
P
os

te
d

on
A

u
th

or
ea

10
M

ar
20

22
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
64

68
70

69
.9

14
42

68
5/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Dynamic analysis of the different-types elliptic cylindrical inclusions

subjected to plane SH-wave scattering

Ming Tao1, Hao Luo1, Chengqing Wu2, Wenzhuo Cao3, and Rui Zhao1

1Central South University School of Resources and Safety Engineering
2University of Technology Sydney School of Civil and Environmental Engineering
3Imperial College London Department of Earth Science and Engineering

March 10, 2022

Abstract

The complex boundary of the elliptical inclusion rendered it difficult to solve the problem of wave scattering. In this study,

the steady-state response was analyzed using the wave function expansion method. Subsequently, the Ricker wavelet was

employed as the transient disturbance and Fourier transform was used to determine the distribution of transient dynamic

stress concentration around the elliptical inclusion. The effects of wave number, elliptical axial ratio and difference in material

properties on the distribution of the dynamic stress concentration around the elliptical inclusion were evaluated. The numerical

results revealed that the dynamic stress concentration always appeared at both ends of the major axis and minor axis of the

elliptical inclusion, and the difference in material properties between the inclusion and medium influenced the variations in the

dynamic stress concentration factor with the wave number and elliptical axial ratio.
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Abstract: The complex boundary of the elliptical inclusion rendered it difficult to solve the problem of wave
scattering. In this study, the steady-state response was analyzed using the wave function expansion method.
Subsequently, the Ricker wavelet was employed as the transient disturbance and Fourier transform was used
to determine the distribution of transient dynamic stress concentration around the elliptical inclusion. The
effects of wave number, elliptical axial ratio and difference in material properties on the distribution of the
dynamic stress concentration around the elliptical inclusion were evaluated. The numerical results revealed
that the dynamic stress concentration always appeared at both ends of the major axis and minor axis of the
elliptical inclusion, and the difference in material properties between the inclusion and medium influenced
the variations in the dynamic stress concentration factor with the wave number and elliptical axial ratio.
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1 Introduction
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. Due to the discontinuity of structure, inclusions often exist in different objects, such as underground structure
in the stratum, impurities in materials and so on. Scattering and dynamic stress concentration will occur
around inclusions when subjected to stress wave1,2, which may cause the structural failure of inclusions. Thus,
dynamic response of a medium with inclusions embedded in elastic waves should be considered seriously.
Inclusions usually have irregular shapes, which squares and circles are difficult to directly apply to practical
research. Ellipse can approach circle and crack with the change in the axis ratio, which exhibits strong
flexibility and renders it more suitable for practical engineering. Therefore, the study of the dynamic stress
concentration surrounding elliptical inclusions demonstrates an important engineering significance.

In recent decades, the scattering and dynamic stress concentration of stress waves have been extensively
studied, the models, methods and wave properties have been developed more maturely.3-9 Pao and Mow10

first synthesized and calculated the existing models of the scattering and dynamic stress concentration, ob-
taining the dynamic stress concentration distribution of a series of models and its influencing factors using
the wave function expansion method. Subsequently, investigations have mainly focused on two theoretical
types: cavity and inclusion. Liu et al11employed the complex variable function to solve the dynamic stress
concentration problem surrounding cavity of arbitrary shape in an infinite elastic plane, providing the com-
putational results of the dynamic stress concentration around the cavities of circular, elliptical and horseshoe
shape. Tao et al12 solved the dynamic stress concentration around a circular cavity under the transient P
wave disturbance in an infinite homogeneous medium based on the complex variable function and Fourier
transform, and the dynamic stress concentration distribution around the circular cavity was observed to
affect the Poisson’s ratio, wave number and waveform. Li et al13 explored the application of the complex
variable function to determine the scattering of a shallow-buried circular cavity under the transient P wave
loads, and analyzed the effects of cavity depth, incident angle and position of wave peak on the dynamic
stress concentration factor (αΔΣ῝Φ ) distribution. A Butterworth filter was designed to remove the jump
points and achieve more reasonable transient response results. Tao et al14 investigated the utilization of the
wave function expansion method based on the Mathieu function to solve the scattering and dynamic stress
concentration surrounding the elliptical cavity produced owing to the transient SH wave in the infinite plane,
and simulated the plastic deformation of the cavity using LS-DYNA to validate against the numerical result.
Ghafarollahi and Shodja15 implemented the multipole expansion method to present an analytical treatment
for the anti-plane scattering of SH-waves by an arbitrarily oriented elliptic cavity/crack is embedded near
the interface between the exponentially graded and homogeneous half-spaces.

