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Abstract

This paper is concerned with nonlinear stability of rarefaction wave to the Cauchy problem for a blood flow model, which

describes the motion of blood through axi-symmetric compliant vessels. Inspired by the stability analysis of classical $p$-

system, we show the solution of this typical model tends time-asymptotically toward the rarefaction wave under some suitably

small conditions and there are more difficulties in the proof due to the appearance of strong nonlinear terms including second-

order derivative of $v$ with respect to the spatial variable $x$. The main result is proved by employing the elementary $Lˆ2$
energy methods. This is the first result about nonlinear stability of some nontrivial profiles (i.e., non-constant function patterns)

for the blood flow model.
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1 Introduction

1.1 The problem

In this paper, we consider the following one-dimensional blood flow model in a network of

vessels with viscoelastic walls (see [5, 23]):
At +mx = 0, x ∈ R, t > 0,

mt +

(
m2

A

)
x

+
A

ρ
Px = −kf

m

A
.

(1.1)

Here A(x, t) denotes the cross-sectional area of the vessel; m(x, t) = A(x, t)u(x, t) represents

the flow rate of the blood, where u(x, t) denotes the averaged axial velocity hx(x, r, t) across

∗Corresponding author.

E-mail addresses: majwei@mail.scut.edu.cn (Wei), mayaohch@mail.scut.edu.cn (Yao), machjzhu@scut.edu.cn (Zhu).
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the cross-section of the vessel of radius R(x, t):

u(x, t) =
1

R2(x, t)

∫ R(x,t)

0

2rhx(x, r, t) dr.

The fluid density ρ > 0 is assumed to be constant. kf ≥ 0 is the friction coefficient per unit

length. Moreover, P (x, t) denotes the average internal pressure over a cross section. That

is where the distensibility of the blood vessels comes into play. To close the system we need

a constitutive law connecting the pressure P to the cross-sectional area A. Generally, the

pressure law can be specified by:

P = G0

((
A

Ar

)α1
2

− 1

)
+ α2

(
Pext +

ι

Ar
(
√
A)t

)
. (1.2)

Here the constants in (1.2) have some biological implications. For example, G0 > 0 describes

the stiffness of the vessel wall; Ar > 0 denotes the reference cross-sectional area; Pext > 0 is

the constant external pressure; ι > 0 is the viscoelastic coefficient depending on the thickness

of the vessel. Furthermore, the coefficient α1 > 0 reflects stress-strain response of the vessel

radius and α2 ≥ 0 represents the different weight on influence of (Pext + (ι/Ar)(
√
A)t).

It is well known that the blood flow model can be used to describe many complex phys-

iological phenomena related to human vascular system. Due to rich phenomena in actual

physiological applications, the presence of strong nonlinearities in the mathematical model, a

lot of physiological and mathematical researchers are attracted to study on this subject. In

particular, when the coefficients α1 and α2 in (1.2) take different values, the system (1.1) occurs

different forms. For example, in the Kelvin-Voigt blood flow model, the pressure is given by

(see [23, 24])

P =
β√
Ar

((
A

Ar

) 1
2

− 1

)
+ Pext +

ι

Ar
(
√
A)t, (1.3)

which is the case that α1 = α2 = 1 and G0 = β/
√
Ar in (1.2). Here β is a positive constant

related to the vessel stiffness. In this case, the diffusive effect induced by the viscous term

makes the system of hyperbolic/parabolic nature. In fact, as pointed out by the authors in

[23], for the Kelvin-Voigt blood flow model, even if the hyperbolic nature of this system is

dominant, because the viscous term is small compared to other terms, this additional viscous

term plays an important role in numerical simulations [29], in estimation problems [6], and

when data coming from numerical models are compared with in vivo data [2]. The authors

in [1] also observed this phenomenon. As the blood pressure and vessel deformation are often

overestimated by 1-D elastic models (see [32]), the incorporation of viscoelastic tube laws allows

more physiological predictions than those obtained with elastic laws. We can also see that most

of the mathematical researches for the model with pressure (1.3) focus on numerical simulation

(see [7, 28]), but there are few rigorous mathematical analysis conclusions.

On the other hand, to include the fact that the vessel radius changes slower at higher

pressures (non-linear response) taking α1 > 1 and α2 = 0 in (1.2), then the pressure is expressed
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by the following formula (see [5]):

P = G0

((
A

Ar

)α1
2

− 1

)
, (1.4)

where α1 > 1 describes non-linear stress-strain response. The model with pressure (1.4) can

be derived from the 3-D Navier-Stokes equations which describe the motion of the viscous,

incompressible, Newtonian fluid flow in a cylindrical tube (see [4]). And the rationality of this

approximation was analysised by Čanić in [3]. Moreover, Čanić in [5] gave a new derivation

of the blood flow model where the pressure term is given by (1.4). He also definitely pointed

out that the viscous damping term on the right-hand side of the momentum equation (1.1)2 is

one order of magnitude smaller than the rest of the system. In other words, the damping term

in the blood flow model has little effect in practical application. From this perspective, Čanić

established a global existence theorem of the general 2× 2 hyperbolic conservation law system

and employed it to study the global existence of solution and shock formation for the blood flow

model without viscous damping term. Finally, some numerical simulations were used to verify

that the analysis of the first shock formation based on the zero viscous damping term provides

a good estimate for the first shock formation in (1.1). The authors in [17] studied the Cauchy

problem of the equations (1.1) and investigated the influence of the damping term kfm/A on

the solution. Recently, Li-Zhao in [18] studied the initial-boundary value problem on bounded

domains for the blood flow model with pressure (1.4) and showed that the L∞ entropy weak

solution exists globally in time when the initial value are large. Moreover, they also proved

that as time goes to infinity, the entropy solution converges to a constant equilibrium state

exponentially. Later Li-Zhao in [19] studied the same type of asymptotic states of smooth

solutions with smooth enough initial data close to a constant equilibrium state.

Motivated by the papers [23] and [5], we will consider the model (1.1) with a more general

pressure law than that in (1.3), namely, the pressure P is expressed by (1.2) where α1 > 0

and α2 > 0. On the other hand, the results in [5] obtained using numerical simulations are in

accordance with the non-dimensional analysis which reveals that the viscous damping term is

of one order of magnitude smaller than the remaining terms of the system. Based on Čanić’s

observation, we neglect the viscous damping term kfm/A and mainly investigate the influence

of the viscoelastic term on the solution. To this aim, we reuse the variable u = m/A, and the

model (1.1) can be written as follows:At + (Au)x = 0, x ∈ R, t > 0,

(Au)t +
(
Au2

)
x

+ p(A)x = −λA(
√
A)xt.

