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Abstract

In this paper we consider the equilibrium problem of interaction of three elastic bodies of different elastic properties. The

main body is the unit cube. On top of it is a thin layer/quboid of thickness $\eps$ of material whose stiffness is of order

$\frac{1}{\eps}$ that in the middle contains another cuboid which is of width and thickness $\eps$ that is made of material

with elasticity coefficients of order $\frac{1}{\epsˆq}$ for $q>0$. We show that the family of solutions of linearized elasticity

problems, when $\eps$ tends to zero, converges to a solution of a problem that is posed only on the unit cube with possibly

additional elastic terms on the boundary related to the plate/rod energy of the thin elastic parts. It turns out that there

are five different regimes related to different values of $q$ ($q\in \langle 0, 2\rangle, \{2\}, \langle 2, 4\rangle,\{4\},\langle

4, \infty\rangle$) with different limit problems. We further formulate a model posed on the unit cube that has the same

asymptotics when $\eps$ tends to zero as the full 3d problem posed on the union of the unit cube and thin cuboids. This

model then can be used as the approximating model in all regimes.
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Abstract

In this paper we consider the equilibrium problem of interaction of three elastic bodies of
different elastic properties. The main body is the unit cube. On top of it is a thin layer/quboid
of thickness ε of material whose stiffness is of order 1

ε that in the middle contains another cuboid
which is of width and thickness ε that is made of material with elasticity coefficients of order
1
εq for q > 0. We show that the family of solutions of linearized elasticity problems, when ε
tends to zero, converges to a solution of a problem that is posed only on the unit cube with
possibly additional elastic terms on the boundary related to the plate/rod energy of the thin
elastic parts. It turns out that there are five different regimes related to different values of q
(q ∈ ⟨0, 2⟩, {2}, ⟨2, 4⟩, {4}, ⟨4,∞⟩) with different limit problems. We further formulate a model
posed on the unit cube that has the same asymptotics when ε tends to zero as the full 3d problem
posed on the union of the unit cube and thin cuboids. This model then can be used as the
approximating model in all regimes.

Keywords: linearized elasticity, interaction, thin, plate, rod
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1 Introduction

Interaction of two or more continua appears in many real life situations. Thus it is very important
to have accurate model of interaction. In cases when one of continua is thin this turns out to be
more delicate. On one hand numerical approximation for thin bodies leads to large meshes which is
undesired property, on the other hand thin bodies allow efficient lower-dimensional models. However,
coupling of these lower-dimensional models with three-dimensional is nontrivial and difficult if the
lower-dimensional model is one-dimensional. Possible example is in hemodynamics. If you want to
model interaction of the vessel wall and the stent inserted in it and you want to use a one-dimensional
model for the stent struts (see [31]) and the vessel is thick enough so a two-dimensional model is
not adequate (as in [5]). In this application the stiffness of the stent struts is much larger than the
stiffness of the vessel wall, so it serves as motivation for the problem at hand. A similar and more
simple problem of interaction of elastic three-dimensional cube and a plate-like three-dimensional
body is already considered in [18], while its 2d–1d analogue is numerically investigated in [17].

In this paper we give rigorous derivation and justification of the following problem. Let ε > 0 be a
small parameter that will describe the thickness of thin parts of the system. The elastic body consists
of the unit cube Ω = [0, 1]× [−1

2 ,
1
2 ]× [−1, 0] with thin layer at the top Ωε = [0, 1]× [−1

2 ,
1
2 ]× [0, ε]

which contains the thin strip Ωε,ε = [0, 1]× [− ε
2 ,

ε
2 ]× [0, ε]. The three parts of the domain Ω,Ωε\Ωε,ε

and Ωε,ε are assumed to be made of different materials whose elasticity coefficients are related to the
small parameter ε with orders 1, 1ε ,

1
εq , respectively. The parameter q > 0 serves to relate the stiffness

of the elastic strip to the elastic properties of the cube and the thin plate. We fix the bottom of
the cube (x3 = −1) and apply the forcing at the top (x3 = ε) of order ε0. We then perform the
asymptotic analysis when ε tends to zero including the convergence proof of the associated linearized
elasticity problem and obtain five different limit models depending on the value of q > 0. All limit
models are given in the unit cube with additional terms at the top boundary. From [18] and the
analysis of the 3d–2d model the stiffness order 1

ε for the plate-like body Ωε\Ωε,ε corresponds to the
membrane behavior of the plate. Thus in all limit models the energy contains also the membrane
energy at the top of the cube. For q = 2 the membrane energy of the rod is also included in the
limit energy, while for q = 4 the flexural energy of the rod is included but only for the bending
in direction tangential to the top of the cube. There is no flexural energy related to the bending
in the normal direction since the plate gives no resistance to bending (displacement in the normal
direction). This is done in Section 3 and presented in Theorem 4. Note here that in derivations of
plate and rod theories they cannot sustain forcing of order ε0, and appropriate scaling of forces is
necessary. However here the rod and the plate are supported by the three–dimensional cube and no
such problem appears.

In real life situations it is unclear which of these models to use. Thus it is important that we are
able to formulate a model, depending on ε and q, posed only on the unit cube (not including the
thin cuboids) that has the same asymptotics when ε tends to zero as the original three-dimensional
problem, see Theorem 10. The model contains the energy of the cube, the energy of the plate and the
energy of the rod. The energy of the plate is of the Naghdi type from [32] with membrane, shear and
flexural terms and given using both, displacement of the middle surface and infinitesimal rotation
of the cross-section, as unknowns in the problem. The rod model that is used is built in the same
manner also with membrane, shear and flexural terms and also with six unknowns, displacement of
the middle curve and infinitesimal rotation of the cross–section, see (2.2). This rod model corresponds
to the Naghdy/Timoshenko type rod model and can be found in [10]. See Theorem 1 for the main
result of the paper.

As already mentioned the problem of interaction of different continua or continua of different
dimensions is the area of great interest. For linearly elastic material there are several papers consid-
ering interaction of two continua, one of which is thin, see [7] and [6] for the flexural case, [4] and [18]
for whole family of regimes. In the case of curved domain and membrane and flexural shell models
the asymptotics is discussed in [3]. See also [1] for the variational approach to the thin inclusion
problem and [2] in both linear and nonlinear elasticity. For hyperelastic materials and membrane

2



regime for the thin part the the asymptotics of the 3d problem is discussed in [9] by Γ–convergence
techniques. A similar analysis for micropolar elastic media is done in [28]. Interaction of the viscous
fluid and the linearly elastic plate is considered in [22, 19]. An example from electromagnetism can
be found in [24], from heat conduction in [16], for 1d elastic material in [20] and for modeling a thin
elastic sheet on a liquid in [21]. This topic is also related to the problem of modeling of joints within
both nonlinear and linearized elasticity, see [13, 11] or thin elastic interfaces, linear and nonlinear,
isotropic and functionally graded, with or without constraints, see [14, 15, 8, 23, 30] and reference
therein. For piezoelectric interfaces see [25, 27] and for thermoelasticity see [26, 29].

2 Definition of the problem and the main result

2.1 Formulation of the full 3D model with thin domains

Let us first formulate the full three-dimensional problem with thin parts of the domain. Let ε > 0 be
the small parameter which will describe thickness of thin parts of the domain. The domain Ω3D+ε

Ω

ΩεΩε,ε

Figure 1: Domain Ω3D+ε of the full 3D model.

consists of the cube Ω = [0, 1]×[−1
2 ,

1
2 ]×[−1, 0] with the thin layer at the top Ωε = [0, 1]×[−1

2 ,
1
2 ]×[0, ε]

which contains a thin strip Ωε,ε = [0, 1] × [− ε
2 ,

ε
2 ] × [0, ε], see Figure 1. As a rule ′ is related to the

variables x1 and x2, for instance x
′ = (x1, x2) and ∇′ =

[
∂1 ∂2

]
. Forcing in the problem comes from

the force density f : Γε → R3 applied at the top surface Γε = [0, 1]× [−1
2 ,

1
2 ]× {ε}. The three parts

of the domain Ω,Ωε \ Ωε,ε and Ωε,ε are made of different material with elasticity tensors

C3D,
1

ε
Cplate,

1

εq
Crod,

with Lamé coefficients λ3D, µ3D, λplate, µplate and λrod, µrod, respectively. The additional parameter
q > 0 is related to the stiffness of the elastic rod Ωε,ε. In addition we fix the bottom of the cube.
Thus the three-dimensional problem is given by: find

uε ∈ V (Ω3D+ε) = {v ∈ H1(Ω3D+ε) : v|x3=−1 = 0}

such that∫
Ω3D

C3De(uε) · e(v)dx+
1

ε

∫
Ωε\Ωε,ε

Cplatee(uε) · e(v)dx+
1

εq

∫
Ωε,ε

Crode(uε) · e(v)dx

=

∫
Γε

f · vdx′, v ∈ V (Ω3D+ε).

(2.1)

3



2.2 Formulation of the 3D–2D–1D model

To formulate the associate 3D–2D–1D interface model we additionally define Γ = [0, 1]× [−1
2 ,

1
2 ]×{0}

which replaces the thin layer Ωε \ Ωε,ε and γ = [0, 1]× {0} × {0} which replaces the thin strip Ωε,ε.
See Figure 2.

Ω

γΓ

Figure 2: Domain of the 3D–2D–1D model.

Now the solution of the 3D–2D–1D model is the function from the product space

(uε, ω̃ε) ∈ V3d−2d−1d = {(v, w̃) ∈ H1(Ω;R3)×H1(Γ;R3) :

v|x3=−1 = 0,v|Γ ∈ H1(Γ;R3), (v, ω̃)|γ ∈ H1(γ;R6)}

such that satisfies∫
Ω
C3De(uε) · e(v)dx+

∫
Γ
Cm
(
∇′uε +Aω̃ε

)
·
(
∇′v +Aw̃

)
dx′ +

ε2

12

∫
Γ
Cf∇′ω̃ε · ∇′w̃dx′

+ ε2−q

∫
γ
M
[
∂1u

ε + e1 × ω̃ε
]
·
[
∂1v + e1 × w̃

]
dx1 + ε4−q

∫
γ
H∂1ω̃

ε · ∂1w̃dx1

=

∫
Γ
f · vdx′, (v, w̃) ∈ V3d−2d−1d.

(2.2)

Here Aw̃ =
[
e1 × w̃ e2 × w̃

]
and

M =

ErodA 0 0

0 µrodA
α2

0

0 0 µrodA
α3

 , H =

µrodK 0 0
0 ErodI2 0
0 0 ErodI3

 ,
where A is the area, I2 and I3 are moments of inertia and K is the torsional rigidity of the cross–
section of the rod; α2 and α3 depend on the properties of the cross–section, see [10] for details. Note
that in our geometry setting the cross–section is the square of size 1 and then A = 1, I2 = I3 = 1

12
and K torsional rigidity of the unit square (no closed formula). Note also that ε in (2.2) naturally
corresponds to the coefficients in the equation related to the physical cross–section, namely the area
of the cross-section A is equal ε2, while the moments of inertia and torsional rigidity are of order
ε4. As already noted in the introduction in the limit for the rod only relevant will be extension and
bending tangential to the plate. Thus from matrices M and H only relevant will be m11 = ErodA
and h22 =

1
12ErodI2.