In addition, the scattering and dynamic stress concentration around inclusions have always been the focus of
research too, and the boundary conditions of inclusions are more complicated than cavities. Manoogian and
Lee16 proposed the weighted residual method to the problem of the diffraction and scattering of plane SH-
waves by an underground inclusion in half-space, and determined the ground-motion of circular, elliptical and
square inclusions. Moreover, the effect of shape and depth of inclusions, frequency and angle of incidence of
the incidence wave in ground-motion amplification was analyzed. Yang et al17 utilized the Green’s function to
solve the scattering far field solution of SH-wave by a movable rigid cylindrical interface inclusion, indicating
that different combinations of medium parameters exhibited a great influence on the far-field solution.
Lee and Amornwongpaibun18 employed the wave function expansion method in the elliptical coordinates
and elliptical cosine half-range expansion method to offer an analytical solution to the problem of the
scattering around the semi-elliptical hill on half-space, and found that the existence of an elliptical hill
causes complicated effects on ground motion. Hei et al19 presented a universal approach of solving the
dynamic stress concentration around a circular inclusion in two-dimensional inhomogeneous medium based
on the complex function theory. The inhomogeneity of medium is considered in the calculation process,
which expands the research of complex medium. Sheikhhassani and Dravinski20 derived a non-hypersingular
boundary integral equations to compute the stresses and αΔΣ῝Φ by using a weak form of Helmholtz equation.
And using the method to evaluate dynamic stress concentration for the multiple multilayered inclusions
embedded in an elastic half-space subjected to SH-waves. Qi et al21 suggested the way of the complex
variable function method, combined with ”conformal mapping” method and Green’s function method to
study the scattering problems of SH-wave by elliptical inclusion with partial debond curve and circular
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. cavity in half-space. Results revealed thatαΔΣ῝Φ was influenced by the incident angle, the frequency of
incident wave, distance between the defects, depth of the inclusions and partial debond curve angle.

However, the existing research has mainly focused on studying the steady-state stress response and angular
dynamic stress concentration around elliptical inclusions while few studies have been devoted to the transient
response of stress wave and radial dynamic stress concentration. Thus, it is vital to further extend the
investigation of the radial stress concentration distribution around the elliptical inclusions and the dynamic
response caused by transient incidence. In this study, theoretical solutions based on the wave function
expansion method and Fourier transform were developed for an inclusion in infinite space when subjected to
a plane SH-wave. The steady-state and transient responses of the radial and angular stress were determined,
and the effects of wave numbers, elliptical axial ratio and material properties on dynamic response were
analyzed and discussed.

2 Problem statement and the governing equations

2.1 Problem statement

The deep-buried inclusion has been regarded as a problem of an infinite medium.SH wave as a common stress
wave, negatively impacted on the inclusion structure in the propagation process. An elliptic cylindrical
inclusion embedded in a full-space is subjected to a plane incident SH-wave. The incident angleθ is the
angle between the incident direction and the positive direction of the x -axis. The geometry of the model
is presented in Fig. 1. The major and minor axis of the elliptical inclusion are denoted by l andh . Both
the medium and inclusion are isotropic elastic materials. Subscript 1 represents the parameters related to
the surrounding medium, and subscript 2 refers to the parameters related to the elliptical inclusion. Their
material properties include shear modulus μ and wave number k . The shear modulus and wave number of
the medium denote μ 1 and k 1, and the shear modulus and wave number of the elliptical inclusion stand
forμ 2 and k 2.

2.2 Wave function in elliptical coordinate system

The scattering and dynamic stress concentration around the elliptical inclusion can be solved by the wave
function expansion method in the elliptical coordinate system. The elliptical coordinate system is shown in
Fig. 2.

The elliptical coordinate system consists of numerous confocal ellipses and hyperbolas with the focal length
of 2a . The transformation from rectangular coordinate system (x ,y ) to elliptical coordinate system (ξ,η )
is defined by18:

where ξ and η are the radial and angular coordinates of the elliptical coordinate system, respectively.

The scale factor in the elliptical coordinate system can be expressed as:

Therefore, the major axis, minor axis and axis ratio of the ellipse can be represented as:

The Helmholtz equation is obtained by separating time variables from the wave equation. In the elliptical
coordinate system, the Helmholtz equation can be written as10:

where φ denotes the potential function of SH wave,cs denotes the velocity of SH wave, kdenotes wave number
of SH wave and κ=ω/ςς ,ω denotes the circular frequency.

By varying separation equationφ (ξ, η )=X (ξ )Y (η ), the Mathieu equation can be expressed as:

whereq =(ak )2/4, and Eq (5) is referred to as the radial and angular Mathieu equations, respectively. The
radial and angular Mathieu functions are obtained by solving the Mathieu equation. In order to obtain the
unique single-valued solutions, only those periodic solutions with π or 2π period are of interest to us. This
requires that parameters b andq satisfy certain functional relations, which can be expressed asF (b ,q )=0.

3
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. The equation is called as the characteristic equation, and b in the equation represents the characteristic
value.

The angular Mathieu function can be expanded by the Fourier series as a series sum of sine and cosine
functions as the following symbols22:

The radial Mathieu function is expressed by different types of cylinder functions as follows22:

where Ar
m ,Br

m denote the expansion coefficient associated with q . In Eq (7),j =1,2,3,4,Zm
j represents the

j th type cylinder function of m-order, and the corresponding Mathieu function is termed as the j th type
radial Mathieu function. Radial Mathieu function and angular Mathieu function differ in variable by only
one imaginary unit.