(1.5)

Here p(A) = κAγ for κ = (α1G0) /((α1 + 2)ρA
α1/2
r ) and γ = (α1/2) + 1; λ = (α2ι) / (Arρ) > 0.

Without loss of generality, we assume κ = 1. We are interested in the large-time behavior

of solution for the blood flow model (1.5) without vacuum of far field cross-sectional area. It

is more convenient to use the Lagrangian coordinates to explore this problem. Therefore, we
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introduce the Lagrangian coordinate transformation as follows:

(x, t)→ (y, τ) : y =

∫ x

x̄(t)

A(z, t) dz, τ = t,

where x̄(t) satisfies the following integral curve:
dx̄(t)

dt
= u (x̄(t), t) ,

x̄(0) = x̄0.

We still denote the Lagrangian coordinates (y, τ) by (x, t) for simplicity of notation and in-

troduce a new variable v = 1/A. Then (1.5) can be transformed in Lagrangian coordinates

as: 
vt − ux = 0, x ∈ R, t > 0,

ut + p(v)x =
λ

2v

(
v−

1
2

(u
v

)
x

)
x
,

(1.6)

where p(v) = v−γ for γ > 1. We will study the Cauchy problem of the blood flow model (1.6).

The initial data is given by

(v, u)(x, 0) = (v0, u0)(x)→ (v±, u±) as x→ ±∞, (1.7)

where infx∈R v0(x) > 0 and v± > 0. To the best of our knowledge, there are few results

about the large-time behavior of solutions towards some non-constant states, especially wave

patterns for the blood flow model. In this paper, we only focus on the asymptotical stability

of rarefaction wave to the Cauchy problem (1.6)–(1.7) and will give a explicit answer for this

meaningful problem. The main idea is to generalize some known results of the Navier-Stokes

equations, particularly about the global existence and large-time behavior of classical solutions

near hyperbolic elementary waves.

It is well known that the asymptotic behavior of solutions for the compressible Navier-

Stokes equations are well characterized by the Riemann solutions for the corresponding hyper-

bolic part, i.e., the Euler system. And these basic Riemann solutions are dilation invariant

solutions: shock wave, rarefaction wave, contact discontinuity and the linear combinations of

above elementary waves (see [16, 25, 31]). Since the Euler system is an idealization when the

dissipative effects are neglected, it is much more important to study the large-time asymptotic

behavior of solutions for the corresponding viscous system (Navier-Stokes equations) towards

the viscous versions of these elementary waves (see [9]). Indeed, there have been a lot of works

on the asymptotic behaviors of solutions for the Naver-Stokes equations. For example, the

stability results for the rarefaction wave can be found in [15, 22, 27, 26, 30]. The stability

results for the shock wave can be found in [8, 20, 21]. And for the case of contact discontinuity,

readers can see [10, 11, 13]. Moreover, we also refer to [9, 12, 14, 33] for the combination of

two different kinds of wave patterns.

The asymptotic stability of elementary waves (rarefaction wave, shock wave and contact

discontinuity) are especially important topics in the theory of PDEs in connection with fluid
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dynamics, physiological flow, biology, chemistry and other natural sciences. Therefore it is

meaningful and valuable to study the corresponding stability problems for the blood flow

model. In the present paper, we are interested in the asymptotical stability of rarefaction

wave to the Cauchy problem (1.6)–(1.7). Here, we briefly give some remarks on this problem

and review some key analytical techniques. Before our comment, we firstly recall the classical

p-system: 
vt − ux = 0,

ut + p(v)x = λ
(ux
v

)
x
,

where pressure p is a given smooth function of specific volume v satisfying p′(v) < 0 and

p′′(v) > 0. Compared with the result of [26] for the p-system, the nonlinear stability analysis

of rarefaction wave for the blood flow model (1.6) is more complicated. The main difficulty lies

in the appearance of the dissipative term λ(v−
1
2 (u/v)x)x /(2v) in (1.6)2, which consists of the

nonlinear terms including second-order derivative of v with respect to the spatial variable x.

The first trouble term we suffered in the zero-order estimate is
∫ t

0

∫
R λv

− 7
2 ūϕxψx/2 dxdτ .

Indeed, when two spatial derivatives in λ(v−
1
2 (u/v)x)x /(2v) both act on the same v, it will

appear the term −λv− 7
2uvxx/2. Multiplying this term by ψ and calculating integration, one

can obtain the term
∫ t

0

∫
R λv

− 7
2 ūϕxψx/2 dxdτ (see (2.12)). In order to control this nonlinear

bad term by the time-space integrable good term of ψx and ϕx, we require a technical condition

that the upper bound of |ū| (i.e., max{|u±|}) is suitably small. This is an important point in

the zero-order estimate. One can see (2.12) and (2.19) for details simultaneity. So far it is

unclear how to remove such restriction on the stability analysis of the rarefaction wave for the

blood flow model.

Secondly, we obtain the higher estimates (2.2) of ϕx and (2.3) of ψx, which is similar to

ones for the Cauchy problem of p-system but has more difficulties in the proof due to the

appearance of the strong nonlinearity of v. For example, we will encounter some trouble terms

like
∫ t

0

∫
R |ϕx|

3
dxdτ in (2.24) and

∫ t
0

∫
R ϕ

2
x |ψxx| dxdτ in (2.33). To deal with these strong

nonlinear terms we need the smallness of ‖ϕx‖L∞ , which just requires the a priori assumption

that ‖ϕ‖H2 is small. Comparing with the a priori assumption that ‖ϕ‖H1 is small for p-system

(see [26]), in the present manuscript we need to control the space integration term ‖ϕxx‖2

(see Lemma 2.4 for more details). Here we would like to mention that it can not improve

the regularity of ψ to the same Sobolev space L∞((0, t);H2
x(R)) where ϕ lies. In fact, when

deriving the space integration term ‖ψxx‖2, someone will control some strong nonlinear terms

by employing the smallness on ‖ϕ‖H3 instead of ‖ϕ‖H2 . In this way, the regularity of ‖ϕ‖H3

will be one order higher than that of ‖ψ‖H2 .

The rest of the paper is organized as follows. In Subsections 1.2 and 1.3, we construct the

smooth rarefaction wave and state our main result respectively. In Section 2, we construct a

perturbation system and make a priori estimates to prove the main result.

