Si_6C_{18} : A Bispentalene Derivative with Two Planar tetracoordinate Carbons

Diego Inostroza¹, Luis Leyva-Parra¹, Osvaldo Yañez², J. César Cruz³, Jorge Garza-Olguin⁴, Victor Garcia⁵, Venkatesan Thimmakondu⁶, and William Tiznado¹

June 1, 2022

Abstract

Here we show that substituting the ten protons in the dianion of a bispentalene derivative $(C_{18}H_{10}^{2-})$ by six Si^{2+} dications produces a minimum energy structure with two planar tetracoordinate carbons (ptC). In Si_6C_{18} , the ptCs are embedded in the terminal C_5 pentagonal rings and participate in a three-center, two-electron (3c-2e) Si-ptC-Si σ -bond. Our exploration of the potential energy surface identifies a triphenylene derivative as the putative global minimum. But robustness to Born-Oppenheimer molecular dynamics (BOMD) simulations at 900 and 1500 K supports bispentalene derivative kinetic stability. Chemical bonding analysis reveals ten delocalized π -bonds, which, according to Hückel's 4n+2 π -electron rule, would classify it as an aromatic system. Magnetically induced current density analysis reveals the presence of intense local paratropic currents and a weakly global diatropic current, the latter agreeing with the possible global aromatic character of this specie.

Hosted file

manuscript-In-J-Q-Chem-fin.docx available at https://authorea.com/users/486283/articles/571339-si6c18-a-bispentalene-derivative-with-two-planar-tetracoordinate-carbons

¹Universidad Andres Bello

²Universidad de Las Américas

³Universidad Autónoma Metropolitana Iztapalapa

⁴Universidad Autonoma Metropolitana Iztapalapa

⁵Universidad Nacional Mayor de San Marcos

⁶San Diego State University