For simplicity, assuming that the only non-zero displacement component of incident plane SH wave isuz
(i)

,

and its maximum displacement is u 0. θ is the incident angle and the analytic expression of the incident
wave can be expressed as:

Substituting Eq (8) into Eq (1) upon omitting the time-dependent termε-ιωτ , the expression of incident wave
can be simplified as:

The radial Mathieu and angular Mathieu functions have the following integral relation.23

Since eikaw is a periodic function of the variable θ , eikaw can be represented by the expanded form as10:

where

In this study, the amplitude of incident wave u 0is set as 1. Substituting Eq (12) into Eq (11), the incident
wave function expressed by the Mathieu function is derived as24:

3 Steady-state response of inclusion

The scattering wave function generated around the elliptical inclusion satisfies the two-dimensional stable
wave equation and Sommerfeld’s radiation condition. Therefore, according to the asymptotic characteristics
of the Mathieu function, the scattering wave φς can be expressed as:

where Bm and Cm denote undetermined coefficients for satisfying the boundary conditions, andq =(ak )2/4.

In accordance with the principle of wave superposition, the full wave function in the medium can be expressed
as:

In addition, the standing wave generated in the elliptical inclusion, can be represented as10:

In the elliptical coordinate system, the stress component is given by the following formula25:

The undetermined coefficient can be determined by applying the boundary conditions. The boundary con-
ditions require continuity of the displacement and stress along the inclusion surface, which can be expressed
as:

When the incident wave is parallel to the x -axis, θ=0, σεμ(0, χ) =0, Eqs (13), (14) and (16) can be simplified
as:

Substituting Eqs (19), (20) and (21) into Eq (18) to derive the following two equations:

ςεμ(η,χ 1) andςεμ(η,χ 2) are not orthogonal to each other, so the undetermined coefficientsBm and Dm cannot
be calculated directly. Thus, the orthogonal condition of angular Mathieu function is used to simplify the
calculation. The orthogonal condition can be expressed as:

Multipling both ends of Eq (22) by ςεν(η, χ 1) and integrating from 0 to 2π to derive the following two
simplified equations:

where

4
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. Eliminating Bm from the two equations of Eq (24) to determine an algebraic equation system aboutDm .

where

Based on the characteristics of the Mathieu function, it can become a finite series by truncating from N
term, and the numerical approximate solution can be obtained. Taking N equations in Eq (26) to compute
the coefficients D 0, D 1,D 2, etc. Then bringing back Eq (24) to obtainBn , which is expressed as follows:

Therefore, the full wave function in the medium can be expressed as:

The dynamic stress concentration factor αΔΣ῝Φaround the elliptical inclusion is defined as the ratio of the
stress produced by the full wave and the peak stress produced by the incident wave, and it can be expressed
as:

Substituting Eq (29) into Eq (30) to obtain the steady-state angular dynamic stress concentration fac-
torαηΔΣ῝Φ and steady-state radial dynamic stress concentration factorαξΔΣ῝Φ, the results are represented as
follows:

Owing to the characteristics of harmonic function, only the real or imaginary part of the result of Eq (31)
represents the steady-state-state αΔΣ῝Φ . Adding the time-dependent term ε-ιωτ , the real part represents
steady-state αΔΣ῝Φ at T=0, and the imaginary part represents steady-state αΔΣ῝Φ at T/4. T denotes the
period of the incident wave.

3.1 Case study and verification

In the elliptical coordinate system, the major and minor axis and axis ratio of any ellipse can be calculated
by Eq (3). To simplify the problem, the focal length of the ellipse is taken as a =1m. The four cases of
radial coordinate ξ = 0.1, 0.2, 0.5, 1.5 are determined to study the influence of different axial ratio on the
scattering of incident SH wave around the elliptical inclusion. The smaller ξ , the larger the elliptical axis
ratio and the closer the shape is to crack. The larger ξ , the smaller the elliptical axis ratio, and the closer
the shape is to circle. The parameter settings of the radial coordinate are illustrated in Table 1.

In this study, the wave velocity cs was set as 2300 m/s, the incident wave numbers (k ) were predetermined
to be 0.2, 0.5 and 1, respectively. The range of stress wave numbers generated by earthquake, engineer-
ing blasting and mostly impacts was covered here in.14 The difference in the material properties of the
medium and elliptical inclusion additionally affected the scattering of incident SH wave around the elliptical
inclusion.26This study set up three cases for calculation, as shown in Table 2.

In Table 2,k* =k 2/k 1,μ* =μ 1/μ 2 and three cases correspond to the inclusion being stiffer, softer and
much softer than the medium, respectively.

Subsequently, the case was computed when the material properties parameters of the inclusion and medium
were the same to verify the correctness of the derivation. When the inclusion and medium possessed the
identical material properties parameters, the propagation of SH wave in the inclusion was the same as the
propagation in the medium, and dynamic stress concentration was only related to the phase difference in the
stress wave. Therefore, incident SH wave only produced the incident wave, and not generated the scattered
and standing waves, leading to αΔΣ῝Φ determined only by the incident wave. According to the definition
ofαηΔΣ῝Φ , the maximum value ofαηΔΣ῝Φ was 1. The numerical results are shown in Fig. 3.