Notation: Throughout this paper, we denote positive constants generally large (respectively,
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generally small) independent of x and t by C (respectively, by c). And the character ‘C’ and

‘c’ may vary from line to line. ‖ · ‖Lq stands the Lq-norm on the Lebesgue space Lq(R) (1 ≤
q ≤ ∞). For the sake of convenience, we always denote ‖ · ‖ = ‖ · ‖L2 . What’s more, Hk will

be used to denote the usual Sobolev space W k,2(R) (k ∈ Z+) with respect to variable x.

1.2 Rarefaction wave and smooth approximate profile

Our purpose is to show that the rarefaction wave solutions for (1.6)–(1.7) are nonlinearly

stable. For rarefaction wave, the term with second-order derivative in (1.6) decays faster than

the corresponding terms with first-order derivatives. Therefore system (1.6) with the far field

constant states of initial data (1.7) may be replaced, time-asymptotically for rarefaction wave,

by the corresponding hyperbolic system with following Riemann initial data: vt − ux = 0,

ut + p(v)x = 0,
(1.8)

(v, u)(x, 0) = (vr0, u
r
0)(x) =

 (v−, u−), x < 0,

(v+, u+), x > 0.
(1.9)

For any (v−, u−) ∈ R+ × R, the 1-rarefaction curve R1(v−, u−) corresponds to the integral

curve of the first eigenvalue λ1 = −
√
−p′(y), and is defined by

R1(v−, u−) =

(v, u) ∈ R+ × R

∣∣∣∣∣∣∣∣
u = u− +

∫ v

v−

√
−p′(y) dy,

0 < v− < v, u− < u

 .

The 2-rarefaction curve R2(v−, u−) can be defined in the same way from the second eigenvalue

λ2 =
√
−p′(y). One can see [31] for more details. In this paper, we only consider the 1-

rarefaction wave solution, and the case for 2-rarefaction wave can be treated similarly. Hence

the constant states (v±, u±) should satisfy the restriction condition

u+ = u− +

∫ v+

v−

√
−p′(y) dy, 0 < v− < v+. (1.10)

And the Riemann problem (1.8)–(1.9) admits a weak solution of the form (vr, ur)(x/t) as

ur
(x
t

)
= u− +

∫ vr( xt )

v−

√
−p′(y) dy,

λ1

(
vr
(x
t

)
, ur

(x
t

))
=


λ1(v−, u−), x < λ1(v−, u−)t,

x

t
, λ1(v−, u−)t ≤ x ≤ λ1(v+, u+)t,

λ1(v+, u+), λ1(v+, u+)t < x.
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Since the rarefaction wave (vr, ur)(x/t) is not smooth enough, it is convenient to construct its

smooth approximation (v̄, ū)(x, t) called the smooth rarefaction wave as follows (see [26]):
λ1(v̄, ū) = ω(x, 1 + t), λ1 (v±, u±) = ω±,

ū = u− +

∫ v̄

v−

√
−p′(y) dy,

(1.11)

where ω(x, t) is the solution of the following Cauchy problem for the Burgers equation
ωt + ωωx = 0,

ω(x, 0) =
ω+ + ω−

2
+
ω+ − ω−

2
· ex − e−x

ex + e−x
.

(1.12)

And ω(x, t) have the following properties (see [26]):

Lemma 1.1. Set δr = ω+ − ω− for ω− < ω+. Then the Cauchy problem (1.12) has a unique

smooth global solution ω(x, t) satisfying

(1) ωx > 0, ω− < ω(x, t) < ω+ for x ∈ R and t ≥ 0.

(2) For any 1 ≤ q ≤ +∞, there exists a constant C depending only on q such that for any

t > 0,

‖ωx‖Lq ≤ C min{δr, δ
1
q
r t
−1+ 1

q },

‖(ωxx, ωxxx)‖Lq ≤ C min{δr, t−1}.

(3) lim
t→+∞

sup
x∈R
|w(x, t)− wr(x/t)| = 0, where ωr (x/t) is the solution of the Burgers equation

with Riemann initial data w(x, 0) = w−, if x < 0 and w(x, 0) = w+, if x > 0.

It is easy to check that (v̄, ū) satisfies the system (1.8). Hence by the Lemma 1.1 and

(1.11), we can obtain that (v̄, ū) satisfies the following Lemma (cf. [26]).

Lemma 1.2. Let δ = |v+−v−|+ |u+−u−| be the wave strength. Then the smooth approximate

profile (v̄, ū) (x, t) which is defined by (1.11) satisfies the following properties:

(1) 0 < v− < v̄(x, t) < v+, u− < ū(x, t) < u+ for any x ∈ R and t > 0. And there exists a

constant C such that

ūx > 0 and |v̄x| ≤ Cūx.

(2) For any 1 ≤ q ≤ +∞, there exists a constant C which only depends on q such that for any

t > 0 and 0 ≤ α ≤ 1:

‖(v̄x, ūx)‖Lq ≤ C min{δ, δ
1
q (1 + t)−1+ 1

q },

‖(v̄xx, ūxx)‖Lq ≤ C min{δ, (1 + t)−1} ≤ Cδα(1 + t)−(1−α),

‖(v̄xxx, ūxxx)‖Lq ≤ C min{δ, (1 + t)−1} ≤ Cδα(1 + t)−(1−α).

(3)

lim
t→+∞

sup
x∈R
|(v̄, ū)(x, t)− (vr, ur)(x/t)| = 0. (1.13)

7



1.3 Main result

The main purpose of this paper is to show that the solution (v, u) of the Cauchy problem

(1.6)–(1.7) tends toward the rarefaction wave (vr, ur) constructed in Subsection 1.2, provided

the initial data (v0, u0)(x) is suitably close to (vr0, u
r
0)(x). The main result is stated in the

following theorem.

Theorem 1.1. Suppose the initial data and the far-field data satisfy (1.7) and (1.10). There

exist sufficiently small positive constants δ1, C̄ and ε which are independent of T , such that if

0 < δ < δ1, 0 < max{|u±|} < C̄ and the initial data satisfies

‖v0(x)− v̄(x, 0)‖H2 + ‖u0(x)− ū(x, 0)‖H1 ≤ ε,

then the Cauchy problem (1.6)–(1.7) exists a unique time-global solution (v, u)(x, t). Moreover,

the solution (v, u)(x, t) tends time-asymptotically to the rarefaction wave in the sense that

lim
t→+∞

sup
x∈R
|(v, u)(x, t)− (vr, ur)(x, t)| = 0. (1.14)

2 Uniform a priori estimates

We next use the elementary energy method to prove the Theorem 1.1. Define the pertur-

bation as

ϕ = v − v̄, ψ = u− ū.

