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Abstract

Objectives: We evaluated radiotherapy planning CT-based radiomics for predicting clinical endpoints [tumor complete response
(CR), 5-year overall survival (OS), hypohemoglobin, and leucopenia] after intensity-modulated radiation therapy (IMRT) in
locally advanced cervical cancer (LACC). Methods: This study retrospectively collected 257 LACC patients treated with
IMRT from 2014 to 2017. Patients were allocated into the training/validation sets (3:1 ratio) using proportional random
sampling, resulting in the same proportion of groups in the two sets. We extracted 254 radiomic features from each of the gross
target volume (GTV), pelvis, and sacral vertebrae in planning CT images. The sequentially backward elimination support
vector machine algorithm was used for feature selection and endpoint prediction. Model performance was evaluated using
area under the curve (AUC). Results: A combination of 10 clinicopathological parameters and 34 radiomic features achieved
the best performance for predicting CR [validation balanced accuracy: 80.79%]. For OS, 54 radiomic features showed good
prediction accuracy [validation balanced accuracy: 85.75%], and the threshold value of their scores can stratify patients into
the low-risk and high-risk groups (P<0.001). The clinical and radiomic models were also predictive of hypohemoglobin and
severe leucopenia [validation balanced accuracies: 70.96% and 69.93%]. Conclusion: This study demonstrated that combining
clinicopathological parameters with CT-based radiomics had good predictive value for treatment outcomes and hematologic
toxicities to radiotherapy in LACC. The prediction of clinical endpoints prior to radiotherapy may assist the radiation therapists
to select the optimal therapeutic strategy with the minimal toxicity and best curative effect.
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Abstract

Objectives : We evaluated radiotherapy planning CT-based radiomics for predicting clinical endpoints [tu-
mor complete response (CR), 5-year overall survival (OS), hypohemoglobin, and leucopenia] after intensity-
modulated radiation therapy (IMRT) in locally advanced cervical cancer (LACC).

Design : A retrospectively study was performed between 2014 and 2017.

Setting : Xiangya hospital of Central South University, Changsha, Hunan, China.

Population : A total of 257 LACC patients were treated with IMRT.

Methods : Patients were allocated into the training/validation sets (3:1 ratio) using proportional random
sampling, resulting in the same proportion of groups in the two sets.

Main outcomes and measures : The primary outcomes were the treatment response and hematologic
toxicities caused by radiotherapy. We extracted 254 radiomic features from each of the gross target volume
(GTV), pelvis, and sacral vertebrae in planning CT images. The sequentially backward elimination support
vector machine algorithm was used for feature selection and endpoint prediction. Model performance was
evaluated using area under the curve (AUC).

Results : A combination of 10 clinicopathological parameters and 34 radiomic features achieved the best
performance for predicting CR [validation balanced accuracy: 80.79%]. For OS, 54 radiomic features showed
good prediction accuracy [validation balanced accuracy: 85.75%], and the threshold value of their scores
can stratify patients into the low-risk and high-risk groups (P<0.001). The clinical and radiomic models
were also predictive of hypohemoglobin and severe leucopenia [validation balanced accuracies: 70.96% and
69.93%].

Conclusion : This study demonstrated that combining clinicopathological parameters with CT-based ra-
diomics had good predictive value for treatment outcomes and hematologic toxicities to radiotherapy in
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LACC. The prediction of clinical endpoints prior to radiotherapy may assist the radiation therapists to
select the optimal therapeutic strategy with the minimal toxicity and best curative effect.

Funding :

Keywords : Radiation Oncology; Treatment Planning CT, Radiomics; Treatment Outcome; Locally Ad-
vanced Cervical Cancer