Furthermore the elasticity tensors Cm and Cf , Cf : R3×2 → R3×2 are given by

CmĈ · D̂ = AC ·D+ µplatec · d,
Cf Ĉ · D̂ = A (JC) · JD+ Bfc · d,

4



where

Ĉ =

[
C
cT

]
, D̂ =

[
D

dT

]
∈ R3×2, C,D ∈ R2×2, c,d ∈ R2, J =

[
0 1
−1 0

]
.

The matrix Bf ∈ R2×2 is assumed to be positive definite and the elasticity tensor A is given by

AD =
2λplateµplate
λplate + 2µplate

(I ·D)I+ 2µplateD, D ∈ R2×2,

where λplate and µplate are the Lamé coefficients. We assume that 3λplate + 2µplate, µplate > 0.
The main result of this paper is given in the following theorem. Namely we show that the

asymptotics of the solution 3D model (2.1) and the 3D–2D–1D model (2.2) are the same for all
q > 0. This implies that we can replace the full three-dimensional model with the problem on a more
simple domain.

Theorem 1. Let q > 0. Let (uε,3d)ε>0 ∈ V (Ω3D+ε) be a family of solutions of (2.1) and let
(uε,3d−2d−1d, ω̃ε,3d−2d−1d)ε>0 ∈ V3d−2d−1d be a family of solutions of (2.2). Then for each q > 0
families (uε,3d|Ω)ε>0 and (uε,3d−2d−1d)ε>0 have the same limit. That limit differs depending on
the five different regimes regarding the value of q: q ∈ ⟨0, 2⟩, {2}, ⟨2, 4⟩, {4}, ⟨4,∞⟩, given in both
Theorem 4 and Theorem 10. Additionally, as ε→ 0, it holds

∥uε,3d − uε,3d−2d−1d∥2H1(Ω;R3) → 0.

Proof. Follows from Theorem 4 and Theorem 10.

3 Limits of the 3d equations

In this section we do the asymptotic analysis of the full 3D model (2.1). For that we need the Korn
inequality, uniform with respect to ε, for the domain

Ω3D+ε = [0, 1]×
[
−1

2
,
1

2

]
× [−1, ε].

Lemma 2 (Lemma 2 in [18]). There is CK > 0 such that for all ε ∈ [0, 1] and for all v ∈ V (Ω3D+ε)
one has

CK∥v∥2H1(Ω3D+ε;R3) ≤ ∥e(v)∥2L2(Ω3D+ε;R3×3).

In order to get the a priori estimates, uniform with respect to ε, for the family of solutions of
(2.1), as usual, we now rescale the domain Ω3D+ε on the domain independent of ε, Ωall = [0, 1] ×
[−1, 1]× [−1, 1], using the map Rε : Ωall → Ω3D+ε, given by

Rε(x1, x2, x3) =



(
x1, (1− ε)(x2 + 1)− 1

2 , x3
)
, (x2, x3) ∈ [−1,−1

2 ]× [−1, 0],
(x1, εx2, x3) , (x2, x3) ∈ [−1

2 ,
1
2 ]× [−1, 0],(

x1, (1− ε)(x2 − 1) + 1
2 , x3

)
, (x2, x3) ∈ [12 , 1]× [−1, 0],(

x1, (1− ε)(x2 + 1)− 1
2 , εx3

)
, (x2, x3) ∈ [−1,−1

2 ]× [0, 1],
(x1, εx2, εx3) , (x2, x3) ∈ [−1

2 ,
1
2 ]× [0, 1],(

x1, (1− ε)(x2 − 1) + 1
2 , εx3

)
, (x2, x3) ∈ [12 , 1]× [0, 1]

.

Respectively, we also need the following notation, see Figure 3,

Ω3D,− = [0, 1]×
[
−1,−1

2

]
× [−1, 0] , Ω3D,0 = [0, 1]×

[
−1

2
,
1

2

]
× [−1, 0] , Ω3D,+ = [0, 1]×

[
1

2
, 1

]
× [−1, 0] ,

Ω− = [0, 1]×
[
−1,−1

2

]
× [0, 1] , Ω0 = [0, 1]×

[
−1

2
,
1

2

]
× [0, 1] , Ω+ = [0, 1]×

[
1

2
, 1

]
× [0, 1] ,

Γ1
− = [0, 1]×

[
−1,−1

2

]
× 1, Γ1

0 = [0, 1]×
[
−1

2
,
1

2

]
× 1, Γ1

+ = [0, 1]×
[
1

2
, 1

]
× 1.
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Ω3D,0Ω3D,− Ω3D,+

Ω0Ω− Ω+

Γ1
0Γ1

− Γ1
+

Figure 3: Domain of the rescaled full 3D problem.

Now the rescaled displacement u(ε) = uε ◦Rε belongs to V (Ωall) = {v ∈ H1(Ω;R3) : v|x3=−1 = 0}
and satisfies (after the change of variables in (2.1))

Bε
3D(u(ε)) = Lε

3D(v), v ∈ V (Ωall), (3.1)

where

Lε
3D(v) = (1− ε)

∫
Γ1
±

f · vdx′ + ε

∫
Γ1
0

f · vdx′,

Bε
3D(u,v) = (1− ε)

∫
Ω3D,±

C3Deε3D,±(u) · eε3D,±(v)dx+ ε

∫
Ω3D,0

C3Deε3D,0(u) · eε3D,0(v)dx

+ (1− ε)

∫
Ω±

Cplateeε±(u) · eε±(v)dx+ ε2−q

∫
Ω0

Crodeε0(u) · eε0(v)dx,

where

eε3D,±(v) = e1(v) +
1

1− ε
e2(v) + e3(v),

eε3D,0(v) = e1(v) +
1

ε
e2(v) + e3(v),

eε±(v) = e1(v) +
1

1− ε
e2(v) +

1

ε
e3(v),

eε0(v) = e1(v) +
1

ε
e2(v) +

1

ε
e3(v),

and ei(v) is the matrix function with derivatives, from symmetrized gradient, with respect to variable
xi only.

ei(v) =
1

2

3∑
j=1

∂ivj (ei ⊗ ej + ej ⊗ ei) .

Note that in (3.1) notation
∫
Ω3D,±

means the the integrals over Ω3D,+ and Ω3D,− have to be summed.

The problem (3.1) is just rescaled classical linearized elasticity problem. Thus the existence and
uniqueness of its solution immediately follows.

Theorem 3. The problem (3.1) has unique solution.

Remark 1. In what follows we will (with or without mention) use several identifications of function
spaces. Firstly, as usual in plate modelling,

{v ∈ L2(Ω−) : ∂3v = 0} ∼= L2(Γ−),

6



and analogously for L2(Γ+), where

Γ− := [0, 1]×
[
−1,−1

2

]
× 0, Γ+ := [0, 1]×

[
1

2
, 1

]
× 0.

As usual in rod modelling,

{v ∈ L2(Ω0) : ∂2v = ∂3v = 0} ∼= L2(γ).

Spaces H1(Γ−), H
1(Γ+) and H

1(γ) are analogously identified. Secondly, the limit functions u0

will be shown to satisfy u0 ∈ H1(Ω3D,±) and ∂2u
0 = 0 in L2(Ω3D,0). By the trace theorem applied

on Ω3D,± this implies that u0|x2=
1
2
= u0|x2=− 1

2
. Thus we can neglect the middle part and identify

the spaces
{v ∈ H1(Ω3D,−) ∩H1(Ω3D,+) : v|x2=− 1

2
= v|x2=

1
2
} ∼= H1(Ω)

(each half of the cube Ω corresponds to one of the domains Ω3D,+ and Ω3D,−). Finally, in similar
manner as above, we identify spaces

{v ∈ H1(Ω−) ∩H1(Ω+) : ∂3v = 0 in Ω− ∪ Ω+, v|x2=− 1
2
= v|x2=

1
2
} ∼= H1(Γ).

In the following theorem we formulate the main result of this section, the asymptotic behavior of
the family of solutions of the problem (3.1). We obtain five different limit models corresponding to
different values of the parameter q similarly as in [18]. Corresponding function spaces to these five
models are as follows:

V I = {v ∈ H1(Ω;R3) : vx3=−1 = 0, vα ∈ H1(Γ), α = 1, 2},
V II = {v ∈ V I : v1 ∈ H1(γ)},
V III = {v ∈ V II : ∂1v1 = 0},
V IV = {v ∈ V III : v2 ∈ H2(γ)},
V V = {v ∈ V IV : ∂11v2 = 0}.

Obviously
V V ⊂ V IV ⊂ V III ⊂ V II ⊂ V I ,

with V I imposing regularity on the plate Γ, V II imposing additional regularity at the rod γ, V III

imposing extensional rigidity of the rod γ, V IV imposing further regularity for the flexural displace-
ment of the rod but only in the e2 direction (!) and finally V V imposing flexural stiffness of the
rod.

Theorem 4. Let (uε)ε ∈ V (Ωall) be a family of solutions of (3.1). Let q > 0. Then

∥uε − u∥2H1(Ω;R3) → 0,

where u0 is the unique solution of one of the following problems

I) for q ∈ ⟨0, 2⟩, u0 ∈ V I is the unique solution of∫
Ω
C3De(u0) · e(v)dx+

∫
Γ
Ae′(u0) · e′(v)dx′ =

∫
Γ
f · vdx′, v ∈ V I ; (3.2)

II) for q = 2, u0 ∈ V II is the unique solution of∫
Ω
C3De(u0) · e(v)dx+

∫
Γ
Ae′(u0) · e′(v)dx′ +

∫
γ
Erod∂1u

0
1 · ∂1v1dx1 =

∫
Γ
f · vdx′, (3.3)

which holds for all v ∈ V II ;

7



III) for q ∈ ⟨2, 4⟩, u0 ∈ V III is the unique solution of∫
Ω
C3De(u0) · e(v)dx+

∫
Γ
Ae′(u0) · e′(v)dx′ =

∫
Γ
f · vdx′, (3.4)

which holds for all v ∈ V III ;

IV) for q = 4, u0 ∈ V IV is the unique solution of∫
Ω
C3De(u0) · e(v)dx+

∫
Γ
Ae′(u0) · e′(v)dx′ +

∫
γ

Erod

12
∂11u

0
2 · ∂11v2dx1 =

∫
Γ
f · vdx′, (3.5)

which holds for all v ∈ V IV ;

V) for q ∈ ⟨4,∞⟩, u0 ∈ V V is the unique solution of∫
Ω
C3De(u0) · e(v)dx+

∫
Γ
Ae′(u0) · e′(v)dx′ =

∫
Γ
f · vdx′, (3.6)

which holds for all v ∈ V V .