Then we can easily verify that (ϕ,ψ) satisfies

ϕt − ψx = 0,

ψt + (p(v)− p(v̄))x =
λ

2v

(
v−

1
2

(u
v

)
x

)
x
,

(ϕ0, ψ0)(x) := (ϕ,ψ)(x, 0) = (v0(x)− v̄(x, 0), u0(x)− ū(x, 0)).

(2.1)

For 0 < T < +∞, define the function space X(T ) as

X(T ) =

(ϕ,ψ)

∣∣∣∣∣∣
ϕ ∈ L∞

(
(0, T );H2(R)

)
, ψ ∈ L∞

(
(0, T );H1(R)

)
(ϕx, ψx) ∈ L2

(
(0, T );H1(R)

)
 .

The global existence of solutions to the Cauchy problem (2.1) can be obtained by the

classical continuation argument based on the local existence of solutions and a priori estimates.

And the local existence can be established by the standard iteration argument. In order to

prove Theorem 1.1 for brevity, we only devote ourselves to establishing the global-in-time a

priori estimates as follows.

Proposition 2.1. Suppose all the conditions in Theorem 1.1 hold. Let (ϕ,ψ) ∈ X(T ) be a

solution to the Cauchy problem (2.1) on 0 < t < T for T > 0. There exist some small positive

constants C̄, δ0 and ε0 such that if max{|u±|} < C̄, δ < δ0 and

sup
0≤t≤T

(‖ϕ‖H2 + ‖ψ‖H1) ≤ ε0, (2.2)

8



then (ϕ,ψ)(x, t) satisfies

sup
0≤t≤T

(
‖ϕ‖2H2 + ‖ψ‖2H1

)
+

∫ T

0

‖ (ϕx, ψx) ‖2H1 dτ ≤ C
(
‖ϕ0‖2H2 + ‖ψ0‖2H1

)
+ Cδ

1
6 . (2.3)

By using the a priori assumption (2.2) and the following Sobolev inequality

‖f‖L∞ ≤
√

2‖f‖ 1
2 ‖fx‖

1
2 , for f(x) ∈ H1(R), (2.4)

we can directly get

‖(ϕ,ϕx, ψ)‖L∞ ≤
√

2ε0, (2.5)

which will be frequently used in the sequel.

Once Proposition 2.1 is proved, someone can close the a priori assumption (2.2). Moreover,

for 0 < max{|u±|} < C̄, the estimate (2.3) and the equations (2.1) imply that∫ +∞

0

[
‖ (ϕx, ψx) (t)‖2 +

∣∣∣∣ d

dt
‖ (ϕx, ψx) (t)‖2

∣∣∣∣]dt < +∞,

which easily leads to

lim
t→+∞

‖ (ϕx, ψx) (t)‖ = 0.

Then by using the Sobolev inequality (2.4) and the estimate (2.3), together with (1.13), we

can state the asymptotic behavior (1.14) of the solution to the problem (1.6)–(1.7).

Proposition 2.1 can be proved by the subsequent four lemmas. Here we first give the

zero-order energy estimates.

Lemma 2.1. Suppose all the conditions in Proposition 2.1 are true and denote ξ := max{|u±|}.
Then for all 0 < t < T , there exists a constant C̄ depending only on v±, λ and γ such that if

0 < ξ < C̄, the following energy estimate holds:

‖(ϕ,ψ)‖2 +

∫ t

0

∫
R
ūxϕ

2 dxdτ +

∫ t

0

‖ψx‖2 dτ

≤ Cδ 1
6 + C‖(ϕ0, ψ0)‖2 + C(ε

1
2
0 + ξ)

∫ t

0

‖ϕx‖2 dτ. (2.6)

Proof. Inspired by the work of the p-system in [26], we define the relative entropy function:

η(x, t) =
1

2
ψ2 −

∫ v

v̄

p(s) ds+ p(v̄)ϕ.

Then taking the derivative of η(x, t) with respect to t, and integrating the resulting equality

with respect to x on R gives

d

dt

∫
R
η(x, t) dx+

∫
R
ūx [p(v)− p(v̄)− p′(v̄)ϕ] dx =

∫
R

λ

2v

(
v−

1
2

(u
v

)
x

)
x
ψ dx. (2.7)

In order to get the time-space integrable good term of ψx, we expand the last term of (2.7) as:∫
R

λ

2v

(
v−

1
2

(u
v

)
x

)
x
ψ dx =

∫
R

λ

2v

(
v−

1
2

(ux
v
− uvx

v2

))
x
ψ dx

9



=

∫
R

[
λ

2
v−

3
2

(ux
v

)
x
− 3

4
λv−

7
2uxvx −

λ

2
v−

7
2uvxx +

5

4
λv−

9
2uv2

x

]
ψ dx

=

∫
R

λ

2
v−

3
2

(
ψx
v

)
x

ψ dx+

∫
R

[
λ

2
v−

3
2

( ūx
v

)
x
− 3

4
λv−

7
2uxvx −

λ

2
v−

7
2uvxx +

5

4
λv−

9
2uv2

x

]
ψ dx

= −λ
2

∫
R
v−

5
2ψ2

x dx+
3

4
λ

∫
R
v−

7
2ψψxvx dx+

∫
R

λ

2
v−

3
2

( ūx
v

)
x
ψ dx

−
∫
R

3

4
λv−

7
2uxvxψ dx−

∫
R

λ

2
v−

7
2uvxxψ dx+

∫
R

5

4
λv−

9
2uv2

xψ dx

=: −λ
2

∫
R
v−

5
2ψ2

x dx+
5∑
i=1

Ii. (2.8)

By putting (2.8) into (2.7), one can get

d

dt

∫
R
η dx+

∫
R
ūx [p(v)− p(v̄)− p′(v̄)ϕ] dx+

λ

2

∫
R
v−

5
2ψ2

x dx =
5∑
i=1

Ii. (2.9)

Next we estimate the terms on the right-hand side of (2.9) one by one. By applying the

Sobolev inequality (2.4), the a priori assumption (2.2) and the decay property of (v̄x, ūx) in