Abbreviations

AUC: area under the curve

BM: bone marrow

CCRT: concurrent radiotherapy and chemotherapy

CI: confidence interval

CR: complete response

CT: computed tomography

EBRT: external beam radiotherapy

FDR: false discovery rate

FIGO: International Federation of Gynecology and Obstetrics

GLCM: gray level cooccurrence matrix

GLRLM: gray-level run length matrix

GOH: gradient orient histogram

GTV: gross target volume

ICC: intra-class coefficient

IMRT: intensity-modulated radiation therapy

LACC: locally advanced cervical cancer

LVSI: lymph-vascular space invasion

MRI: magnetic resonance images

NCCN: National Comprehensive Cancer Network

NIDM: neighborhood intensity difference matrix OS: overall survival

PD: progressive disease

PET: positron emission tomography

PR: partial response

RECIST: Response Evaluation Criteria In Solid Tumors

ROC: receiver operating characteristic

ROI: region of interest

SD: stable disease

1. Introduction
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Cervical cancer is the fourth most commonly diagnosed cancer and the fourth leading cause of mortality
among women worldwide. There were over 570,000 new cases annually and over 311,000 deaths in 2018
globally [1]. More than two-thirds of the patients are diagnosed with locally advanced cervical cancer
(LACC) [2]. Concurrent chemoradiotherapy (CCRT) can lead to good prognosis for LACC [3], and the
brachytherapy as a part of standard treatment regimen has further improved local control and overall survival,
but the chemoradiotherapy resistance and local relapse also occur among 40% of LACC patients [4, 5].
Early treatment response correlates to tumor response and survival [6]. Hematologic toxicity is the most
common acute side effect of CCRT, which affect treatment efficacy and sometimes can be life-threatening [7].
Pretreatment prediction of early tumor response, survival, and hematologic toxicities may assist physicians
to adjust radiotherapy planning and further improve the quality of life.

Previous studies demonstrated that the predictive efficacy of clinicopathological model for treatment out-
comes is limited in LACC [8, 9]. The therapeutic effect can be markedly different even in the same clinical
stage. Currently, radiomics, a technique that can extract high-throughput quantitative features from imag-
ing such as CT, PET, and MRI, has emerged as a promising tool for the assessment of treatment outcomes
[10, 11]. Radiomics can reflect the tumor intrinsic properties and can be used as independent predictors of
survival outcome with higher predictive ability than traditional clinical parameters alone [12, 13].

Radiomics has been found to be related to lymph node metastases [14, 15], treatment response [16-18],
patient survival [19], and tumor recurrence [16, 20] for cervical cancer patients [21]. So far as we know,
there are no studies to investigate the radiomics predictive ability of CT images from radiotherapy planning
system. Additionally, myelosuppression is the most common toxicity in pelvic radiotherapy with the Grade
3 or higher hematological toxicities of more than 30% [22]. Bone marrow is the most radiosensitive pelvic
organ, and approximately 40% of the total body BM reserve lies within the pelvic bones, especially pelvis and
sacral vertebrae, which always are within the irradiated fields [23]. The individual differences of the radiation-
induced hematologic toxicities caused even by the similar treatment regimens. Previously, radiomics was
used to quantify lumbar and femoral mineral loss [24], mineral bone density, and osteoblast activity [25].
Treatment planning CT-based radiomic features of pelvis and sacral vertebrae may be able to predict the
hematologic toxicities.

Therefore, we retrospectively examined radiotherapy planning CT images to establish radiomic models for
predicting tumor complete response (CR), 5-year overall survival (OS) as well as hematologic toxicities
(leucopenia and hypohemoglobin) in LACC patients. We also compared the prediction performance of
clinicopathological parameters and radiomic features to further construct a combined model, aiming at
better prediction of clinical endpoints in LACC.

2. Materials and methods

2.1 Patients andimage datasets

This retrospective study enrolled a cohort of 257 LACC patients treated with intensity-modulated radio-
therapy (IMRT) in Xiangya Hospital between 2014 and 2017 (Table 1). Patient inclusion criteria were as
follows: (a) patients had histologically proven carcinoma of the uterine cervix, staged IB2-IVA [26]; (b)
patients were treated with pelvic external beam radiotherapy (EBRT) and subsequent brachytherapy with
or without concurrent chemotherapy; (c) patients who received repeated pelvic MRI 3 months after the end
of radiotherapy. Exclusion criteria were as follows: (a) patients who underwent neoadjuvant chemotherapy
or radical surgery before radiotherapy; (b) patients with a diagnosis of other cancers; (c) patients with no
available planning CT images.

The planning CT images were acquired using a Siemens CT scanner (SOMATOM Definition AS) with
scanning voltages, tube currents, and exposure time of 100-140 kVp, 39-473 mA and 500-1000 ms, respectively.
The pixel sizes of the CT images were 0.7 mm × 0.7 mm to 1 mm × 1 mm; the slice thicknesses range from
3 mm to 5 mm.

We also collected 88 of 257 cases with available fat-suppressed contrast-enhanced MRI T1-weighted images

4
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to compare the performance of CT and MRI radiomic features. Details are in Supplementary Materials.

2.2 Treatment regimen

All patients underwent EBRT followed by high-dose-rate intravaginal irradiation. EBRT was administered
with a daily fraction of 1.8 Gy, 5 days a week, 25-28 times with a total dose of 45-50.4 Gy. For patients
with positive para-aortic lymph nodes, extended-field radiotherapy that covered both the pelvis and the
para-aortic nodal region was delivered. High-dose-rate intravaginal irradiation was delivered with a fraction
of 6 Gy (twice per week) for a total dose of 30–36 Gy after EBRT.