Furthermore we have the following convergences

uε → u0 strongly in L2(Ω3D,0;R3),

uε → u0 strongly in L2(Ω±;R3),
√
εeε3D,0(u

ε) → e3D,0 strongly in L2(Ω3D,0;R3×3),

eε±(u
ε) → e± strongly in L2(Ω±;R3×3),

ε1−
q
2eε0(u

ε) → e0 strongly in L2(Ω0;R3×3),

(3.7)

with e3D,0 = 0,

e± =

 ∂1u
0
1

1
2(∂1u

0
2 + ∂2u

0
1) 0

· ∂2u
0
2 0

· · − λplate

λplate+2µplate
(∂1u

0
1 + ∂2u

0
2)

 ,
and the value e0 depends on the value q: e0 = 0 for q ̸∈ {2, 4},

e0 = ∂1u
0
1

 1 0 0

0 −λrod
2(λrod+µrod)

0

0 0 −λrod
2(λrod+µrod)


for q = 2, and

e0 = −x2∂11u02

 1 0 0

0 −λrod
2(λrod+µrod)

0

0 0 −λrod
2(λrod+µrod)


for q = 4.

Remark 2. Note that for the limit function u03 the only information we have is that it belongs to
H1(Ω). By the trace theorem, it also belongs to L2(Γ), but we cannot extract any more information
in domain γ. This is related to the fact that in cases q ≥ 4 condition in space and terms in limit
models are related to flexural effects of the rod in direction e2 only.
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Corollary 1. a) For all ε ∈ ⟨0, 1], all q > 0 and all v ∈ V (Ωall) one has

CK

(
∥v∥2H1(Ω3D,±;R3) + ε∥v∥2L2(Ω3D,0;R3) + ε∥∇v∥2L2(Ω3D,0;R3×3) +

1

ε
∥∂2v∥2L2(Ω3D,0;R3)

+ ε∥v∥2L2(Ω±;R3) + ε∥∇v∥2L2(Ω±;R3×3) +
1

ε
∥∂3v∥2L2(Ω±;R3)

+ ε2∥v∥2L2(Ω0;R3) + ε2∥∂1v∥2L2(Ω0;R3) + ∥∂2v∥2L2(Ω0;R3) + ∥∂3v∥2L2(Ω0;R3)

)
≤ Bε(v,v).

b) For all ε ∈ ⟨0, 1], all q > 0 and all v ∈ V (Ωall) one has

∥v∥2L2(Γ1
±;R3) ≤ ∥v∥2L2(Ω3D,±;R3) + ∥∂3v∥2L2(Ω3D,±;R3) + ε∥v∥2L2(Ω±;R3) +

1

ε
∥∂3v∥2L2(Ω±;R3),

ε∥v∥2L2(Γ1
0;R3) ≤ ε∥v∥2L2(Ω3D,0;R3) + ε∥∂3v∥2L2(Ω3D,0;R3) + ε2∥v∥2L2(Ω0;R3) + ∥∂3v∥2L2(Ω0;R3).

c) For all ε ∈ ⟨0, 1], all q > 0 and all v ∈ V (Ωall) one has

∥v∥2L2(Ω3D,0;R3) ≤ C
(
∥v∥2L2(Ω3D,±;R3) + ∥∇v∥2L2(Ω3D,±;R3×3) + ∥∂2v∥2L2(Ω3D,0;R3)

)
,

∥v∥2L2(Ω±;R3) ≤ C
(
∥v∥2L2(Ω3D,±;R3) + ∥∂3v∥2L2(Ω3D,±;R3) + ∥∂3v∥2L2(Ω±;R3)

)
.

d) For all ε ∈ ⟨0, 1], all q > 0 and all v ∈ V (Ωall), α = 1, 2 one has

∥vα∥2L2(Ω0)

≤ C
(
∥vα∥2L2(Ω3D,±) + ∥∂3vα∥2L2(Ω3D,±) + ∥∂3vα∥2L2(Ω±) + ∥∂2vα∥2L2(Ω±) + ∥∂2vα∥2L2(Ω0)

)
.

Proof. a) Here we use Lemma 2. Since ε ≤ 1 we have that 1
ε and 1

εq are larger or equal to 1, so we can
estimate the symmetrized gradient by the potential energy in (2.1). Then we rescale the obtained
estimate to the canonical domain via Rε.

b) The first statement is proven in Corollary 3b) in [18], while the second one is analogous,
multiplied by ε.

c) Using the Newton-Leibniz theorem as in Corollary 3b) in [18] we obtain

∥v∥2L2(Ω3D,0;R3) ≤ C
(
∥v|x2=± 1

2
∥2L2(Ω3D,±;R3) + ∥∂2v∥2L2(Ω3D,0;R3)

)
.

Now the trace theorem on Ω3D,± implies the first estimate in c).
For the second estimate we take x ∈ Ω3D,± and again apply the Newton–Leibniz theorem and

the homogeneous boundary condition on x3 = −1 to obtain

v(x) = v(x1, x2, 0) +

∫ x3

0
∂3vdx3 =

∫ 0

−1
∂3vdx3 +

∫ x3

0
∂3vdx3.

Then we integrate and estimate to obtain the second estimate in c).
d) Again we use the Newton–Leibniz formula for x ∈ Ω0

v(x) =

∫ 0

−1
∂3vdx3 +

∫ x3

0
∂3vdx3 +

∫ −1/2

x2

∂2vdx2 +

∫ x2

−1/2
∂2vdx2

and after integration and estimates we obtain d).

For the test function v = u(ε) in (3.1) we have

Bε
3D(u(ε),u(ε)) = Lε

3D(u(ε)) ≤ ∥f∥L2(Γ1
±)∥u(ε)∥L2(Γ1

±) + ε∥f∥L2(Γ1
0)
∥u(ε)∥L2(Γ1

0)
.
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Now the application of the estimate b) and then a) from Corollary 1, after noting that all terms in
the right hand side of b) appear in the left hand side of the estimate a), implies

Bε
3D(u(ε),u(ε)) = Lε

3D(u(ε)) ≤ ∥f∥L2(Γ1
±)∥u(ε)∥L2(Γ1

±)+ε∥f∥L2(Γ1
0)
∥u(ε)∥L2(Γ1

0)
≤ C

√
Bε

3D(u(ε),u(ε)).

This implies that all terms in Bε
3D(u(ε),u(ε)) and all terms in the left hand side of estimates a) and

c) in Corollary 1 are bounded. Weak compactness then implies that on a subsequences we have some
weak convergences listed in the following corollary.

In the sequel we will use compactness argument for different bounded ε–families and extract
subsequences. For each extraction we will keep the same notation k or εk. At the end, due to the
uniqueness of the obtained limits, we will get that actually the whole families converge.

Corollary 2. For all q > 0 there are sequences (εk)k ⊂ [0, 1] and (uk)k ⊂ V (Ωall) and limits
u0 ∈ L2(Ωall \ Ω0;R3), e3D,0 ∈ L2(Ω3D,0;R3×3), e± ∈ L2(Ω±;R3×3), wα ∈ L2(Ω0;R3), α = 1, 2 and
e0 ∈ L2(Ω0;R3×3) such that εk → 0 and

(i) uk ⇀ u0 weakly in H1(Ω3D,±;R3),

(ii) uk ⇀ u0 weakly in L2(Ω3D,0;R3),

(iii) ∂2u
k → 0 strongly in L2(Ω3D,0;R3),

(iv) uk ⇀ u0 weakly in L2(Ω±;R3),

(v) ∂3u
k → 0 strongly in L2(Ω±;R3),

(vi)
√
εke

εk
3D,0(u

k)⇀ e3D,0 weakly in L2(Ω3D,0;R3×3),

(vii) eεk± (uk)⇀ e± weakly in L2(Ω±;R3×3),

(viii) ∂βu
k ⇀ wβ weakly in L2(Ω0;R3), β ∈ {2, 3},

(ix) ε1−
q
2eεk0 (uk)⇀ e0 weakly in L2(Ω0;R3×3).

(3.8)

3.1 Preliminary analysis

From the convergences (ii) and (iii) in (3.8) we see that ∂2u
0 = 0 in Ω3D,0, i.e., u

0 is independent of
x2. Thus the traces of u0 on x2 = ±1

2 coincide. Therefore the limit u0 restricted to Ω3D,+ ∪Ω3D,0 ∪
Ω3D,− belongs to a space isomorphic to H1(Ω;R3), see Remark 1. Similarly, from convergences (iv)
and (v), u0 restricted to Ω− and Ω+ belongs to spaces isomorphic to L2(Γ−;R3) and L2(Γ+;R3),
respectively.

From (iv) and (vii) in (3.8) we obtain that

e±11 = ∂1u
0
1, e±22 = ∂2u

0
2, e±12 = e±21 =

1

2
(∂1u

0
2 + ∂2u

0
1)

(all equations are on Ω±), so by the 2D Korn inequality

2∑
α1,α2=1

∥∂α1vα2∥H1(Ω±;R3) ≤ C(∥v1∥2L2(Ω±) + ∥v2∥2L2(Ω±) +
1

2

2∑
α1,α2=1

∥∂α1vα2 + ∂α2vα1∥2L2(Ω±))

we have that u01, u
0
2 ∈ H1(Γ−,R3) and u01, u

0
2 ∈ H1(Γ+;R3). Using the 2D Korn inequality we also

conclude
(uk1, u

k
2)⇀ (u01, u

0
2) weakly in H1(Ω+;R2),

(uk1, u
k
2)⇀ (u01, u

0
2) weakly in H1(Ω−;R2).

Now we apply Corollary 1.d) to (ukα)k to conclude that for α = 1, 2, (∥ukα∥2L2(Ω0;R3))k is bounded

as well, thus (ukα)k converges to u0α weakly in L2(Ω0) (up to a subsequence). By the uniqueness

of the limit, we can partly identify the limits wβ from (3.8) by wβ
α = ∂βu

0
α, α = 1, 2, β = 2, 3.
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Furthermore ∂1u
k
2 ⇀ ∂1u

0
2 in H−1(Ω0), which implies εk∂1u

k
2 → 0 in H−1(Ω0). This, together with

the last convergence in (3.8) multiplied by ε
q
2
k for q > 0, implies ∂2u

k
1 → 0 in H−1(Ω0). Since we

already know that ∂2u
k
1 is bounded in L2(Ω0), we finally conclude

∂2u
k
1 ⇀ 0 weakly in L2(Ω0).

Directly from the last convergence in (3.8) on position (2, 2) multiplied by ε
q
2
k we obtain ∂2u

k
2 → 0 in

L2(Ω0). This is enough to conclude that ∂2u
0
1 = ∂2u

0
2 = 0 on Ω0. Thus we have proved the following

result.