Lemma 1.2, together with the Hölder and the Cauchy inequalities, one can deduce

I1 + I3 =
3

4
λ

∫
R
v−

7
2ψψxvx dx− 3

4
λ

∫
R
v−

7
2uxvxψ dx = −3

4
λ

∫
R
v−

7
2ψvxūx dx

≤ C

∫
R

(|ψϕxūx|+ |ψv̄xūx|) dx

≤ C‖ψ‖ 1
2 ‖ψx‖

1
2 ‖ϕx‖‖ūx‖+ C‖ψ‖ 1

2 ‖ψx‖
1
2 ‖v̄x‖‖ūx‖

≤ Cε
1
2
0

(
‖ψx‖2 + ‖ϕx‖2

)
+ Cδ

4
3 (1 + t)−

4
3 , (2.10)

I2 =
λ

2

∫
R
v−

3
2

( ūx
v

)
x
ψ dx =

λ

2

∫
R
v−

3
2

(
v−1ūxx − v−2ūxvx

)
ψ dx

=
λ

2

∫
R
v−

5
2 ūxxψ dx− λ

2

∫
R
v−

7
2 ūx(ϕx + v̄x)ψ dx

≤ C
∫
R

(|ūxxψ|+ |ψūxϕx|+ |ψūxv̄x|) dx

≤ C‖ψ‖ 1
2 ‖ψx‖

1
2 (‖ūxx‖L1 + ‖ϕx‖‖ūx‖+ ‖ūx‖‖v̄x‖)

≤ Cε
1
2
0

(
‖ψx‖2 + ‖ϕx‖2

)
+ Cδ

1
6 (1 + t)−

7
6 , (2.11)

I4 = −λ
2

∫
R
v−

7
2uvxxψ dx = −λ

2

∫
R
v−

7
2uv̄xxψ dx− λ

2

∫
R
v−

7
2uϕxxψ dx

= −λ
2

∫
R
v−

7
2uv̄xxψ dx+

λ

2

∫
R
v−

7
2uϕxψx dx

10



+
λ

2

∫
R
v−

7
2uxϕxψ dx− 7

4
λ

∫
R
v−

9
2uϕxψvx dx

= −λ
2

∫
R
v−

7
2 (ψ + ū)v̄xxψ dx+

λ

2

∫
R
v−

7
2 (ψ + ū)ϕxψx dx

+
λ

2

∫
R
v−

7
2 (ψx + ūx)ϕxψ dx− 7

4
λ

∫
R
v−

9
2 (ψ + ū)ϕxψ(ϕx + v̄x) dx

≤ C
∫
R

(
|ψ2v̄xx|+ |ūψv̄xx|+ |ψϕxψx|+ |ūϕxψx|+ |ūxϕxψ|

+ |ψ2v̄xϕx|+ |ψ2ϕ2
x|+ |ūv̄xϕxψ|+ |ūϕ2

xψ|
)

dx

≤ C(ε
1
2
0 + ξ)

(
‖ϕx‖2 + ‖ψx‖2

)
+ Cδ

1
6 (1 + t)−

7
6 (2.12)

and

I5 =
5

4
λ

∫
R
v−

9
2uv2

xψ dx =
5

4
λ

∫
R
v−

9
2 (ψ + ū)(ϕx + v̄x)2ψ dx

≤
∫
R

(
|ψ2ϕ2

x|+ |ψ2v̄2
x|+ |ūϕ2

xψ|+ |ūv̄2
xψ|
)

dx

≤ Cε
1
2
0

(
‖ψx‖2 + ‖ϕx‖2

)
+ Cδ

4
3 (1 + t)−

4
3 , (2.13)

where ξ = max{|u±|} is the upper bound of |ū|. By substituting the estimates (2.10)–(2.13)

into (2.9) and first taking ξ then ε0, δ suitably small, one can get

d

dt

∫
R
η dx+

∫
R
ūx [p(v)− p(v̄)− p′(v̄)ϕ] dx+ c‖ψx‖2

≤ C(ε
1
2
0 + ξ)‖ϕx‖2 + Cδ

1
6 (1 + t)−

7
6 . (2.14)

In addition, the Taylor expansion implies the following equivalence relation:

η(x, t) ∼
(
ϕ2 + ψ2

)
, p(v)− p(v̄)− p′(v̄)ϕ ∼ ϕ2. (2.15)

Thus after integrating the inequality (2.14) with respect to t and employing (2.15), one can

arrive at (2.6). This completes the proof of Lemma 2.1.

Lemma 2.2. Suppose all the conditions in Proposition 2.1 are true. Then for all 0 < t < T ,

there exists a constant C̄ depending only on v±, λ and γ such that if 0 < ξ < C̄, the following

energy estimate holds:

‖ϕx‖2 +

∫ t

0

‖ϕx‖2 dτ +

∫ t

0

∫
R
ūxϕ

2
x dxdτ ≤ Cδ 1

6 + C
(
‖ϕ0‖2H1 + ‖ψ0‖2

)
. (2.16)

Proof. Motivated by the work of the p-system in [26], we firstly rewrite the form of the equation

(2.1)2. Due to (ux
v

)
x

=
(vt
v

)
x

= (ln v)tx =
(vx
v

)
t

=
(ϕx
v

)
t

+
( v̄x
v

)
t
,

11



and recalling (2.8), one has

λ

2v

(
v−

1
2

(u
v

)
x

)
x

=
λ

2
v−

3
2

(ux
v

)
x

+

(
−3

4
λv−

7
2uxvx −

λ

2
v−

7
2uvxx +

5

4
λv−

9
2uv2

x

)
︸ ︷︷ ︸

J

=
λ

2
v−

3
2

(ϕx
v

)
t

+
λ

2
v−

3
2

( v̄x
v

)
t

+ J.

