniqueness of solutions, the whole e-families will
converge to the same limit.

4.1 The case ¢ < 2

We take arbitrary (v, w) € Vag_2q—1q with @ = 0 and let € tends to zero. From Lemma 11 we obtain
the limit model: find u° € V! such that

/ Cspe(u’) - e(v)dx + / Ae'(u®) - € (v)da' = / f-vda (4.6)
Q r r
that holds for all v € V! due to density.

From (4.5) and (4.6) A = 0, and thus all e?,e’l’g, eé are equal to zero. Furthermore the strong
convergences in (4.1) hold.

4.2 The case ¢ =2

Componentwise the fourth convergence in (4.1) is given by

it — (€)1, Owuxt —agk — (eR)2, duz® +@y" — (eR)s,
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all weakly in L?(7y). Since from Lemma 11 we know that ui* — u{ weakly in L?(y) we can identify

the limit (€)1 = d1ul and thus d1ui* — d1u in L?(v). Therefore, the limit u° belongs to VI
Now let us take an arbitrary w € H'(I';R3) N H'(7;R3) and v = 0 in (2.2) and let ¢ tends to
zero. We obtain
/Cmeg (Aw) dx' + / Me7; - [el X QIJ] dr; =0,
r v

which due to (4.4) in fact implies
/Me",g- [e1 x @] dzy =0
.

for arbitrary w € L?(v;R3) (by density). This implies (€}})s = (€)3 = 0. Now we take arbitrary
(v, W) € V3q_24_14 with @ = 0 and let € — 0, to obtain the model: find u°® € V!! such that

/ Cspe(u’) - e(v)dx + / Ae' (u?) - € (v)da’ + / Eroq01u) - 0101 = / f - vda (4.7)
Q r o' T

for all v € V!! (again by density).
From above we have
ﬁlu?
eg=1 0 |,
0

then from (4.5) and (4.7) A = 0, and thus e£, eﬂ are equal to zero and the strong convergences in
(4.1) hold.

4.3 Thecase2<qg<4

From the fourth convergence in (4.1) we additionally conclude dyu* — 0 strongly in L?(v). Thus
01 = 0, so the limit u” belongs to VI

By taking arbitrary test function (v, W) € V3q_2q_14 with @ = 0 and dyv; = 0 on ~, we obtain
the model: find u® € V! such that

/ Cspe(u) - e(v)dz + / Ae' (u) - € (v)dz' = / f-vode!, weVIH (4.8)
Q r T

From (4.5) and (4.8) A = 0, and thus all e{_-,, er, eé are equal to zero and the strong convergences
n (4.1) hold.

4.4 The case ¢ =14

The components of the last convergence in (4.1) are
815)?“ — (eé)l, 81(2);’“ — (e{%)g, 81(1)?“ — (eé)g,

all weakly in L?(v). From Lemma 11 we know that u5* — u in L?(v), so djus* — d1u) in H~1(5).

Then the fourth convergence in (4.1), djus* —@5* — 0 strongly in L?(7), implies that @5* — & = d1u3

weakly in H~!(7;R3). Then we can identify (e{%)g = 0109 = O1uY from O w3+ — (eé)g weakly in
L%(7) and, by two applications of the Lions lemma, conclude that & € H'(y) and that @5* — @
in H'(y). Now since juj = & € H'(y) we also obtain uJ € H?(y), u3* — uJ in H'(y) and
gk — 811u8 in L2(7). Thus, the limit u° belongs to VIV,

Let (v,w) € V3q_2q_14 be an arbitrary test function such that 0jv + e; x @ = 0 on v. More

precisely let:

ve HY(QR) N HY TR N HX(;R?), @ e HY(T;R?) N HY(y;R?),
O1v1 =0, Ovg—w3=0, Owg+w=0 on .
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By letting € — 0 we obtain