Lemma 5. We have that ukα ⇀ u0α weakly in L2(Ω0) and

∂2u
0
1 = ∂2u

0
2 = 0 in Ω0, ∂3u

0
1 = ∂3u

0
2 = 0 in Ω±.

This lemma then implies that traces of limits u01 and u02 on Ω+ and Ω− on {x2 = ±1
2} coincide

and that on Ω± ∪Ω0 limit functions u01 and u02 belong to the space isomorphic to H1(Γ) (in the view
of Remark 1). Finally, the limit u0 belongs to a space isomorphic to,

V I :=
{
v ∈ H1(Ω;R3) : v|x3=−1 = 0, vα|Γ ∈ H1(Γ;R3), α = 1, 2

}
.

Let us insert v ∈ V (Ωall) such that v = 0 for x2 ≥ −1
2 in (3.1) (then only integrals over Ω− and

Ω3D,− are nonzero). Then we multiply the equation (3.1) by εk, and let εk → 0.We obtain∫
Ω−

Cplatee− · e3(v)dx = 0.

This is the same situation as in the plate equation derivation, see [18, Section 3.2]. Then (Cplatee−)i3 =
0, i = 1, 2, 3. The same can be obtained for Ω+. We conclude that

e± =

 ∂1u
0
1

1
2(∂1u

0
2 + ∂2u

0
1) 0

· ∂2u
0
2 0

· · − λplate

λplate+2µplate
(∂1u

0
1 + ∂2u

0
2)

 . (3.9)

Also, using notation e′(v) = e1(v) + e2(v) we get

Cplatee± · e′(v) = Ae′(u0) · e′(v), v ∈ H1(Γ±;R3) (3.10)

and
Cplatee± · e3(v) = 0, v ∈ H1(Ω±;R3). (3.11)

In order to prove the strong convergence we additionally define

Λ(k) := (1− εk)

∫
Ω3D,±

C3D
(
eεk3D,±(u

k)− e(u0)
)
·
(
eεk3D,±(u

k)− e(u0)
)
dx

+

∫
Ω3D,0

C3D
(√

εke
εk
3D,±(u

k)− e3D,0
)
·
(√

εke
εk
3D,±(u

k)− e3D,0
)
dx

+ (1− εk)

∫
Ω±

Cplate
(
eεk± (uk)− e±

)
·
(
eεk± (uk)− e±

)
dx

+

∫
Ω0

Crod
(
ε
1− q

2
k e0(u

k)− e0
)
·
(
ε
1− q

2
k e0(u

k)− e0
)
dx.

Then we use the equation (3.1) to replace the quadratic terms and obtain

Λ(k) = (1− εk)

∫
Ω3D,±

C3De(u0) ·
(
e(u0)− 2eεk3D,±(u

k)
)
dx

+

∫
Ω3D,0

C3De3D,0 ·
(
e3D,0 − 2

√
εke

εk
3D,±(u

k)
)
dx

+ (1− εk)

∫
Ω±

Cplatee± ·
(
e± − 2eεk± (uk)

)
dx+

∫
Ω0

Crode0 ·
(
e0 − 2ε

1− q
2

k e0(u
k)
)
dx

+ (1− εk)

∫
Γ±

f · vdx′ + εk

∫
Γ0

f · vdx′.
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Now we let k to infinity and use (3.8) and (3.9) to obtain that Λ(k) → Λ, where

Λ := −
∫
Ω3D,±

C3De(u0) · e(u0)dx−
∫
Ω3D,0

C3De3D,0 · e3D,0dx

−
∫
Γ
Ae′(u0) · e′(u0)dx′ −

∫
Ω0

Crode0 · e0dx+

∫
Γ
f · vdx′.

(3.12)

It is clear that Λ ≥ 0 as the limit of a nonnegative sequence. In all cases that follow the obtained
limit model implies that the limit Λ is equal to zero. The form of Λ will then imply that both or
one of the terms e0 and e3D,0 are equal to zero, and that eεk3D,±(u

k),
√
εke

εk
3D,±(u

k), eεk± (uk) and

ε
1− q

2
k e0(u

k) converge strongly in L2 on corresponding domains. Then together with uniqueness of
the solution, we obtain strong convegences for all ε–families from (3.7).

3.2 The case 0 < q < 2

As noted in the previous subsection, the limit function belongs to V I . Let us take a test function
v ∈ V (Ωall) such that ∂3v = 0 in Ω±, ∂2v = 0 in Ω3D,0, ∂2v = ∂3v = 0 in Ω0 and let εk to zero. In
the limit, using (3.10), we obtain∫

Ω
C3De(u0) · e(v)dx+

∫
Γ
Ae′(u0) · e′(v)dx′ =

∫
Γ
f · vdx′, (3.13)

which by density holds for all v ∈ V I . This is the same model as obtained in [18, Section 3.2.], for
which the well–posedness is proved by coercivity inequality suited for natural norm in the space V I :

∥e(v)∥2L2(Ω;R3×3) + ∥e′(v)∥2L2(Γ;R3×3) ≥ c
(
∥v∥2H1(Ω;R3) + ∥v1∥2H1(Γ) + ∥v2∥2H1(Γ) + ∥v3∥2L2(Γ)

)
. (3.14)

This shows uniqueness of the limit u0. From (3.13) and (3.12) we obtain that Λ = 0, and that both
terms e0 and e3D,0 are equal to zero, so all desired strong convergences hold and the all ε-families
converge.

3.3 The case q = 2

From (1, 1) coordinate of the last convergence in (3.8) we obtain ∂1u
k
1 → ∂1u

0
1 in L2(Ω0). Thus,

e011 = ∂1u
0
1 and u01 ∈ H1(γ) (∂2u

0
1 = ∂3u

0
1 = 0), so the limit u0 belongs to

V II :=
{
v ∈ H1(Ω;R3) : v|x3=−1 = 0, vα|Γ ∈ H1(Γ;R), v1 ∈ H1(γ)

}
=
{
v ∈ V I : v1 ∈ H1(γ)

}
.

Let us multiply (3.1) by εk and let εk → 0. We obtain∫
Ω±

Cplatee± · e3(v)dx+

∫
Ω0

Crode0 · (e2(v) + e3(v))dx = 0. (3.15)

Due to (3.11), the first integral is equal to zero. Thus∫
Ω0

Crode0 · (e2(v) + e3(v))dx = 0. (3.16)

By inserting v = ψ(x1)x2e1 for arbitrary ψ ∈ H1([0, 1]), we obtain∫
Ω0

e012ψ(x1)dx = 0. (3.17)

Similarly we obtain ∫
Ω0

e013ψ(x1)dx = 0. (3.18)
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Next we insert v = ψ(x1)x2e2 + ψ(x1)x3e3 in (3.16) for arbitrary ψ ∈ H1([0, 1]). After algebraic
simplifications, we obtain∫

Ω0

(e022 + e033)ψ(x1)dx = −
∫
Ω0

λrod
λrod + µrod

e011ψ(x1)dx = −
∫
Ω0

λrod
λrod + µrod

∂1u
0
1ψ(x1)dx. (3.19)

From (3.17)–(3.19), for v ∈ H1(γ,R3) (i.e., v ∈ H1(Ω0;R3) such that ∂2v = ∂3v = 0) we obtain∫
Ω0

Crode0 · e1(v)dx =

∫
Ω0

(λrod tr e
0 + 2µrode

0
11)∂1v1 + 2µrode

0
12∂1v2 + 2µrode

0
13∂1v3dx

=

∫
Ω0

Erode
0
11∂1v1dx =

∫
Ω0

Erod∂1u
0
1∂1v1dx =

∫
γ
Erod∂1u

0
1∂1v1dx1.

(3.20)

Let us now take a test function v ∈ V (Ωall) in (3.1) such that ∂3v = 0 in Ω±, ∂2v = 0 in Ω3D,0,
∂2v = ∂3v = 0 in Ω0 and let ε to zero. By using (3.20) we obtain∫

Ω
C3De(u0) · e(v)dx+

∫
Γ
Ae′(u0) · e′(v)dx′ +

∫
γ
Erod∂1u

0
1∂1v1dx1 =

∫
Γ
f · vdx′, (3.21)

which by density holds for all v ∈ V II .
From (3.14) and the trace theorem for v1 on Γ, we obtain the bound

∥e(v)∥2L2(Ω;R3×3) + ∥e′(v)∥2L2(Γ;R3×3) + ∥∂1v1∥2L2(γ)

≥ c
(
∥v∥2H1(Ω;R3) + ∥v1∥2H1(Γ) + ∥v2∥2H1(Γ) + ∥v3∥2L2(Γ)

)
+ ∥∂1v1∥2L2(γ)

≥ c′
(
∥v∥2H1(Ω;R3) + ∥v1∥2H1(Γ) + ∥v2∥2H1(Γ) + ∥v3∥2L2(Γ) + ∥v1∥2H1(γ)

)
.

(3.22)

This shows coercivity inequality for natural norm in the space V II , so we conclude uniqueness of the
limit u0, and that the whole ε-family converges to the same limit.

For the strong convergence, let us firstly define matrix

Erod =

 1 0 0

0 −λrod
2(λrod+µrod)

0

0 0 −λrod
2(λrod+µrod)

 . (3.23)

For such matrix it is easy to see that it holds

CrodErod =

Erod 0 0
0 0 0
0 0 0

 ,
and consequently

CrodErod ·Erod = Erod and CrodErod · F = 0,

for each F ∈ M3×3 with element on the position (1, 1) equal to zero.
Let us define matrices ẽ0 := ∂1u

0
1Erod and ˜̃e0 = e0 − ẽ0. Since e011 = ∂1u

0
1, the element on the

position (1, 1) in the matrix ˜̃e0 is equal to zero, so we have

Crode0 · e0 = Crod
(
ẽ0 + ˜̃e0

)
·
(
ẽ0 + ˜̃e0

)
= Crodẽ0 · ẽ0 + Crod˜̃e0 · ˜̃e0 = Erod(∂1u

0
1)

2 + Crod˜̃e0 · ˜̃e0.

By inserting this in (3.12), by using (3.21), we obtain that

Λ = −
∫
Ω3D,0

C3De3D,0 · e3D,0dx−
∫
Ω0

Crod˜̃e0 · ˜̃e0dx

is equal to zero. Thus e3D,0 = ˜̃e0 = 0 and

e0 = ẽ0 = ∂1u
0
1Erod =

∂1u
0
1 0 0

0 −λrod
2(λrod+µrod)

∂1u
0
1 0

0 0 −λrod
2(λrod+µrod)

∂1u
0
1

 .
As in the previous case, we also conclude desired strong convergences.
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3.4 The case 2 < q < 4

From the last convergence in (3.8) we obtain that ∂1u
0
1 = 0 on Ω0, thus the limit belongs to

V III :=
{
v ∈ H1(Ω;R3) : v|x3=−1 = 0, vα|Γ ∈ H1(Γ;R3), ∂1v1 = 0 on γ

}
=
{
v ∈ V II : ∂1v1 = 0 on γ

}
.