Thus the equation (2.1)2 can be rewritten as

λ

2
v−

3
2

(ϕx
v

)
t
− p′(v)ϕx = ψt + (p′(v)− p′(v̄)) v̄x −

λ

2
v−

3
2

( v̄x
v

)
t
− J. (2.17)

Multiplying the equation (2.17) by ϕx/v and integrating it with respect to x on R, one can get

λ

4

d

dt

∫
R
v−

7
2ϕ2

x dx−
∫
R
p′(v)v−1ϕ2

x dx

=

∫
R
v−1ψtϕx dx+

∫
R
(p′(v)− p′(v̄))v̄xv

−1ϕx dx− λ

2

∫
R
v−

3
2

( v̄x
v

)
t

ϕx
v

dx

+

∫
R

3

4
λv−

9
2uxvxϕx dx+

∫
R

λ

2
v−

9
2uvxxϕx dx−

∫
R

5

4
λv−

11
2 uv2

xϕx dx

− 3

8
λ

∫
R
v−

9
2ϕ2

xux dx =: I6 + I7 + · · ·+ I12. (2.18)

Next we estimate Ii (6 ≤ i ≤ 12) in the equation (2.18) term by term. Similar to the estimation

of the right-hand side terms in (2.9), by applying the decay properties in Lemma 1.2, the

Sobolev inequality and (2.5), one can obtain that:

I6 =

∫
R
v−1ψtϕx dx =

∫
R

(
v−1ψϕx

)
t

dx−
∫
R
v−1ψϕxt dx+

∫
R
v−2ψϕxvt dx

=

∫
R

(
v−1ψϕx

)
t

dx−
∫
R
v−1ψψxx dx+

∫
R
v−2ψϕxux dx

=

∫
R

(
v−1ψϕx

)
t

dx+

∫
R
v−1ψ2

x dx−
∫
R
v−2vxψψx dx+

∫
R
v−2ψϕxux dx

≤
∫
R

(
v−1ψϕx

)
t

dx+ C‖ψx‖2 + Cε
1
2
0 ‖ϕx‖2 + Cδ2(1 + t)−2, (2.19)

I7 =

∫
R
(p′(v)− p′(v̄))v̄xv

−1ϕx dx ≤ C

∫
R
|ϕv̄xϕx|dx

≤ C‖ϕ‖ 1
2 ‖ϕx‖

3
2 ‖v̄x‖ ≤ Cε

1
2
0 ‖ϕx‖2 + Cδ2(1 + t)−2, (2.20)

I8 = −λ
2

∫
R
v−

3
2

( v̄x
v

)
t

ϕx
v

dx = −λ
2

∫
R
v−

5
2ϕx

( v̄xt
v
− v−2v̄xvt

)
dx

= −λ
2

∫
R
v−

5
2ϕx

(
v−1ūxx − v−2v̄xux

)
dx

≤ Cδ 1
4 (‖ϕx‖2 + ‖ψx‖2) + Cδ

1
4 (1 + t)−

3
2 , (2.21)
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I9 =
3

4
λ

∫
R
v−

9
2uxvxϕx dx =

3

4
λ

∫
R
v−

9
2 (ψx + ūx)(ϕx + v̄x)ϕx dx

≤ C(ε0 + δ)(‖ψx‖2 + ‖ϕx‖2) + Cδ
1
2 (‖ϕx‖2 + (1 + t)−3), (2.22)

I10 =
λ

2

∫
R
v−

9
2uvxxϕx dx =

λ

2

∫
R
v−

9
2uϕxxϕx dx+

λ

2

∫
R
v−

9
2uv̄xxϕx dx

= −λ
4

∫
R
v−

9
2uxϕ

2
x dx+

9

8
λ

∫
R
v−

11
2 vxuϕ

2
x dx+

λ

2

∫
R
v−

9
2uv̄xxϕx dx

≤ C(ε0 + δ)(‖ψx‖2 + ‖ϕx‖2) + Cδ
1
4 (‖ϕx‖2 + (1 + t)−

3
2 ), (2.23)

I11 = −5

4
λ

∫
R
v−

11
2 uv2

xϕx dx ≤ C(ε0 + δ
1
2 )‖ϕx‖2 + Cδ

1
2 (1 + t)−3, (2.24)

and

I12 = −3

8
λ

∫
R
v−

9
2ϕ2

xux dx = −3

8
λ

∫
R
v−

9
2ϕ2

xψx dx− 3

8
λ

∫
R
v−

9
2ϕ2

xūx dx

≤ Cε0

(
‖ψx‖2 + ‖ϕx‖2

)
− 3

8
λ

∫
R
v−

9
2ϕ2

xūx dx. (2.25)

By plugging (2.19)–(2.25) into (2.18), then integrating the resulting inequality with respect to

t and employing (2.6), finally choosing ξ, ε0 and δ small enough, one can obtain (2.16).

The proof of Lemma 2.2 is finished.

Lemma 2.3. Suppose all the conditions in Proposition 2.1 are true. Then for all 0 < t < T ,

there exists a constant C̄ depending only on v±, λ and γ such that if 0 < ξ < C̄, the following

energy estimate holds:

‖ψx‖2 +

∫ t

0

‖ψxx‖2 dτ ≤ Cδ 1
6 + C‖(ϕ0, ψ0)‖2H1 + C(ε0 + ξ)

∫ t

0

‖ϕxx‖2 dτ. (2.26)

Proof. Multiplying (2.1)2 by −ψxx and integrating the resulting equality with respect to x

leads to

1

2

d

dt

∫
R
ψ2
x dx+

λ

2

∫
R
v−

5
2ψ2

xx dx

=

∫
R
(p(v)− p(v̄))xψxx dx+

λ

2

∫
R
v−

7
2 vxψxψxx dx− λ

2

∫
R
v−

3
2

( ūx
v

)
x
ψxx dx

+
3

4
λ

∫
R
v−

7
2uxvxψxx dx+

λ

2

∫
R
v−

7
2uvxxψxx dx− 5

4
λ

∫
R
v−

9
2uv2

xψxx dx

=: I13 + I14 + · · ·+ I18. (2.27)

Applying (2.5), the Sobolev inequality, the Hölder inequality, the Cauchy inequality with small

parameter σ and integration by parts, together with Lemma 1.2 yields that

I13 =

∫
R
(p(v)− p(v̄))xψxx dx =

∫
R

[p′(v)ϕxψxx + (p′(v)− p′(v̄))v̄xψxx] dx

13



≤ C
∫
R

(|ϕxψxx|+ |ϕv̄xψxx|) dx

≤ C‖ϕx‖‖ψxx‖+ C‖ϕ‖ 1
2 ‖ϕx‖

1
2 ‖v̄x‖‖ψxx‖

≤ C(σ + ε
1
2
0 )‖ψxx‖2 + Cσ‖ϕx‖2 + Cδ2(1 + t)−2, (2.28)

I14 =
λ

2

∫
R
v−

7
2 vxψxψxx dx =

λ

2

∫
R
v−

7
2 (ϕx + v̄x)ψxψxx dx

≤ C(ε0 + δ)(‖ψx‖2 + ‖ψxx‖2), (2.29)