The concurrent chemotherapy consisted of two main regimens: 1) Weekly single-agent cisplatin regimen
repeated at 7-day intervals for four to six cycles; 2) Triweekly combination regimen, repeated at 21-day in-
tervals for 1-3 cycles. Adjuvant chemotherapy regimen consisted of the combination of docetaxel (75 mg/m2)
and cisplatin (75 mg/m2), repeated at 21-day intervals after completion of CCRT. Patients with liver/kidney
dysfunction and other conditions were administrated with radiotherapy alone. The decision on the adminis-
tration of adjuvant chemotherapy was based on the status of tumor regression.

2.3 Imaging segmentation

We defined three regions of interest (ROIs) in CT images, including gross target volume (GTV), pelvis,
and sacral vertebrae (Figure 1). GTV consisting of the visible primary tumor and positive pelvic lymph
node was previously defined for radiotherapy planning based on both CT and MRI (contrast-enhanced T1-
weighted images, T2-weighted images, DWI images) by the consensus of experienced radiation oncologists
and radiologists. The size and morphology of all visible lymph nodes were inspected on CT or MRI images
by two oncologists (10 years of experience) and reviewed by one radiologist (30 years of experience). A
positive lymph node was a rounded soft-tissue structure with a short-axis diameter > 10mm or with central
necrosis [27, 28]. The pelvis and sacral vertebrae were contoured independently by two radiologists (10 years
of experience) and confirmed by a radiologist (30 years of experience). We used radiomic features of GTV
to predict treatment outcomes, while those of pelvis and sacral vertebrae to predict hematologic toxicities.
In addition, one radiologist (7 years of experience) independently contoured GTVs for 30 of 257 CT cases to
test the inter-rater reliability of radiomic features.

2.4 Assessment of treatment outcomes and hematologic toxicities

The short-term tumor response was assessed based on pelvic MRI examination 3 months after radiotherapy
according to the Response Evaluation Criteria In Solid Tumors v. 1.1 [29]: (1) CR represents the disap-
pearance of all cervical lesions; (2) partial response (PR) represents at least a 30% decrease in the longest
tumor diameter; (3) progressive disease (PD) represents at least a [?] 20% increase in the longest diameter
of tumor; and (4) stable disease (SD) represents neither sufficient decrease to qualify for PR nor sufficient
increase in longest diameter for PD. OS was defined as the time from the date of diagnosis until death or
the last follow-up. Hematologic toxicities during chemoradiation were assessed according to the National
Cancer Institute Common Terminology Criteria for Adverse Events CTCAE 3.0 [29].

We investigated four clinical endpoints. (1) we categorized patients into the CR group and the non-CR group
to predict tumor regression. (2) patients were divided into two groups by the cutoff OS time of 5 years.
Binary classification models were used to predict whether patients survived [?] 5 years. (3) we predicted
whether patients suffered from severe leucopenia (grade [?] 3) and (4) hypohemoglobin (grade > 0) that
could reflect treatment tolerance and influence outcome. Table 2 shows the number of patients stratified by
the clinical endpoints.

Additionally, we used one-class learning algorithm to identify patients at high risk of treatment failures
(SD and PD) due to the small sample size (5 SD and 4 PD of 257 patients). Methods and results are in
supplementary materials.

2.5 Feature extraction

5
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We extracted radiomic features using an open-source software IBEX (Figure 1) [30], including shape features,
first-order features, and texture features. Shape features describe the tumor volume, surface area, and etc.
First-order features were statistical descriptors of the image intensity, intensity histogram, and gradient orient
histogram. Texture features included features calculated based on the neighborhood intensity difference
matrix, gray-level cooccurrence matrix, and gray-level run length matrix. Texture features in different 3D
directions were averaged as the final feature values. All of the images were rescaled into 100 gray levels
before extracting texture features to avoid the generation of sparse matrices. The images were rescaled into
256 gray levels before extracting first-order features. No filter was applied to the images.

2.6 Feature selection and endpoint prediction

All patients were allocated into the training/validation sets (3:1 ratio) using proportional random sampling,
in order to avoid unbalanced data distribution in the two sets. All clinicopathological data and radiomic
features were normalized using robust data scaling method, which ignores the outliers when calculating the
mean and standard deviation and then scales the variables using the calculated values. A four-step method
was used to select predictive features and to build prediction models. First, the radiomic features with the
inter-rater reliability of intra-class coefficient (ICC) > 0.80 were selected. Second, the Lilliefors test was used
to test whether data come from a normal distribution. We calculated the differences between two groups
of patients using a two-sample two-sided t-test or Wilcoxon rank sum test depending on the normality of
data. The difference in pelvic lymph node status was calculated using chi-square test. The radiomic features
with P < 0.05 were selected. If the number of the selected features was < 20 based on this criterion, P <
0.1 was used instead. The selected radiomic features and all clinicopathological parameters were candidate
features for next step. Third, we classified two groups of patients and selected the best predictors using
sequential backward elimination-support vector machine (SBE-SVM) algorithms. This method initially used
all features to train and test an SVM model with a linear kernel in a five-fold cross validation using data
in the training set and sequentially removed one feature from the feature set to see whether the prediction
accuracy was improved or remained the same. If so, this feature was permanently removed. The soft margin
SVM algorithm that is not sensitive to outliers was used for modelling, in order to prevent overfitting. The
SBE-SVM model considers each feature’s contribution to the classification task and finally gives the optimal
combination of features, and has shown good performance in previous studies [31-33]. Finally, the final SVM
model was used to predict classes of patients in the validation set. Please note that the performance of the
training set was evaluated in a five-fold cross validation.