Let us choose test functions v0 + εkv
1 with v0,v1 ∈ V (Ωall) for (3.1) such that ∂3v

0 = 0
in Ω±, ∂2v

0 = 0 in Ω3D,0, v0 ∈ H2(Ω0;R3) dependent only on x1, ∂1v
0
1 = 0 on Ω0, and v1 =

(−x2∂1v02 −
(
x3 − 1

2

)
∂1v

0
3)e1 on Ω0. Then

eεk0 (v0 + εkv
1) = e1(v

0) + e2(v
1) + e3(v

1) + εke1(v
1) = εke1(v

1).

Thus ε
1− q

2
k eεk0 (v0 + εkv

1) → 0 strongly in L2. Therefore in the limit of (3.1) we obtain∫
Ω
C3De(u0) · e(v0)dx+

∫
Γ
Ae′(u0) · e′(v0)dx′ =

∫
Γ
f · v0dx′, (3.24)

which by density holds for all v ∈ V III .
From (3.22) for v ∈ V III we obtain the bound

∥e(v)∥2L2(Ω;R3×3)+∥e′(v)∥2L2(Γ;R3×3) ≥ c
(
∥v∥2H1(Ω;R3) + ∥v1∥2H1(Γ) + ∥v2∥2H1(Γ) + ∥v3∥2L2(Γ) + ∥v1∥2H1(γ)

)
.

(3.25)
so we again conclude well-posedness, uniqueness of the limit u0, and that the whole ε-family converges
to the same limit. From (3.24) and (3.12) we obtain that Λ = 0, and that both terms e0 and e3D,0

are equal to zero, so all desired strong convergences hold.

3.5 The case q = 4

Lemma 6. Let the family (vε)ε>0 ⊆ H1(Ω0;R3) satisfies

vεα ⇀ vα weakly in H1(Ω0) α = 1, 2, (3.26)

∂1v
ε
3 − ∂1vε3 ⇀ ϕ1 weakly in L2(Ω0), (3.27)

∂2v
ε
3 ⇀ ϕ2 weakly in L2(Ω0), (3.28)

∂3v
ε
3 ⇀ ϕ3 weakly in L2(Ω0), (3.29)

1

ε
eε0(v

ε)⇀ e0 weakly in L2(Ω0;R3×3), (3.30)

where w := 1
|Ω0|

∫
Ω0

wdx. Additionally, let vα|x2=−1/2 be independent of x3. Then:

a) it holds

∇vε − ∂1vε3e3e
T
1 =

 ∂1v
ε
1 ∂2v

ε
1 ∂3v

ε
1

∂1v
ε
2 ∂2v

ε
2 ∂3v

ε
2

∂1v
ε
3 − ∂1vε3 ∂2v

ε
3 ∂3v3

⇀
 0 0 0
∂1v2 0 0
ϕ1 0 0

 weakly in L2(Ω0;R9×9),

furthermore, the convergence of components converging to zero is strong;

b) the limit function v1 is a constant, the limit function v2 is independent of variables x2, x3 and
belongs to H2(0, 1) and the limit function ϕ1 is independent of variables x2, x3 and belongs to
H1(0, 1);

c) the limit functions satisfy following conditions:

∂2e
0
11 = −∂11v2, ∂3e

0
11 = −∂1ϕ1;

d) if the convergence (3.30) is strong, then all convergences in a) are also strong.
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Proof. From assumptions, we have

ε−1∂1v
ε
1 ⇀ e011 weakly in L2(Ω0), (3.31)

ε−2∂2v
ε
2 ⇀ e022 weakly in L2(Ω0), (3.32)

ε−2∂3v
ε
3 ⇀ e033 weakly in L2(Ω0), (3.33)

ε−1∂1v
ε
2 + ε−2∂2v

ε
1 ⇀ e012 weakly in L2(Ω0), (3.34)

ε−1∂1v
ε
3 + ε−2∂3v

ε
1 ⇀ e013 weakly in L2(Ω0), (3.35)

ε−2∂2v
ε
3 + ε−2∂3v

ε
2 ⇀ e023 weakly in L2(Ω0). (3.36)

From (3.26) specially
vεα → vα strongly in L2(Ω0) α = 1, 2. (3.37)

From (3.31), (3.32) and (3.33) multiplied by ε, ε2, ε2 respectively we obtain

∂1v
ε
1, ∂2v

ε
2, ∂3v

ε
3 → 0 strongly in L2(Ω0). (3.38)

Thus ∂1v1 = ∂2v2 = ϕ3 = 0. From (3.26) we have ε∂1v
ε
2 → 0 strongly in L2(Ω0). Then from (3.34)

multiplied by ε2 we obtain

∂2v
ε
1 → 0 = ∂2v1 strongly in L2(Ω0).

From (3.27) after differentiating and multiplying by ε we have

ε∇∂1vε3 = ε∇
(
∂1v

ε
3 − ∂1vε3

)
→ 0 strongly in H−1(Ω0;R3).

Then from (3.35) multiplied by ε2, after differentiation we obtain

∇∂3vε1 → 0 strongly in H−1(Ω0;R3).

Since from (3.26) we have ∂3v
ε
1 ⇀ ∂3v1 weakly in L2(Ω0), by using the Lions lemma we conclude that

∂3v
ε
1 → ∂3v1 strongly in L2(Ω0), and that ∇∂3v1 = 0. Together with ∂1v1 = ∂2v1 = 0 this implies

that v1 is affine in x3. Since by assumption v1|x2=−1/2 is independent of x3 this implies that ∂3v1 = 0
and thus v1 is a constant.

By (3.34) and (3.35) we have

ε∂3(ε
−1∂1v

ε
2 + ε−2∂2v

ε
1)− ε∂2(ε

−1∂1v
ε
3 + ε−2∂3v

ε
1) = ∂1(∂3v

ε
2 − ∂2v

ε
3) → 0 strongly in H−1(Ω0).

Comparing with (3.36) differentiated and multiplied by ε2, we obtain that

∂13v
ε
2, ∂12v

ε
3 → 0 strongly in H−1(Ω0). (3.39)

Let us now prove that ∂3v
ε
2 → 0 strongly in L2(Ω0). From (3.26) we have that ∂3v

ε
2 converges

strongly in H−1(Ω0). From (3.39) and (3.38), respectively we have that ∂13v
ε
2 → 0 and ∂23v

ε
2 → 0,

both strongly in H−1(Ω0). Finally, from (3.36) and (3.33) we have

∂33v
ε
2 = ε2∂3(ε

−2∂2v
ε
3 + ε−2∂3v

ε
2)− ε2∂2(ε

−2∂3v
ε
3) → 0 strongly in H−1(Ω0).

From Lions lemma, ∂3v
ε
2 converges strongly in L2(Ω0) to ∂3v2 which is a constant since ∇∂3v2 = 0.

Thus v2 is an affine function in x3 with coefficients in x1, a.e. Since, by assumption, v2|x1=−1/2 is
independent of x3, v2 is a function of x1 only. Thus

∂3v
ε
2 → 0 = ∂3v2 strongly in L2(Ω0). (3.40)

By multiplying (3.36) by ε2, we obtain that ∂2v
ε
3 → 0 = ϕ2 strongly in L2(Ω0).

From (3.39) and (3.38), respectively, we obtain that

∂2
(
∂1v

ε
3 − ∂1vε3

)
= ∂12vε3, ∂3

(
∂1v

ε
3 − ∂1vε3

)
= ∂13v

ε
3 → 0 strongly in H−1(Ω0).
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Thus ∂2ϕ1 = ∂3ϕ1 = 0 and ϕ1 is independent of x2, x3. Since

∂1
(
∂1v

ε
3 + ε−1∂3v

ε
1

)
= ∂1

(
∂1v

ε
3 − ∂1vε3

)
+ ∂3

(
ε−1∂1v

ε
1

)
, (3.41)

convergences (3.31) and (3.27) applied on the term on the right hand side and convergence (3.35)
multiplied by ε applied on the left hand side imply that in the limit we have the equality

0 = ∂1ϕ1 + ∂3e
0
11.

Let ξ and θ be such that ξ = ξ(x1) ∈ C∞
c (⟨0, 1⟩), θ = θ(x2, x3) ∈ C∞

c (⟨0, 1⟩2),
∫
[0,1]2 θdx

′ = 1. In

(3.41) we now have∫ 1

0
ϕ1∂1ξdx1 =

∫
Ω0

ϕ1θ∂1ξdx = −
∫
Ω0

e011∂3θξdx =

∫ 1

0

(∫
[0,1]2

−e011∂3θdx′

)
ξdx1.

Since x1 7→
∫
[0,1]2 −e011∂3θdx′ belongs to L2(0, 1) due to arbitrariness of ξ we conclude that ϕ1 ∈

H1(0, 1).
Taking derivative with respect to x1 of (3.34) multiplied by ε we obtain

∂11v
ε
2 + ε−1∂21v

ε
1 → 0 strongly in H−1(Ω0) (3.42)

Using convergences (3.26) and (3.31) in the limit we obtain ∂11v2 + ∂2e
0
11. For the same ξ and θ as

above we obtain∫ 1

0
∂1v2∂1ξdx1 =

∫
Ω0

∂1v2θ∂1ξdx = −
∫
Ω0

e011∂2θξdx =

∫ 1

0

(∫
[0,1]2

−e011∂2θdx′

)
ξdx1.

As before this implies ∂1v2 ∈ H1(0, 1).
Let us now assume that the convergence in (3.30) is strong, i.e. all convergences (3.31)–(3.36) are

strong.
From (3.26) ∂1v

ε
2 converges strongly in H−1(Ω0). Taking derivative with respect to x1 of (3.32)

multiplied by ε2 we obtain that ∂21v
ε
2 converges strongly in H−1(Ω0). From (3.40) we know that ∂3v

ε
2

converges strongly to zero in L2(Ω0), which implies that ∂31v
ε
2 converges strongly in H−1(Ω0). Now

(3.42) with strong convergence in (3.31) implies that ∂11v
ε
2 converges strongly in H−1(Ω0). Lions

lemma now implies that ∂1v
ε
2 converges strongly in L2(Ω0).

From (3.27) ∂1v
ε
3 − ∂1vε3 converges strongly in H−1(Ω0). Since ∇(∂1v

ε
3 − ∂1vε3) = ∇∂1vε3 we can

apply the same arguments as for ∂1v
ε
2 above to conclude that convergence in (3.27) is strong.

Lemma 7. Let vα|x2=−1/2 be independent of x3. Then there is ε0 > 0 such that or all ε ∈ ⟨0, ε0] and
all v ∈ H1(Ω0;R3) one has

CK

(
∥v1∥2H1(Ω0)

+ ∥v2∥2H1(Ω0)
+ ∥∂1v3 − ∂1v3∥2L2(Ω0;R3) + ∥∂2v3∥2L2(Ω0;R3) + ∥∂3v3∥2L2(Ω0;R3)

)
≤ 1

ε2
∥eε0(v)∥2L2(Ω0;R3×3) + ∥v1∥2L2(Ω0)

+ ∥v2∥2L2(Ω0)
,

where w := 1
|Ω0|

∫
Ω0

wdx.