In Fig. 3, as the incident wave number and axial ratio changed,αηΔΣ῝Φ had a maximum value at the angle
perpendicular to the incident direction (both ends of the elliptical minor axis), and a minimum value at the
angle of incidence (both ends of the elliptical major axis). The maximum and minimum values of αηΔΣ῝Φ were
1 and 0.αηΔΣ῝Φ gradually increased with the angle from 0° to 90°, and distribution ofαηΔΣ῝Φ was symmetrical
about the x and y axes. To verify the correctness of the theoretical derivation, the numerical results were
compared with those available in literature. As expected, the verification exhibited excellent agreement
between the results of the present study and those available in the literature.10

3.2 Steady-state response of angular stress

5



P
os

te
d

on
A

u
th

or
ea

10
M

ar
20

22
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
64

68
70

69
.9

14
42

68
5/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

. When computing the steady-state response of angular stress with different axial ratios and different wave
numbers in three cases according to the case study, the numerical results were shown in Figs. 4-7. Figures
4-6 presented the distribution of the steady-stateαηΔΣ῝Φ around the elliptical inclusion in the three cases.
As shown in Figs. 4-6,αηΔΣ῝Φ always had a minimum value at both ends of the elliptical major axis. With
variation in the angle, the closer to both ends of the elliptical minor axis, the larger the value of αηΔΣ῝Φ ,
and the maximum value was obtained at both ends of the elliptical minor axis. Distribution of αηΔΣ῝Φ was
symmetric about x -axis. In different cases, the minimum value ofαηΔΣ῝Φ was 0, but the maximum value
of αηΔΣ῝Φ was different. The maximum value of αηΔΣ῝Φ in Fig. 4 was only 0.781, 0.662, 0.503 and 0.384,
respectively. The maximum value of αηΔΣ῝Φ in Fig. 5 was 1.105, 1.202, 1.412 and 1.646, respectively. The
maximum value ofαηΔΣ῝Φ in Fig. 6 was 1.136, 1.284, 2.079, and 1.965, respectively. The value ofαηΔΣ῝Φ in
case 1 was less than 1, which meant that when the inclusion was stiffer than the medium, the steady-state
incidence reduced angular stress dynamic concentration around inclusion. The value ofαηΔΣ῝Φ in cases 2 and
3 was larger than 1, which indicated that when inclusion was softer than medium, steady-state incidence
aggravated the angular stress concentration around inclusion. The value ofαηΔΣ῝Φ in case 3 exceeded that in
case 2, which revealed that the softer the inclusion was than the medium, the more significant the angular
stress concentration around inclusion was. In addition, the distribution ofαηΔΣ῝Φ also changed with the axial
ratio. As shown in Fig. 4 (d), Fig 5. (d), Figs. 6 (c) and (d), as the shape of inclusion was gradually
close to circle and the wave number was high, αηΔΣ῝Φ exhibited multiple extreme values. Because under the
condition of high wave number, there were multiple stress wave crests in the inclusion, and the positions of
crests were different due to the influence of the phase difference, resulting in multiple extreme values.

Figure 7 showed the changes in the steady-stateαηΔΣ῝Φ with the radial coordinates and wave number when
η =90°in three cases. As shown in Fig. 7(a), under the condition of constant wave number,αηΔΣ῝Φ of case
1 decreased slowly with an increase in the radial coordinate, and the value ofαηΔΣ῝Φ was always less than
1. The results demonstrated that as the inclusion was stiffer than the medium, the steady-state incidence
diminished the angular stress concentration, and the more the shape of inclusion was closer to circle, the
greater the degree of reduction. In Figs. 7(c) and (e), under the condition of constant wave number,αηΔΣ῝Φ
of case 2 and case 3 had a certain volatility as the radial coordinate changes, and had a trend of oscillation.
The oscillation at k 1=1 was more intense than that at k 1=0.5. Moreover, oscillation of αηΔΣ῝Φ in case
3 had a higher amplitude, a shorter period, and more intense than that in case 2. This implied that for
the inclusion softer than the medium, it had a high sensitivity to radial coordinates, and the greater the
difference between the material properties of the inclusion and medium, the higher the sensitivity.

As shown in Fig. 7(b), under the condition of constant elliptical axial ratio, αηΔΣ῝Φ of case 1 decreased with
an increase in the wave number, eventually approached 0, and the value of αηΔΣ῝Φ was always less than 1.
This meant that for the inclusion was stiffer than the medium, the high wave number steady-state incidence
decreased the angular stress concentration. In Figs. 7(d) and (f), under the condition of constant elliptical
axial ratio, theαηΔΣ῝Φ of cases 2 and 3 experienced obvious volatility with the variation in wave number,
along with had a trend of oscillation. The oscillation at ξ=1.5 was more intense than that at ξ=0.5. In
addition, oscillation ofαηΔΣ῝Φ in case 3 was higher in amplitude, shorter in period, and more severe than in
case 2, which was consistent with the changes ofαηΔΣ῝Φ with the radial coordinates. The results indicated
that for the inclusion was softer than medium, αηΔΣ῝Φ also had a high sensitivity to wave number. The
greater the difference between the material properties of inclusion and medium, the higher the sensitivity.
The phenomenon was consistent with the existing literature, which further confirmed the validity of the
theoretical derivation.26

3.3 Steady-state response of radial stress

In the existing studies about the scattering and dynamic stress concentration of elliptical inclusions, a
majority of the study content focused on the numerical results for the angular stress concentration and the
discussion about the radial failure caused by angular stress concentration. But little study was conducted
on the radial stress concentration. The angular failure caused by the radial stress concentration, affected the
structural safety of inclusion. Therefore, it is imperative to study the radial stress concentration of elliptical

6
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. inclusions. The numerical results of radial stress concentration are given below.