/ Cspe(u?) - e(v)dx + / Cmep - (Vv + Aw) dz’
Q r
(4.9)
+ / h11(e£)1 -1y — h22(ef;)2 - O11v3 + h3z011ud - O11veday = / f-vdx'.
v r

By choosing v = 0, w9 = w3 = 0, and by (4.4), we obtain

/hll(eR) 81w1dm1 =0.
Y

Since w7 can be arbitrary function from H!(y;R3), we obtain (eﬂ)l = 0. Let us now choose test
functions such that v1 = v9 = 0, w; = w3 = 0. We obtain

/C3De Ugeg)dl‘—/hQQ(eR) 811’03dl’1 /fgvgd.l‘ (4.10)
v

Let v € H'(Q) be arbitrary. Since « is of capacity zero in €, by [12, Theorem 2.44] there exists a
sequence (), C H'(Q) with v, = 0 on v such that strongly converges to v in H'(Q). In (4.10) we
insert vs = v, and let n tends to infinity. In the limit we obtain

/CgDe e(ves dm—/fgz/d:n

for all v € H(Q). Consequently, from (4.10) we obtain
Ahgg(eR) - O11v3dr1 =0
for all v3 € H2(y). Thus ef; )2 = 0. From (4.9) we conclude that the limit u® € VIV satisfies
/QC;J,De(uO v)dx + / Ae'(u (v)dz' + / h33011uS - O11vadr; = /f vdx’ (4.11)
g

for all v € H(Q;R3)NHY(T;R?) N H?(y; R?) with d1v; = 0 on 7. By density argument, the equation
is satisfied for all v € V!V as well.
From above we have

0
e{{ = 0 ,
811u8

then from (4.5) and (4.11) A = 0, and thus eé, e are equal to zero and the strong convergences in
(4.1) hold.

4.5 The case ¢ >4
From the last convergence in (4.1) we additionally conclude
(91(1)?C — 0, (91(.2)? — 0, 81(,«.2 — 0

all strongly in L?(y).

By differentiating conclusions from the case ¢ = 4, we obtain dy;uJ = 0 on ~, thus the limit
belongs to VV.

For arbitrary v € H'(f2), by [12, Theorem 2.44] there again exists a sequence (), C H*(Q)
with v, = 0 on v such that strongly converges to v in H'(£2). For test functions (v, @) = (v,e3,0)
in (2.2) we let n to infinity and obtain

/CgDe e(ves dx—/fgydx

24



Now we choose test functions v € H'(Q; R3)NH(T'; R?)NH?(; R3), such that v3 = 0 on §2, d1v1 = 0,
O11v2 = 0 and @ = Oyvze3 on 7. Then Oyvy is a constant and w = (0,0,0,v2) € HY(I';R?). We
obtain

/ C3De U1€1 + UQBQ dﬂ? + / .Ae ) e'(vlel + U2€2)dl‘/ = / fiv1 + fQUQdSU/.
T

By summing up last two equations and by density, we obtain the model: find u® € V'V such that for
allve VYV

/ Cape(u?) - e(v)ds + / Ae () - & (v)da’ = / fvd'. (4.12)

From (4.5) and (4.12) A = 0, and thus all eP, eR,eg are equal to zero and the strong convergences
n (4.1) hold.

4.6 Additional claims

Let us prove last three claims from the Theorem 10.

For q > 2, the fourth claim from (4.2) implies that d;u§ converges strongly in L?(y). Together
with the seventh claim from (4.2) we obtain that u§ — u{ strongly in H'(y).

For ¢ > 2, the fourth claim from (4.2) implies that ;a5 — @§ — 0 strongly in L?(vy). After
differentiating seventh claim from (4.2) we have dju§ — 91u strongly in H~1(y). By combining
these two results we obtain @§ — d1uJ strongly in H (7).

For ¢ > 4, the fifth claim from (4.2) implies that 9&§ converges strongly in L?(y). Together
with the result from above for ¢ > 2, after applying Lions lemma several times we obtain w§ — Oru$
strongly in H'(7y).
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