Proof. Let us suppose the opposite. Then there exists a sequence still labelled by (vε)ε>0 such that

∥vε1∥2H1(Ω0)
+ ∥vε2∥2H1(Ω0)

+ ∥∂1vε3 − ∂1vε3∥2L2(Ω0;R3) + ∥∂2vε3∥2L2(Ω0;R3) + ∥∂3vε3∥2L2(Ω0;R3) = 1, (3.43)

such that the terms on the right hand side of the inequality tend to zero. More precisely, we have

vεα ⇀ vα weakly in H1(Ω0) α = 1, 2,

∂1v
ε
3 − ∂1vε3 ⇀ ϕ1 weakly in L2(Ω0),

∂2v
ε
3 ⇀ ϕ2 weakly in L2(Ω0),

∂3v
ε
3 ⇀ ϕ3 weakly in L2(Ω0),

1

ε
eε0(v

ε) → 0 strongly in L2(Ω0;R3×3),

vεα → 0 strongly in L2(Ω0) α = 1, 2.

(3.44)
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From the last convergence we have v1 = v2 = 0. Further, all assumptions of the Lemma 6 are
satisfied. Thus all convergences in (3.44) are strong and ϕ2 = ϕ3 = 0.

From 1
εe

ε
0(v

ε) → 0 specially e011 = 0. From part c) of Lemma 6, we have that ∂1ϕ1 = 0. Together
with part b) of the same lemma, ϕ1 is a constant, so we have

ϕ1 =
1

|Ω0|

∫
Ω0

ϕ1dx = lim
ε→0

1

|Ω0|

∫
Ω0

(∂1v
ε
3 − ∂1vε3)dx = 0.

Thus the left hand side of (3.43) converges to 0, so we obtained a contradiction.

We apply Lemmas 6 and 7 on uεk since for q ≥ 4 the assumptions are fulfilled. We conclude that
u01 is a constant and that u02 ∈ H2(Ω0;R3) depends only on x1. Thus u

0 belongs to

V IV :=
{
v ∈ H1(Ω;R3) : v|x3=−1 = 0, vα|Γ ∈ H1(Γ;R3), ∂1v1 = 0 on γ, v2 ∈ H2(γ)

}
=
{
v ∈ V III : v2 ∈ H2(γ)

}
.

We also conclude that ∂1u
εk
3 − ∂1u

εk
3 weakly converges to ψ1 ∈ H1(Ω0) on Ω0, dependent only on x1.

From part c) of Lemma 6 we conclude that

1

εk
(eεk0 )11 ⇀ e011 = eH11 − x2∂11u

0
2 −

(
x3 −

1

2

)
∂1ψ1, (3.45)

for a function eH11 ∈ L2(Ω0;R3) dependent only on x1.
Let us choose arbitrary test function v ∈ V (Ωall) for (3.1), multiply the equation by ε2, and let

ε→ 0. We obtain ∫
Ω0

Crode0 · (e2(v) + e3(v))dx = 0. (3.46)

Firstly, in (3.46) we choose a test function v =
x2
2
2 ϕ2(x1)e2, for arbitrary ϕ2 ∈ H1([0, 1]), to obtain∫

Ω0

(
λrode

0
11 + (λrod + 2µrod)e

0
22 + λrode

0
33

)
x2ϕ2(x1)dx = 0. (3.47)

For a test function v = x2
(
x3 − 1

2

)
ϕ3(x1)e2 − x2

2
2 ϕ3(x1)e3, for arbitrary ϕ3 ∈ H1([0, 1]), from (3.46)

we obtain ∫
Ω0

(
λrode

0
11 + (λrod + 2µrod)e

0
22 + λrode

0
33

)(
x3 −

1

2

)
ϕ3(x1)dx = 0. (3.48)

We obtain results analogous to (3.47) and (3.48) for term
(
λrode

0
11 + λrode

0
22 + (λrod + 2µrod)e

0
33

)
,

and sum everything to obtain∫
Ω0

(e022 + e033)

(
x2ϕ2(x1) +

(
x3 −

1

2

)
ϕ3(x1)

)
dx

= −
∫
Ω0

λrod
λrod + µrod

e011

(
x2ϕ2(x1) +

(
x3 −

1

2

)
ϕ3(x1)

)
dx.

(3.49)

Let us choose test functions v0 + εkv
1 with v0,v1 ∈ V (Ωall) for (3.1) such that ∂3v

0 = 0
in Ω±, ∂2v

0 = 0 in Ω3D,0, v0 ∈ H2(Ω0;R3) dependent only on x1, ∂1v
0
1 = 0 on Ω0, and v1 =

(−x2∂1v02 −
(
x3 − 1

2

)
∂1v

0
3)e1. Then on Ω0 we have

eεk0 (v0 + εkv
1) = e1(v

0) + e2(v
1) + e3(v

1) + εke1(v
1) = εke1(v

1).

After letting ε→ 0 we obtain∫
Ω
C3De(u0) · e(v0)dx+

∫
Γ
Ae′(u0) · e′(v0)dx′ +

∫
Ω0

Crode0 · e1(v1)dx =

∫
Γ
f · v0dx′. (3.50)
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By (3.49) and (3.45), the last term on the left hand side can be rewritten as∫
Ω0

Crode0 · e1(v1)dx =

∫
Ω0

(
(λrod + 2µrod)e

0
11 + λrod(e

0
22 + e033)

)(
−x2∂11v02 −

(
x3 −

1

2

)
∂11v

0
3

)
dx

=

∫
Ω0

Erode
0
11

(
−x2∂11v02 −

(
x3 −

1

2

)
∂11v

0
3

)
dx

=

∫
Ω0

Erod

(
eH11 − x2∂11u

0
2 −

(
x3 −

1

2

)
∂1ψ1

)(
−x2∂11v02 −

(
x3 −

1

2

)
∂11v

0
3

)
dx

=

∫
γ

Erod

12
∂11u

0
2 · ∂11v02dx1 +

∫
γ

Erod

12
∂1ψ1 · ∂11v03dx1.

Let us observe (3.50) for the test function function v0 with v01 = v02 = 0:∫
Ω
C3De(u0) · e(v03e3)dx+

∫
Ω0

Erod

12
∂1ψ1 · ∂11v03dx =

∫
Γ
f3v

0
3dx

′.

Let us choose arbitrary ν ∈ H1(Ωall) with ν|x3=−1 = 0, ∂2ν = 0 on Ω3D,0, ∂3ν = 0 on Ω±, ∂2ν =
∂3ν = 0 on Ω0. Let us take νe3 ∈ V I as a function isomorphic to νe3, see Remark 1. Since γ in Ω is
of capacity zero, there exists a sequence (νn)n ⊂ V I with νn = 0 on γ such that strongly converges to
ν in H1(Ω) (see Theorem 2.44, [12]). When in the last equation we plug in functions νn ⊂ H1(Ωall)
(isomorphic to elements of sequence (νn)n) and let n→ ∞, we obtain∫

Ω
C3De(u0) · e(νe3)dx =

∫
Γ
f3νdx

′,

so ∫
γ

Erod

12
∂1ψ1 · ∂11νdx1 = 0

for all ν ∈ H2([0, 1]). Consequently, ∂1ψ1 = 0. Thus the model for q = 4 reads: find u0 ∈ V IV such
that for all v ∈ V IV one has∫

Ω
C3De(u0) · e(v)dx+

∫
Γ
Ae′(u0) · e′(v)dx′ +

∫
γ

Erod

12
∂11u

0
2 · ∂11v2dx1 =

∫
Γ
f · vdx′. (3.51)

From (3.25) and the trace theorem for v2 on Γ, we obtain the bound

∥e(v)∥2L2(Ω;R3×3) + ∥e′(v)∥2L2(Γ;R3×3) + ∥∂11v2∥2L2(γ)

≥ c
(
∥v∥2H1(Ω;R3) + ∥v1∥2H1(Γ) + ∥v2∥2H1(Γ) + ∥v3∥2L2(Γ) + ∥v1∥2H1(γ)

)
+ ∥∂11v2∥2L2(γ)

≥ c′
(
∥v∥2H1(Ω;R3) + ∥v1∥2H1(Γ) + ∥v2∥2H1(Γ) + ∥v3∥2L2(Γ) + ∥v1∥2H1(γ) + ∥v2∥2H2(γ)

)
.

(3.52)

This shows coercivity inequality for natural norm in the space V IV , so we conclude uniqueness of
the limit u0, and that the whole ε-family converges to the same limit.

For the strong convergence, we use similar idea as in the case q = 2. We define matrices ẽ0 :=
e011Erod and ˜̃e0 = e0 − ẽ0, where matrix Erod is defined in (3.23). We analogously conclude that

Crode0 · e0 = Erod(e
0
11)

2 + Crod˜̃e0 · ˜̃e0.

Since eH11 and u02 are both only x1 dependent, it holds∫
Ω0

Erod

(
e011
)2
dx =

∫
Ω0

Erod

(
eH11 − x2∂11u

0
2

)2
dx =

∫
Ω0

Erod

(
eH11
)2
dx+

∫
Ω0

Erod

12

(
∂11u

0
2

)2
dx.

By inserting the last two equations in (3.12), by using (3.51), we obtain that

Λ = −
∫
Ω3D,0

C3De3D,0 · e3D,0dx−
∫
Ω0

Erod

(
eH11
)2
dx−

∫
Ω0

Crod˜̃e0 · ˜̃e0dx.

18



is equal to zero. Thus e3D,0 = eH11 =
˜̃e0 = 0, e011 = −x2∂11u02, and

e0 = ẽ0 =

−x2∂11u
0
2 0 0

0 λrod
2(λrod+µrod)

x2∂11u
0
2 0

0 0 λrod
2(λrod+µrod)

x2∂11u
0
2

 .
As in the previous cases, we also conclude desired strong convergences. Additionally, the statement
d) in Lemma 6 then implies the strong convergence of uεα in H1(Ω0).

3.6 The case q > 4

From the last convergence in (3.8) we conclude 1
εk
eεk0 (uε) → 0 strongly in L2(Ω0;R3×3). We apply

Lemma 6 (parts a), c) and d)) to conclude

∂2u
εk → 0 strongly in L2(Ω0;R3),

∂3u
εk → 0 strongly in L2(Ω0;R3),

∂1u
εk
1 → 0 strongly in L2(Ω0;R3),

∂11u
εk
2 , ∂11u

εk
1 → 0 strongly in H−1(Ω0;R3).

Furthermore, we conclude that the limit belongs to

V V :=
{
v ∈ H1(Ω;R3) : v|x3=−1 = 0, vα|Γ ∈ H1(Γ;R3), ∂1v1 = 0 on γ, ∂11v2 = 0 on γ

}
=
{
v ∈ V IV : ∂11v2 = 0 on γ

}
.