3.3.1 Cases of the same material

When the inclusion and medium had the same material properties parameters, the incident wave did not
diffract at inclusion. As shown in Fig. 8, αξΔΣ῝Φ had a maximum value at both ends of the elliptical major
axis, and a minimum value of 0 at both ends of the elliptical minor axis, which was opposite to the distribution
of αηΔΣ῝Φ . The distribution of αξΔΣ῝Φ was symmetric about the x -axis and the y -axis. Moreover, unlike
the distribution ofαηΔΣ῝Φ , the maximum value ofαξΔΣ῝Φ was not all equal to 1, but approached or equal to 1
at k 1=0.2. The distribution of αξΔΣ῝Φ around the elliptical inclusion changed in with the radial coordinate.
As observed in Fig. 8, when the radial coordinate was small, the shape of elliptical inclusion was close to
crack, the distribution shape ofαξΔΣ῝Φ around both ends of the elliptical major axis is similar to crack tip,
and the value ofαξΔΣ῝Φ changed drastically. However, when the radial coordinate was large, and the shape
of elliptical inclusion was close to circle, the distribution shape ofαξΔΣ῝Φ around both ends of the elliptical
major axis was similar to the circle, and the value ofαξΔΣ῝Φ changed gently.

3.3.2 Numerical results and analysis

The steady-state response of radial stress with different axial ratios and different wave numbers in the three
cases was determined according to the case study. The numerical results were shown in Figs. 9-12. Figures
9-11 presented the distribution of steady-stateαξΔΣ῝Φ around the elliptical inclusion in three cases. As shown
in Figs. 9-11, when ellipse approached circle and wave number was high, multiple extreme values ofαξΔΣ῝Φ
appeared, and the distribution of αξΔΣ῝Φ on the front wave surface and the back wave surface was different.
Although the distribution of αξΔΣ῝Φ was no longer as regular as Fig. (8), the distribution ofαξΔΣ῝Φ was still
symmetrical about the x -axis. In Fig. 9,αξΔΣ῝Φ always had a maximum value at both ends of the elliptical
major axis. As the angle was closer to both ends of the elliptical minor axis, the value ofαξΔΣ῝Φ became
smaller, and a minimum value was observed at both ends of the elliptical minor axis. The maximum values of
α
ξ
ΔΣ῝Φ were 3.081, 2.616, 1.985, and 1.432, respectively, which were all larger than 1. This indicated that as

the inclusion was stiffer the medium, the steady-state incidence caused significant radial stress concentration.
As shown in Figs. 10 and 11, at the small radial coordinate, the distribution ofαξΔΣ῝Φ was similar to that in
Fig. 9, but the maximum value was not larger than 0.28. At the large radial coordinate, the maximum and
minimum values ofαξΔΣ῝Φ no longer occurred at both ends of the major and minor axis of ellipse, andαξΔΣ῝Φ
on the front wave surface was more than that on the back wave surface. The maximum value of αξΔΣ῝Φ in
Fig. 10 was 1.472, and the maximum value of αξΔΣ῝Φin Fig. 11 was 1.016.

Figure 12 showed the steady-stateαξΔΣ῝Φ changed with radial coordinate and wave number at η =0° in three
cases. Under the condition of constant wave number,αξΔΣ῝Φ of case 1 decreased slowly with the increase in
the radial coordinate. This phenomenon in Fig. 12(a) was consistent with the changes ofαηΔΣ῝Φ , and the
difference was that most of the value ofαξΔΣ῝Φ was larger than 1. In Figs. 12(c) and (e), under the condition
of constant wave number, the variation trends of αηΔΣ῝Φ andαξΔΣ῝Φ in the radial coordinate were roughly
identical. It implied that when the inclusion was softer than the medium, both αηΔΣ῝Φand αξΔΣ῝Φ had high
sensitivity to the radial coordinate. The more significant the difference between the material properties of
the inclusion and medium, the greater their sensitivity.

As shown in Fig. 12(b), under the condition of constant elliptical axial ratio, the αξΔΣ῝Φ of case 1 decreased
with increasing the wave number. But unlikeαηΔΣ῝Φ eventually approached 0,αξΔΣ῝Φ eventually approached
0.37. This revealed that for the inclusion stiffer than medium, the high wave number steady-state incidence
additionally reduced the radial stress concentration. In Figs. 12(d) and (f), under the condition of constant
elliptical axial ratio, the variation trends ofαξΔΣ῝Φ andαηΔΣ῝Φ in the wave number were roughly identical.
This indicated thatαξΔΣ῝Φ also exhibited a high sensitivity to the wave number, and the larger the difference
between the material properties of inclusion and medium, the greater their sensitivity.