I15 = −λ
2

∫
R
v−

3
2

( ūx
v

)
x
ψxx dx

= −λ
2

∫
R

(
v−

5
2 ūxxψxx − v−

7
2 ūxvxψx

)
dx

≤ C
∫
R
(|ūxxψxx|+ |ūxϕxψxx|+ |ūxv̄xψxx|) dx

≤ C‖ūxx‖‖ψxx‖+ C‖ūx‖L∞‖ϕx‖‖ψxx‖+ C‖ψxx‖‖ūx‖2L4

≤ Cδ 1
4 (‖ϕx‖2 + ‖ψxx‖2) + Cδ

1
4 (1 + t)−

3
2 , (2.30)

I16 =
3

4
λ

∫
R
v−

7
2uxvxψxx dx

≤ C(ε0 + δ
1
2 )(‖ϕx‖2 + ‖ψx‖2 + ‖ψxx‖2) + Cδ

1
2 (1 + t)−3, (2.31)

I17 =
λ

2

∫
R
v−

7
2uvxxψxx dx

≤ C(ε0 + ξ)(‖ϕxx‖2 + ‖ψxx‖2) + Cδ
1
4 (‖ψxx‖2 + (1 + t)−

3
2 ), (2.32)

and

I18 = −5

4
λ

∫
R
v−

9
2uv2

xψxx dx

≤ Cε0(‖ϕxx‖2 + ‖ψxx‖2 + ‖ϕx‖2) + Cδ
1
2 (‖ψxx‖2 + (1 + t)−3), (2.33)

where σ in (2.28) is a suitably small positive constant which is arising from the Cauchy in-

equality.

By substituting (2.28)–(2.33) into (2.27), then integrating the resulting inequality with

respect to t and choosing first σ then ξ, ε0, δ suitably small; together with (2.6) and (2.16),

one can reach (2.26). This completes the proof of this Lemma 2.3.
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Lemma 2.4. Suppose all the conditions in Proposition 2.1 are true. Then for all 0 < t < T ,

there exists a constant C̄ depending only on v±, λ and γ such that if 0 < ξ < C̄, the following

energy estimate holds:

‖ϕxx‖2 +

∫ t

0

‖ϕxx‖2 dτ ≤ Cδ 1
6 + C

(
‖ϕ0‖2H2 + ‖ψ0‖2H1

)
. (2.34)

Proof. Taking the derivative of the equation (2.17) with respect to x and multiplying it by

ϕxx/v, then integrating the result with respect to x on R, one can get

λ

4

d

dt

∫
R
v−

7
2ϕ2

xx dx−
∫
R
p′(v)v−1ϕ2

xx dx

= −3

8
λ

∫
R
v−

9
2 vtϕ

2
xx dx+

λ

2

∫
R
v−

5
2

(ϕxvx
v2

)
t
ϕxx dx− 3

4
λ

∫
R
v−

7
2 vx

(ϕx
v

)
t
ϕxx dx

− λ

2

∫
R

[
v−

3
2

( v̄x
v

)
t

]
x

ϕxx
v

dx+

∫
R

(
3

4
λv−

7
2uxvx +

λ

2
v−

7
2uvxx −

5

4
λv−

9
2uv2

x

)
x

ϕxx
v

dx

+

∫
R
v−1ϕxxψxt dx+

∫
R
p′(v)xϕx

ϕxx
v

dx+

∫
R

[(p′(v)− p′(v̄))v̄x]x
ϕxx
v

dx

=: I19 + I20 + · · ·+ I26. (2.35)

Similar to the proof of previous lemmas, we will estimate Ii (19 ≤ i ≤ 26) term by term.

Firstly, we have the following estimates:

I19 = −3

8
λ

∫
R
v−

9
2 vtϕ

2
xx dx = −3

8
λ

∫
R
v−

9
2uxϕ

2
xx dx

≤ Cε0(‖ψxx‖2 + ‖ϕxx‖2 + ‖ψx‖2) + Cδ‖ϕxx‖2, (2.36)

I20 =
λ

2

∫
R
v−

5
2

(ϕxvx
v2

)
t
ϕxx dx =

λ

2

∫
R
v−

5
2

(ϕxtvx
v2

+
ϕxvxt
v2
− ϕxvxvt

v3

)
ϕxx dx

=
λ

2

∫
R
v−

5
2

(
ψxxvx
v2

+
ϕxuxx
v2

− ϕxvxux
v3

)
ϕxx dx

≤ C(ε0 + δ)
(
‖ψxx‖2 + ‖ϕxx‖2 + ‖ψx‖2 + ‖ϕx‖2

)
, (2.37)

I21 = −3

4
λ

∫
R
v−

7
2 vx

(ϕx
v

)
t
ϕxx dx = −3

4
λ

∫
R
v−

7
2 vx

(ϕxt
v
− ϕxvt

v2

)
ϕxx dx

= −3

4
λ

∫
R
v−

7
2 vx

(
ψxx
v
− ϕxux

v2

)
ϕxx dx

≤ C(ε0 + δ)
(
‖ψxx‖2 + ‖ϕxx‖2 + ‖ψx‖2 + ‖ϕx‖2

)
, (2.38)

and

I22 = −
∫
R

[
v−

3
2

( v̄x
v

)
t

]
x

ϕxx
v

dx = −λ
2

∫
R

[
v−

3
2

( v̄xt
v
− v̄xvt

v2

)]
x

ϕxx
v

dx
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= −λ
2

∫
R

(
v−

5
2 v̄xxt −

5

2
v−

7
2 vxv̄xt − v−

7
2 v̄xxvt − v−

7
2 v̄xvxt +

7

2
v−

9
2 vxv̄xvt

)
ϕxx
v

dx

= −λ
2

∫
R

(
v−

5
2 ūxxx −

5

2
v−

7
2 vxūxx − v−

7
2 v̄xxux − v−

7
2 v̄xuxx +

7

2
v−

9
2 vxv̄xux

)
ϕxx
v

dx

≤ Cδ 1
4 (1 + t)−

3
2 + Cδ

1
4

(
‖ψxx‖2 + ‖ϕxx‖2 + ‖ψx‖2 + ‖ϕx‖2

)
. (2.39)

Next, we estimate the term I23. Since

I23 =

∫
R

(
3

4
λv−

7
2uxvx +

λ

2
v−

7
2uvxx −

5

4
λv−

9
2uv2

x

)
x

ϕxx
v

dx

= −
∫
R

31

8
λv−

9
2uxv

2
x

ϕxx
v

dx+

∫
R

3

4
λv−

7
2uxxvx

ϕxx
v

dx+

∫
R

5

4
λv−

7
2uxvxx

ϕxx
v

dx

−
∫
R

17

4
λv−

9
2uvxvxx

ϕxx
v

dx+

∫
R

λ

2
v−

7
2uvxxx

ϕxx
v

dx+

∫
R

45

8
λv−

11
2 uv3

x

ϕxx
v

dx

=: J1 + J2 + · · ·+ J6, (2.40)