Let us choose arbitrary ν ∈ H1(Ωall) with ∂2ν = 0 on Ω3D,0, ∂3ν = 0 on Ω±, ∂2ν = ∂3ν = 0 on
Ω0. Let us take νe3 ∈ V I as a function isomorphic to νe3. Again by [12, Theorem 2.44], there exists
a sequence (νn)n ⊂ V I with νn = 0 on γ such that strongly converges to ν in H1(Ω). Then for the
test functions νne3 in (3.1) (where functions νn are isomorphic to elements of sequence (νn)n)) we
obtain ∫

Ω
C3De(u0) · e(νe3)dx =

∫
Γ
f3νdx

′.

We now choose arbitrary v1, v2 ∈ H2(Ωall) with ∂2vα = 0 on Ω3D,0, ∂3vα = 0 on Ω±, ∂2vα = ∂3vα = 0
on Ω0, and with ∂1v1 = ∂11v2 = 0 on Ω0. For test functions of the form v1e1 + v2e2 − εx2∂1v2e1 we
obtain ∫

Ω
C3De(u0) · e(v1e1 + v2e2)dx+

∫
Γ
Ae′(u0) · e′(v1e1 + v2e2)dx

′ =

∫
Γ
f1v1 + f2v2dx

′.

Summing the last two equations, by density we obtain the model: find u0 ∈ V V such that for all
v ∈ V V one has ∫

Ω
C3De(u0) · e(v)dx+

∫
Γ
Ae′(u0) · e′(v)dx′ =

∫
Γ
f · vdx′. (3.53)

From (3.52) for v ∈ V V we obtain the bound

∥e(v)∥2L2(Ω;R3×3) + ∥e′(v)∥2L2(Γ;R3×3) + ∥∂11v2∥2L2(γ)

≥ c
(
∥v∥2H1(Ω;R3) + ∥v1∥2H1(Γ) + ∥v2∥2H1(Γ) + ∥v3∥2L2(Γ) + ∥v1∥2H1(γ) + ∥v2∥2H2(γ)

)
.

(3.54)

so we again conclude well-posedness, uniqueness of the limit u0, and that the whole ε-family converges
to the same limit. From (3.53) and (3.12) we obtain that Λ = 0, and that both terms e0 and e3D,0

are equal to zero, so all desired strong convergences hold.
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4 Limits of the 3d-plate-rod model

In this model we analyze, case by case, a simplified model (2.2) in which the thin parts are replaced
by the plate and rod equations.

Theorem 8. The problem (2.2) has unique solution.

The result follows by Lax-Milgram lemma using the V3d−2d−1d–ellipticity of the form which follows
from the following estimate.

Lemma 9. There is C > 0 such that for all (v, w̃) ∈ V3d−2d−1d one has

∥v∥2H1(Ω;R3) + ∥v∥2H1(Γ;R3) + ∥w̃∥2H1(Γ;R3) + ∥v∥2H1(γ;R3) + ∥w̃∥2H1(γ;R3)

≤ C
(
∥e(v)∥2L2(Ω;R3×3) + ∥∇′v +Aw̃∥2L2(Γ;R3×2) + ∥∇′w̃∥2L2(Γ;R3×2)

+ ∥∂1v + e1 × w̃∥2L2(γ;R3) + ∥∂1w̃∥2L2(γ;R3)

)
.

Proof. First we use the estimate [18, Lemma 9] for the estimate

∥v∥2H1(Ω;R3)+∥v∥2H1(Γ;R3)+∥w̃∥2H1(Γ;R3) ≤ C
(
∥e(v)∥2L2(Ω;R3×3)+∥∇′v+Aw̃∥2L2(Γ;R3×2)+∥∇′w̃∥2L2(Γ;R3×2)

)
.

Then using the trace inequality terms ∥v∥L2(γ;R3) and ∥w̃∥L2(γ;R3) are also estimated. Then the addi-
tional terms ∥∂1v+e1×w̃∥2L2(γ;R3)+∥∂1w̃∥2L2(γ;R3) are used to estimate ∥v∥H1(γ;R3) and ∥w̃∥H1(γ;R3).

Also in an usual way, since ∥v∥L2(Γ;R3) ≤ C∥e(v)∥L2(Ω;R3×3) by the trace theorem and the Korn
inequality, we obtain the a priori estimates for the terms in the elastic energy of the system. Then
the following convergences hold.

Corollary 3. There is a sequence (εk)k such that εk → 0 and u0 ∈ V (Ω), emP , e
f
P ∈ L2(Γ;R3×2) and

emR , e
f
R ∈ L2(γ;R3) such that

uεk ⇀ u0 weakly in H1(Ω;R3),(
∇′uεk +Aω̃εk

)
⇀ emP weakly in L2(Γ;R3×2),

εk∇ω̃εk ⇀ efP weakly in L2(Γ;R3×2),

ε
1−q/2
k (∂1u

εk + e1 × ω̃εk)⇀ emR weakly in L2(γ;R3),

ε
2−q/2
k ∂1ω̃

εk ⇀ efR weakly in L2(γ;R3).

(4.1)

Theorem 10. Let (uε, ω̃ε)ε ⊂ V3d−2d−1d be the family of solutions of (2.2). Let q > 0. Then

uεk → u0 strongly in H1(Ω;R3),(
∇′uεk +Aω̃εk

)
→ emP strongly in L2(Γ;R3×2),

εk∇ω̃εk → efP strongly in L2(Γ;R3×2),

ε
(2−q)/2
k (∂1u

εk + e1 × ω̃εk) → emR strongly in L2(γ;R3),

ε
(4−q)/2
k ∂1ω̃

εk → efR strongly in L2(γ;R3),

uεkα → u0α strongly in H1(Γ), α = 1, 2,

uεkα → u0α strongly in L2(γ), α = 1, 2.

(4.2)

The limit function u0 belongs to V I and is unique as well as emR , e
f
R (both depending on q), and

emP =

 ∂1u
0
1

1
2(∂1u

0
2 + ∂2u

0
1)

∂1u
0
2 + ∂2u

0
1 ∂2u

0
2

0 0

 , efP = 0.
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I) For q ∈ ⟨0, 2⟩, u0 ∈ V I is the unique solution of (3.2) and emR = efR = 0.

II) For q = 2, u0 ∈ V II is the unique solution of (3.3), efR = 0 and

emR =

∂1u010
0

 .
III) For q ∈ ⟨2, 4⟩, u0 ∈ V III is the unique solution of (3.4) and emR = efR = 0.

IV) For q = 4, u0 ∈ V IV is the unique solution of (3.5), emR = 0 and

efR =

 0
0

∂11u
0
2

 .
V) For q ∈ ⟨4,∞⟩, u0 ∈ V V is the unique solution of (3.6) and emR = efR = 0.

Additionally,

� for q ≥ 2, uε1 → u01 strongly in H1(γ);

� for q > 2, ω̃ε
3 → ∂1u

0
2 strongly in H−1(γ);

� for q ≥ 4, ω̃ε
3 → ∂1u

0
2 strongly in H1(γ).

From the first convergence in (4.1) and the trace theorem we obtain uεk ⇀ u0 in L2(Γ;R3). From
the second convergence in (4.1), by observing all components, we obtain

∂1u
εk
1 ⇀ (emP )11, ∂1u

εk
2 − ω̃εk

3 ⇀ (emP )21, ∂1u
εk
3 + ω̃εk

2 ⇀ (emP )31,

∂2u
εk
1 + ω̃εk

3 ⇀ (emP )12, ∂2u
εk
2 ⇀ (emP )22, ∂2u

εk
3 − ω̃εk

1 ⇀ (emP )32,

all weakly in L2(Γ). By the 2d Korn type inequality

∥v∥H1(Γ;R2) ≤ C(∥e(v)∥L2(Γ;R2×2) + ∥v∥L2(Γ;R2))

applied on the coordinates (emP )11, (e
m
P )21 + (emP )12, and (emP )22, we obtain that, on a subsequence

not relabeled, uεkα ⇀ u0α in H1(Γ;R3). By the trace theorem uεkα ⇀ u0α in L2(γ;R). Thus the limit
u0 belongs to V I . Furthermore we now get that ω̃εk

3 ⇀ ω̃3 weakly in L2(Γ) and

(emP )11 = ∂1u
0
1, (emP )22 = ∂2u

0
2, (emP )12 + (emP )21 = ∂1u

0
2 + ∂2u

0
1. (4.3)

Let us take v = 0 and for arbitrary w̃ ∈ H1(Γ;R3) with w̃ = 0 on γ, let (w̃ε)ε be a sequence of
smooth functions converging strongly to w̃ in H1(Γ;R3) such that w̃ε = 0 on [0, 1] × [−ε, ε]. After
inserting such u and w̃ε into (2.2) and letting ε→ 0, we obtain∫

Γ
CmemP · (Aw̃) dx′ = 0 (4.4)

for all w̃ ∈ H1(Γ;R3) with w̃ = 0 on γ. By varying w̃, we obtain (emP )31 = (emP )32 = 0, and
(emP )21 − (emP )12 = 0. From (4.3) then we have (emP )21 = (emP )12 = 1

2(∂1u
0
2 + ∂2u

0
1). Also (4.4) holds

for arbitrary w̃ ∈ L2(Γ;R3) as well. Then for arbitrary v ∈ H1(Γ;R3) we have

CmemP · ∇′v = Ae′(u0) · e′(v).

Thus we have just proved the following lemma.
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Lemma 11. The limit function u0 belongs to V I ,

emP =

 ∂1u
0
1

1
2(∂1u

0
2 + ∂2u

0
1)

∂1u
0
2 + ∂2u

0
1 ∂2u

0
2

0 0

 ,
CmemP · ∇′v = Ae′(u0) · e′(v) for any v ∈ H1(Γ;R3) and the following convergences hold

uεkα ⇀ u0α weakly in H1(Γ), α = 1, 2,

uεkα ⇀ u0α weakly in L2(γ), α = 1, 2,

ω̃εk
3 ⇀ ω̃0

3 weakly in L2(Γ).

In order to prove the strong convergences we additionally define

Λ(k) :=

∫
Ω
C3De(uεk − u0) · e(uεk − u0)dx+

∫
Γ
Cm
(
∇′uε +Aω̃ε − emP

)
·
(
∇′uε +Aω̃ε − emP

)
dx′

+
1

12

∫
Γ
Cf∇′

(
εω̃ε − efP

)
·
(
εω̃ε − efP

)
dx′

+

∫
γ
M
(
ε1−q/2

[
∂1u

ε + e1 × ω̃ε
]
− emR

)
·
(
ε1−q/2

[
∂1u

ε + e1 × ω̃ε
]
− emR

)
dx1

+

∫
γ
H
(
ε2−q/2∂1ω̃

ε − efR

)
·
(
ε2−q/2∂1ω̃

ε − efR

)
dx1.