Based on the foregoing analysis of the steady-state response, as the inclusion was stiffer than the medium,
the dynamic stress concentration around the elliptical inclusion was dominated by the angular stress concen-
tration at both ends of the minor axis.αΔΣ῝Φ gradually decreased with the increase in radial coordinate and
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. wave number, but the final approach values ofαηΔΣ῝Φ andαξΔΣ῝Φ were different. However, when the inclusion
was softer than medium, the dynamic stress concentration around the elliptical inclusion was dominated by
the radial stress concentration at both ends of the major axis.αΔΣ῝Φ had high sensitivity to both the radial
coordinate and the wave number. The greater the difference between the material properties of inclusion
and medium, the larger the amplitude, the shorter the period, and the higher the sensitivity.

4 Transient response of inclusion

The dynamic disturbance in the practical project is a non-periodic transient disturbance, which is different
from the simple harmonic wave. The transient wave can be decomposed into the superposition of simple har-
monic wave with different frequencies by Fourier transform. The steady-state response has been obtained in
the previous section, and the dynamic response of the transient disturbance to the system can be represented
as:

where χ(ω) denotes steady-state response of the system under the incidence of simple harmonics, namely, the
steady-stateαΔΣ῝Φ determined in the previous section,Φ(ω) denotes the distribution function of the transient
disturbance in frequency domain.

In order to calculate the dynamic stress concentration around the elliptical inclusion under practical project
disturbance, seismic waves were introduced as the transient disturbance model. In the study of seismic wave
forward modeling, seismic wavelet was the basic unit of seismic wave, which can express the basic charac-
teristics of the wave source. Seismic data can be obtained by combining seismic wavelet with convolution
model.27-29 It was generally believed that what a single seismic source excites was a sharp pulse with a short
time. When seismic waves propagated in the stratum, due to the attenuation and dispersion effected of the
viscoelastic stratum on the high-frequency components, the waveform was elongated and seismic wavelets
were formed. Based on the difference of wavelet phase spectrum delay, seismic wavelet can be divided into
zero phase wavelet, constant phase wavelet, minimum phase wavelet and mixed phase wavelet. In this study,
the Ricker wavelet in the zero-phase seismic wavelet was selected as the transient disturbance model to sim-
ulate the disturbance caused by the earthquakes. The distribution of the Ricker wavelet in the time domain
and frequency domain was shown in Fig. 13.

The Ricker wavelet is symmetric in the time domain, which can be represented as30:

where ωπ denotes the dominant frequency of the Ricker wavelet.

Fourier transform requires the distribution of the Ricker wavelet in the frequency domain, Φ(ω) can be
expressed as:

The distribution of the Ricker wavelet in the time domain and the frequency domain is mainly determined
by the ωπ . The Ricker wavelet in the time domain has a main lobe and two side lobes, and the duration is
short and the convergence is fast. The ratio of the amplitude of the main lobe to the amplitude of the side
lobes is 0.5e1.5, which is approximately equal to 2.241.31 The Ricker wavelet in the frequency domain always
takes the maximum value at the ωπ . The larger the ωπ , the wider the frequency domain of the Ricker
wavelet. In this study, three Ricker wavelets with differentωπ were selected for transient incidence.

Substituting Eqs (31) and (34) into Eq (32), and the frequency variablesω was canceled by the integration,
then a time-dependent functionut was obtained. By selecting different timest , the system response at
different times in the process of transient wave incident was obtained. Due to the mathematical difficulties
in direct integration, trapezoidal approximation was used to determine the integration result. In the practical
project, we were more interested in the system response when the incident wave reached the peak, so the
case selected the system response at that moment for analysis.

4.1 Transient response of angular stress

The transient response of angular stress with different axial ratios and different ωπ in the three cases was
analyzed according to the case study. The numerical results were shown in Figs. 14-18. As shown in Figs.
14-16, the spatial distribution of transientαηΔΣ῝Φ was similar to steady-state αηΔΣ῝Φ . TransientαηΔΣ῝Φ
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. always had a maximum value at both ends of the elliptical minor axis, and a minimum value of 0 at both
ends of the elliptical major axis. When the shape of inclusion was close to circle and the incident wave was
high dominant frequency, the extreme values appeared at other angles. Distribution ofαηΔΣ῝Φ was symmetric
about thex -axis and the value ofαηΔΣ῝Φ was affected by

ωπ.

Fig. 17(a) indicated that when ωπ was constant and inclusion was stiffer than the medium, transientαηΔΣ῝Φ
decreased with the reduction in elliptical axial ratio, gradually declined from 1.928 to 0.897. This demon-
strated that at the inclusion stiffer than the medium, unlike steady-state αηΔΣ῝Φalways less than 1, the
transient incident aggravated the angular stress concentration. Moreover, the angular stress concentration
as shape of inclusion approaching crack was more significant than that approaching circle. In Fig. 17(b),
for the inclusion softer than the medium, transientαηΔΣ῝Φ increased with the decrease in the elliptical axial
ratio, from 2.712 to 3.705. Numerical results demonstrated that for the inclusion softer than the medium,
the angular stress concentration at shape of inclusion approaching circle was more significant than that
when shape of inclusion approaching crack. This phenomenon was contrary to Fig. 17(a), indicated that the
difference of material properties between the inclusion and medium affected the changes in transientαηΔΣ῝Φ
with elliptical axial ratio.