I23 can be estimated by the following terms:

J1 = −31

8
λ

∫
R
v−

11
2 uxv

2
xϕxx dx ≤ C(ε0 + δ)(‖ϕxx‖2 + ‖ψx‖2 + ‖ϕx‖2) + Cδ(1 + t)−3,

J2 =
3

4
λ

∫
R
v−

9
2uxxvxϕxx dx ≤ C(ε0 + δ)(‖ϕxx‖2 + ‖ψx‖2 + ‖ϕx‖2) + Cδ

1
2 (1 + t)−

3
2 ,

J3 =
5

4
λ

∫
R
v−

9
2uxvxxϕxx dx ≤ C(ε0 + δ)(‖ϕxx‖2 + ‖ψx‖2 + ‖ψxx‖2) + Cδ

1
2 (1 + t)−

3
2 ,

J4 = −17

4
λ

∫
R
v−

11
2 uvxvxxϕxx dx ≤ C(ε0 + δ)(‖ϕxx‖2 + ‖ϕx‖2) + Cδ

1
2 (1 + t)−

3
2 ,

J5 =
λ

2

∫
R
v−

9
2uvxxxϕxx dx =

λ

4

∫
R
v−

9
2u(ϕ2

xx)x dx+
λ

2

∫
R
v−

9
2uvv̄xxxϕxx dx

= −λ
4

∫
R
v−

9
2uxϕ

2
xx dx+

9

8
λ

∫
R
v−

11
2 uvxϕ

2
xx dx+

λ

2

∫
R
v−

9
2uv̄xxxϕxx dx

≤ C(ε0 + δ
1
4 )(‖ϕxx‖2 + ‖ψxx‖2 + ‖ψx‖2) + Cδ

1
4 (1 + t)−

3
2 ,

and

J6 =
45

8
λ

∫
R
v−

13
2 uv3

xϕxx dx =
45

8
λ

∫
R
v−

13
2 u(ϕx + v̄x)3ϕxx dx

≤ C(ε0 + δ)(‖ϕxx‖2 + ‖ϕx‖2) + Cδ(1 + t)−3.

Substituting above estimates into (2.40) gives

I23 ≤ C(ε0 + δ
1
4 )
(
‖ϕxx‖2 + ‖ψxx‖2 + ‖ψx‖2 + ‖ϕx‖2

)
+ Cδ

1
4 (1 + t)−

3
2 . (2.41)

16



In addition, we have the following estimates:

I24 = −
∫
R
v−1ϕxxψxt dx =

∫
R

(
v−1ϕxxψx

)
t

dx−
∫
R
v−1ϕxxtψx dx+

∫
R
v−2ϕxxψxvt dx

=

∫
R

(
v−1ϕxxψx

)
t

dx−
∫
R
v−1ψxxxψx dx+

∫
R
v−2ϕxxψxux dx

=

∫
R

(
v−1ϕxxψx

)
t

dx+

∫
R
v−1ψ2

xx dx−
∫
R
v−2ψxxψxvx dx+

∫
R
v−2ϕxxψxux dx

≤
∫
R

(
v−1ϕxxψx

)
t

dx+ C‖ψxx‖2 + C(ε0 + δ)(‖ψx‖2 + ‖ϕxx‖2), (2.42)

I25 =

∫
R
p′(v)xϕx

ϕxx
v

dx ≤ C(ε0 + δ)(‖ϕx‖2 + ‖ϕxx‖2), (2.43)

and

I26 =

∫
R

[(p′(v)− p′(v̄))v̄x]x
ϕxx
v

dx

=

∫
R
v−1(p′(v)− p′(v̄)v̄xxϕxx dx+

∫
R
v−1 [p′(v)vx − p′(v̄)v̄x] v̄xϕxx dx

=

∫
R
v−1(p′(v)− p′(v̄)v̄xxϕxx dx+

∫
R
v−1p′(v)ϕxv̄xϕxx dx

+

∫
R
v−1(p′(v)− p′(v̄))v̄2

xϕxx dx

≤ C
∫
R
(|ϕv̄xxϕxx|+ |ϕxv̄xϕxx|+ |ϕv̄2

xϕxx|) dx

≤ C(ε0 + δ)
(
‖ϕx‖2 + ‖ϕxx‖2

)
+ Cδ

1
2 (1 + t)−

3
2 . (2.44)

By substituting the estimates (2.36)–(2.39) and (2.41)–(2.44) into (2.35), then integrating

the resulting inequality with respect to t and choosing ε0, δ small enough; together with (2.6),

(2.16), (2.26) and the smallness of ξ, one can arrive at (2.34). The proof of Lemma 2.4 is

finished.

Proof of Proposition 2.1: We combine Lemmas 2.1–2.4, then choose ξ, ε0 and δ small enough

to establish the a priori estimates (2.3). Thus the proof of Proposition 2.1 is completed.
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[28] V. Melicher, V. Gajdoš́ik, A numerical solution of a one-dimensional blood flow-moving

grid approach, J. Comput. Appl. Math., 2015(2008), no.2, 512–520.

[29] L.O. Müller, G. Leugering, P.J. Blanco, Consistent treatment of viscoelastic effects at

junctions in one-dimensional blood flow models, J. Comput. Phys., 314(2016), 167–193.

[30] K. Nishihara, T. Yang, H.J. Zhao, Nonlinear stability of strong rarefaction waves for

compressible Navier-Stokes equations, SIAM J. Math. Anal., 35(2004), 1561–1597.

[31] J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2nd edition, Springer-Verlag,

New York, 1994.

[32] B.N. Steele, J.D. Valdez, M.A. Haider, M.S. Olifsen, Predicting arterial flow and pressure

dynamics using a 1D fluid dynamics model with a viscoelastic wall, SIAM J. Appl. Math.,

71(2011), no.4, 1123–1143.

[33] H.H. Zeng, Stability of a superposition of shock waves with contact discontinuities for

systems of viscous conservation laws, J. Differential Equations, 246(2009), 2081–2102.

20


	Introduction
	The problem
	Rarefaction wave and smooth approximate profile
	Main result

	Uniform a priori estimates
	References