After eliminating quadratic terms using the equation (2.2), due to Corollary 3 and Lemma 11, we
obtain that Λ(k) converges to the limit

Λ :=

∫
Γ
f · u0dx′ −

∫
Ω
C3De(u0) · e(u0)dx−

∫
Γ
Ae′(u0) · e′(u0)dx′

− 1

12

∫
Γ
CfefP · efPdx′ −

∫
γ
MemR · emRdx1 −

∫
γ
HefR · efRdx1.

(4.5)

It is clear that Λ ≥ 0 as the limit of a nonnegative sequence. In all cases that follow the obtained
limit model implies that the limit Λ is equal to zero. It will imply that some or all efP , e

m
R , e

f
R are

zero and that all convergences in (4.1) are strong. Also, since the limit problems are the same as
obtained in previous section, for which we proved uniqueness of solutions, the whole ε-families will
converge to the same limit.

4.1 The case q < 2

We take arbitrary (v, w̃) ∈ V3d−2d−1d with w̃ = 0 and let ε tends to zero. From Lemma 11 we obtain
the limit model: find u0 ∈ V I such that∫

Ω
C3De(u0) · e(v)dx+

∫
Γ
Ae′(u0) · e′(v)dx′ =

∫
Γ
f · vdx′ (4.6)

that holds for all v ∈ V I due to density.
From (4.5) and (4.6) Λ = 0, and thus all efP , e

m
R , e

f
R are equal to zero. Furthermore the strong

convergences in (4.1) hold.

4.2 The case q = 2

Componentwise the fourth convergence in (4.1) is given by

∂1u
εk
1 ⇀ (emR )1, ∂1u

εk
2 − ω̃εk

3 ⇀ (emR )2, ∂1u
εk
3 + ω̃εk

2 ⇀ (emR )3,
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all weakly in L2(γ). Since from Lemma 11 we know that uεk1 ⇀ u01 weakly in L2(γ) we can identify
the limit (emR )1 = ∂1u

0
1 and thus ∂1u

εk
1 → ∂1u

0
1 in L2(γ). Therefore, the limit u0 belongs to V II .

Now let us take an arbitrary w̃ ∈ H1(Γ;R3) ∩ H1(γ;R3) and v = 0 in (2.2) and let ε tends to
zero. We obtain ∫

Γ
CmemP · (Aw̃) dx′ +

∫
γ
MemR ·

[
e1 × w̃

]
dx1 = 0,

which due to (4.4) in fact implies ∫
γ
MemR ·

[
e1 × w̃

]
dx1 = 0

for arbitrary w̃ ∈ L2(γ;R3) (by density). This implies (emR )2 = (emR )3 = 0. Now we take arbitrary
(v, w̃) ∈ V3d−2d−1d with w̃ = 0 and let ε→ 0, to obtain the model: find u0 ∈ V II such that∫

Ω
C3De(u0) · e(v)dx+

∫
Γ
Ae′(u0) · e′(v)dx′ +

∫
γ
Erod∂1u

0
1 · ∂1v1 =

∫
Γ
f · vdx′ (4.7)

for all v ∈ V II (again by density).
From above we have

emR =

∂1u010
0

 ,
then from (4.5) and (4.7) Λ = 0, and thus efP , e

f
R are equal to zero and the strong convergences in

(4.1) hold.

4.3 The case 2 < q < 4

From the fourth convergence in (4.1) we additionally conclude ∂1u
εk
1 → 0 strongly in L2(γ). Thus

∂1u
0
1 = 0, so the limit u0 belongs to V III .
By taking arbitrary test function (v, w̃) ∈ V3d−2d−1d with w̃ = 0 and ∂1v1 = 0 on γ, we obtain

the model: find u0 ∈ V III such that∫
Ω
C3De(u0) · e(v)dx+

∫
Γ
Ae′(u0) · e′(v)dx′ =

∫
Γ
f · vdx′, v ∈ V III . (4.8)

From (4.5) and (4.8) Λ = 0, and thus all efP , e
m
R , e

f
R are equal to zero and the strong convergences

in (4.1) hold.

4.4 The case q = 4

The components of the last convergence in (4.1) are

∂1ω̃
εk
1 ⇀ (efR)1, ∂1ω̃

εk
2 ⇀ (efR)2, ∂1ω̃

εk
3 ⇀ (efR)3,

all weakly in L2(γ). From Lemma 11 we know that uεk2 ⇀ u02 in L2(γ), so ∂1u
εk
2 ⇀ ∂1u

0
2 in H−1(γ).

Then the fourth convergence in (4.1), ∂1u
εk
2 −ω̃εk

3 → 0 strongly in L2(γ), implies that ω̃εk
3 ⇀ ω̃0

3 = ∂1u
0
2

weakly in H−1(γ;R3). Then we can identify (efR)3 = ∂1ω̃
0
3 = ∂11u

0
2 from ∂1ω̃

εk
3 ⇀ (efR)3 weakly in

L2(γ) and, by two applications of the Lions lemma, conclude that ω̃0
3 ∈ H1(γ) and that ω̃εk

3 ⇀ ω̃0
3

in H1(γ). Now since ∂1u
0
2 = ω̃0

3 ∈ H1(γ) we also obtain u02 ∈ H2(γ), uεk2 → u02 in H1(γ) and
∂1ω̃

εk
3 ⇀ ∂11u

0
2 in L2(γ). Thus, the limit u0 belongs to V IV .

Let (v, w̃) ∈ V3d−2d−1d be an arbitrary test function such that ∂1v + e1 × w̃ = 0 on γ. More
precisely let:

v ∈ H1(Ω;R3) ∩H1(Γ;R3) ∩H2(γ;R3), w̃ ∈ H1(Γ;R3) ∩H1(γ;R3),

∂1v1 = 0, ∂1v2 − w̃3 = 0, ∂1v3 + w̃2 = 0 on γ.
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By letting ε→ 0 we obtain∫
Ω
C3De(u0) · e(v)dx+

∫
Γ
CmemP · (∇v +Aw̃) dx′

+

∫
γ
h11(e

f
R)1 · ∂1w̃1 − h22(e

f
R)2 · ∂11v3 + h33∂11u

0
2 · ∂11v2dx1 =

∫
Γ
f · vdx′.

(4.9)

By choosing v = 0, w̃2 = w̃3 = 0, and by (4.4), we obtain∫
γ
h11(e

f
R)1 · ∂1w̃1dx1 = 0.

Since w̃1 can be arbitrary function from H1(γ;R3), we obtain (efR)1 = 0. Let us now choose test
functions such that v1 = v2 = 0, w̃1 = w̃3 = 0. We obtain∫

Ω
C3De(u0) · e(v3e3)dx−

∫
γ
h22(e

f
R)2 · ∂11v3dx1 =

∫
Γ
f3v3dx

′. (4.10)

Let ν ∈ H1(Ω) be arbitrary. Since γ is of capacity zero in Ω, by [12, Theorem 2.44] there exists a
sequence (νn)n ⊂ H1(Ω) with νn = 0 on γ such that strongly converges to ν in H1(Ω). In (4.10) we
insert v3 = νn and let n tends to infinity. In the limit we obtain∫

Ω
C3De(u0) · e(νe3)dx =

∫
Γ
f3νdx

′,

for all ν ∈ H1(Ω). Consequently, from (4.10) we obtain∫
γ
h22(e

f
R)2 · ∂11v3dx1 = 0

for all v3 ∈ H2(γ). Thus (efR)2 = 0. From (4.9) we conclude that the limit u0 ∈ V IV satisfies∫
Ω
C3De(u0) · e(v)dx+

∫
Γ
Ae′(u0) · e′(v)dx′ +

∫
γ
h33∂11u

0
2 · ∂11v2dx1 =

∫
Γ
f · vdx′ (4.11)

for all v ∈ H1(Ω;R3)∩H1(Γ;R3)∩H2(γ;R3) with ∂1v1 = 0 on γ. By density argument, the equation
is satisfied for all v ∈ V IV as well.

From above we have

efR =

 0
0

∂11u
0
2

 ,
then from (4.5) and (4.11) Λ = 0, and thus efP , e

m
R are equal to zero and the strong convergences in

(4.1) hold.

4.5 The case q > 4

From the last convergence in (4.1) we additionally conclude

∂1ω̃
εk
1 → 0, ∂1ω̃

εk
2 → 0, ∂1ω̃

εk
3 → 0,

all strongly in L2(γ).
By differentiating conclusions from the case q = 4, we obtain ∂11u

0
2 = 0 on γ, thus the limit

belongs to V V .
For arbitrary ν ∈ H1(Ω), by [12, Theorem 2.44] there again exists a sequence (νn)n ⊂ H1(Ω)

with νn = 0 on γ such that strongly converges to ν in H1(Ω). For test functions (v, w̃) = (νne3, 0)
in (2.2) we let n to infinity and obtain∫

Ω
C3De(u0) · e(νe3)dx =

∫
Γ
f3νdx

′.
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Now we choose test functions v ∈ H1(Ω;R3)∩H1(Γ;R3)∩H2(γ;R3), such that v3 = 0 on Ω, ∂1v1 = 0,
∂11v2 = 0 and w̃ = ∂1v2e3 on γ. Then ∂1v2 is a constant and w̃ = (0, 0, ∂1v2) ∈ H1(Γ;R3). We
obtain ∫

Ω
C3De(u0) · e(v1e1 + v2e2)dx+

∫
Γ
Ae′(u0) · e′(v1e1 + v2e2)dx

′ =

∫
Γ
f1v1 + f2v2dx

′.

By summing up last two equations and by density, we obtain the model: find u0 ∈ V V such that for
all v ∈ V V ∫

Ω
C3De(u0) · e(v)dx+

∫
Γ
Ae′(u0) · e′(v)dx′ =

∫
Γ
f · vdx′. (4.12)

From (4.5) and (4.12) Λ = 0, and thus all efP , e
m
R , e

f
R are equal to zero and the strong convergences

in (4.1) hold.

4.6 Additional claims

Let us prove last three claims from the Theorem 10.
For q ≥ 2, the fourth claim from (4.2) implies that ∂1u

ε
1 converges strongly in L2(γ). Together

with the seventh claim from (4.2) we obtain that uε1 → u01 strongly in H1(γ).
For q > 2, the fourth claim from (4.2) implies that ∂1ũ

ε
2 − ω̃ε

3 → 0 strongly in L2(γ). After
differentiating seventh claim from (4.2) we have ∂1u

ε
2 → ∂1u

0
2 strongly in H−1(γ). By combining

these two results we obtain ω̃ε
3 → ∂1u

0
2 strongly in H−1(γ).

For q ≥ 4, the fifth claim from (4.2) implies that ∂1ω̃
ε
3 converges strongly in L2(γ). Together

with the result from above for q > 2, after applying Lions lemma several times we obtain ω̃ε
3 → ∂1u

0
2

strongly in H1(γ).
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