Fig. 18 illustrated that when elliptical axial ratio andωπ were constant, transientαηΔΣ῝Φ for the inclusion
stiffer than the medium was always smaller than that for the inclusion softer than the medium. This
phenomenon indicated that the angular stress concentration of the soft inclusion was more significant than
that of the stiff inclusion, and the softer the inclusion was, the greater the possibility of failure at both ends
of the minor axis. The value of transient αηΔΣ῝Φ in case 2 was smaller than that in case 3, which proved that
the greater the difference in the material properties between the medium and inclusion, the more significant
the dynamic stress concentration. This phenomenon was consistent with the changes of steady-stateαηΔΣ῝Φ
.

4.2 Transient response of radial stress

The transient response of radial stress with different axial ratios and different ωπ in the three cases was evalu-
ated in the case study. The numerical results were shown in Figs. 19-23. The distribution of transientαξΔΣ῝Φ
was similar to that of steady-state αξΔΣ῝Φ . When the shape of inclusion was close to circle and the incident
wave was highωπ , transientαξΔΣ῝Φ exhibited multiple extreme values. Distribution ofαξΔΣ῝Φ on the front
wave surface was different from that on the back wave surface, but distribution of αξΔΣ῝Φ was symmetric
about the x -axis. In Fig. 19,αξΔΣ῝Φ always had the largest value at both ends of the elliptical major axis,
with the maximum value reaching 7.869, and the minimum value of 0 at both ends of the elliptical minor
axis. The value of transientαξΔΣ῝Φ in Figs. 20 and 21 was much smaller than the value in Fig. 19, and a
majority of the maximum values were around 1. At a small ωπ , distribution of transient αξΔΣ῝Φ was similar
to Fig.19. At a large ωπ , the maximum and minimum values did not always appear at both ends of the
major and minor axes of ellipse, while multiple extreme values did.

Fig. 22 indicated that when the elliptical axial ratio andωπ were constant, transientαξΔΣ῝Φ for the inclusion
was stiffer than the medium decrease upon reducing the elliptical axial ratio, from 7.214 to 2.710. For the
inclusion was softer than the medium, transient αξΔΣ῝Φincreased upon decreasing the elliptical axial ratio,
from 0.597 to 1.156. Numerical results demonstrated that as the inclusion was stiffer than the medium,
the radial stress concentration for the shape of inclusion close to crack was more significant than that for
the shape of inclusion close to circle. But for the inclusion was softer than the medium, the radial stress
concentration for shape of inclusion approaching circle was more significant than that as shape of inclusion
approaching crack. The difference in material properties between the inclusion and medium also affected
the changes in transientαξΔΣ῝Φ with elliptical axial ratio, which was consistent with transientαηΔΣ῝Φ . In
addition, at the small radial coordinate, the shape of elliptical inclusion was close to crack, the distribution
shape of transientαξΔΣ῝Φ around both ends of the elliptical major axis was similar to crack tip, and the
value of transient αξΔΣ῝Φ changed drastically. However, at the lager radial coordinate, the shape of elliptical
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. inclusion was close to circle, the distribution shape of transient αξΔΣ῝Φ around both ends of the elliptical
major axis was approximate to the circle, and the value of transient αξΔΣ῝Φvaried slightly. This behavior
was consistent with the distribution of stead-state αξΔΣ῝Φ .

Fig. 23 demonstrated that at the constant elliptical axial ratio andωπ , the transientαξΔΣ῝Φ with the inclusion
stiffer than the medium was much larger than the transientαξΔΣ῝Φ for the inclusion softer than the medium.
The numerical findings indicated that the radial stress concentration of the stiff inclusion was more significant
than that of soft inclusion, and the stiffer the inclusion, the greater the possibility of failure at both ends of
the major axis. The value of transient αξΔΣ῝Φ in case 2 was higher than that in case 3, which confirmed that
the greater the difference in material properties between the medium and inclusion, the more significant the
dynamic stress concentration. This behavior was in accordance with the changes in transientαηΔΣ῝Φ .

5 Discussion

In this study, theoretical solutions based on the wave function expansion method and Fourier transform
were obtained for an inclusion in infinite space when subjected to a plane SH-wave. First, the steady-state
response was analyzed using the wave function expansion method. Then, the Ricker wavelet was introduced
as the transient disturbance. Finally, the Fourier transform was used to determine the distribution of
transient dynamic stress concentration around the elliptical inclusion. The numerical results indicated that
the dynamic stress concentration generated by the steady-state and transient incident waves was different.
However, the dynamic stress concentration distribution in the two states was dependent on the elliptical axis
ratio, incident wave number, difference in material properties between the medium and inclusion.

As reported in literature, the main content is analyzing angular stress concentration, while the radial stress
concentration is often ignored. In this study, the angular and radial stress expressions under the steady-state
incidence and transient incidence were obtained theoretically, and two types of distribution of dynamic stress
concentration around the elliptical inclusion was calculated. It is found that regardless of the steady-state or
transient incidence, for the inclusion stiffer than the medium, significant radial stress concentration appeared
at both ends of the elliptical major axis. At the elliptical axis ratio of 10, the maximum steady-stateαξΔΣ῝Φ
attained 3.081, and the maximum transient αξΔΣ῝Φreached 7.869. The angular stress concentration was
observed at both ends of the elliptical minor axis, but the value ofαηΔΣ῝Φ was slightly small. The maximum
value of steady-stateαηΔΣ῝Φ was 0.764, and the maximum value of transientαηΔΣ῝Φ was 1.969. The closer
the inclusion shape to crack, the larger the value ofαΔΣ῝Φ and the more significant the dynamic stress
concentration. Therefore, the structural failure was likely to occur at both ends of the major axis and
the minor axis of elliptical inclusion, and the radial stress concentration at both ends of the major axis
of inclusion was more likely to cause structural failure. At this moment, the closer the inclusion shape to
crack, the higher the possibility of the structural failure. However, for the inclusion softer than the medium,
significant angular stress concentration was observed at both ends of the elliptical minor axis. The steady-
stateαηΔΣ῝Φ achieved the maximum value of 2.079 at the elliptical axis ratio was 2.16, and the transient state
α
η
ΔΣ῝Φ attained the maximum value of 4.588 when elliptical axis ratio of 1.1. The radial stress concentration

was noted at both ends of the elliptical major axis. When the axial ratio was 1.1, the maximum value of
steady-stateαξΔΣ῝Φ attained 1.472, and the maximum value of transient stateαξΔΣ῝Φ reached 2.476. The
more approximate the inclusion shape to circle, the larger the value ofαΔΣ῝Φ and the more significant the
dynamic stress concentration. Therefore, the structural failure of inclusion was likely to occur at both ends
of the major axis and the minor axis of elliptical inclusion, and the angular stress concentration at both ends
of the minor axis of inclusion was more likely to result in the structural failure. At this time, the closer the
shape of inclusion to circle, the greater the possibility of structural failure.

Compared with the wave function expansion method based on the Fourier-Bessel expansion and conformal
transformation32, the Mathieu function was more convenient to deal with elliptical boundary problems, be-
cause it can avoid complicated boundary mapping, and the mathematical form was more concise. Moreover,
the correctness of the theoretical derivation was verified by calculating distribution of dynamic stress concen-
tration with the same material properties parameters between inclusion and medium. The results indicated
that the spatial distribution of angular stress concentration was only related to the phase difference of the
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. incident wave, and the maximum value of 1 was obtained in the vertical direction of the incident angle, which
was consistent with the previous literature.10 The steady-stateαηΔΣ῝Φ gradually decreased with increasing
the wave number for stiffer inclusion than medium. But when the inclusion was softer than the medium,
the steady-stateαηΔΣ῝Φ oscillated with the change in the wave number, the greater the difference of material
properties between the inclusion and medium, the more intense the oscillation. This phenomenon indicated
thatαηΔΣ῝Φ had a high sensitivity to wave number, and the greater the difference in material properties
between inclusion and medium, the higher the sensitivity.26

However, during the process of realizing the algorithm by mathematical software, the calculation of the
Mathieu function was complex in some aspects. For example, under the limitation of boundary conditions,
only the case of 0° incidence can be calculated. The wave number k of the incident wave was related to the q
variable in the Mathieu function, the q value was related to the truncation series of the Mathieu function. In
order to ensure accuracy, the truncation series must be changed when the k value was changed. In addition,
the Mathieu function with no primitive function or the primitive function was difficult to express. As a result,
only numerical integration methods can be used in Fourier integration, which greatly increased the amount
of calculation. In order to ensure the accuracy of the results, this study compared the error between the sum
of N and N+1 term. The Mathieu functions were generally truncated to the 8th or 9th to ensure accuracy.
The Mathieu function was determined N=8-16, and the error between N=12 and N=16 was found to be less
than 0.01%. Therefore, N=12 was selected to reduce unnecessary calculations while ensuring accuracy.

6. Conclusion

In this study, theoretical solutions based on the wave function expansion method and Fourier transform
were obtained for an inclusion in infinite space when subjected to a plane SH-wave. The effects of wave
number, elliptical axial ratio and difference of material properties on the distribution of dynamic stress
concentration around the elliptical inclusion were analyzed. The numerical findings revealed that the dynamic
stress concentration was noted always to appear at both ends of the major axis and minor axis of elliptical
inclusion. For the inclusion stiffer than the medium, the radial stress concentration at both ends of the
elliptical major axis was more significant than the angular stress concentration at both ends of the elliptical
minor axis. When the inclusion was softer than the medium, the phenomenon was opposite. The difference
of material properties between inclusion and medium affected the changes of αΔΣ῝Φ with wave number and
elliptical axial ratio, the greater the difference of the material properties between the medium and inclusion,
the more significant the dynamic stress concentration was. Besides, the distribution ofαξΔΣ῝Φ at both ends
of the elliptical major axis was similar to the shape of the inclusion.
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