A receiver operating characteristic (ROC) curve was plotted using actual labels and the scores predicted
by models as well as an area under curve (AUC) was simultaneously calculated as the major metric to
evaluate the model performance. Besides, we also calculated accuracy, sensitivity, specificity, and F1-score
as auxiliary metrics (definitions are in supplementary materials).

We established three models for prediction: a clinical model built using only clinicopathological parameters,
a radiomic model built using only radiomic features, and a clinical and radiomic model built using both of
them.

All analyses were performed using MATLAB 2018a. The SBE-SVM algorithm is based on MATLAB func-
tions: ‘sequentialfs ’ and ‘fitcsvm ’. The computational codes are available upon request to the corresponding
author.

3. Results

3.1 Feature extraction and selection

We extracted 254 radiomic features from each ROI in CT images and collected 11 clinicopathological pa-
rameters for analysis. Table 1 shows the differences in 11 clinicopathological parameters between two groups
of patients stratified by four clinical endpoints. The selected radiomic features and/or clinicopathological
parameters in each model for four clinical endpoints are in Supplementary Table S1.

3.2 Prediction of CR

6
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A combination of 10 clinicopathological parameters and 34 CT radiomic features performed best in predicting
CR [balanced accuracies: 79.73% and 80.79%; AUC (95% confidence interval (CI)): 0.88 (0.82-0.93) and 0.87
(0.77-0.96) in the training and validation sets]. The CT radiomic model outperformed clinicopathological
model in predicting CR (Table 3). Figure 2a shows the ROC curves of three models for classifying the CR
and non-CR groups. Additionally, only using the tumor volume to predict CR achieved balanced accuracies
of 64.92% and 72.87% in the training and validation sets.

The CT radiomic model outperformed MRI radiomic model for predicting CR (balanced accuracy: 74.51%
and 52.46% in the validation set), and the addition of MRI radiomic features decreased the performance of
the clinical and radiomic model (Table S2 and Figure S1).

3.3 Prediction of OS

The radiomic model performed best in predicting OS [balanced accuracies: 78.69% and 85.75%; AUC (95%
CI): 0.82 (0.69-0.94) and 0.92 (0.82-1) in training and validation sets]. Additionally, the balanced accuracies
of only using the tumor volume to predict OS were 50% and 50% in the training and validation sets.

The scores predicted by the models were used to split patients into the high-risk and low-risk groups using
the threshold value defined by the ROC curve of the training set. The radiomic scores can significantly
stratify patients into the high-risk and low-risk groups (P = 7.16x10-10), while clinical score cannot (P =
0.29) (Figure 3) [34].

The clinical model only showed limited predictive power for OS, and combining clinicopathological parame-
ters with radiomic features didn’t improve the performance (Table 3 and Figure 2b).

3.3 Prediction ofhypohemoglobin

We identified 9 clinicopathological parameters and 7 pelvis radiomic features as best predictors of hypohe-
moglobin [balanced accuracies: 62.42% and 70.96%; AUC (95% CI): 0.65 (0.57-0.73) and 0.74 (0.62-0.87) in
training and validation sets]. The clinical model outperformed radiomic model in predicting hypohemoglobin
(Table 3 and Figure 2c).

3. 4 Prediction of severeleucopenia

The clinical model and the radiomic model alone only showed limited predictive power for severe leucopenia
[balanced accuracies: 56.42% and 55.08%; AUC (95% CI): 0.56 (0.41-0.71) and 0.57 (0.43-0.72) in the
validation set]. Combining radiomic features with clinicopathological parameters improved the prediction
performance [balanced accuracy: 69.93%; AUC (95% CI): 0.64 (0.48-0.79) in validation set] (Table 3 and
Figure 2d).

Figure 4 shows boxplots and data distribution of the predicted scores for four clinical endpoints.

We repeated the whole process using data of 159 patients treated with the same therapy. Similar performance
was observed in the prediction of four clinical endpoints (Table S3 and Figure S2-S4).

The wide and overlapping 95% CIs cannot represent statistical differences between two models.

4. Discussion

Radiation resistance is an independent poor prognostic factor, and adverse reactions affect tumor response
and long-term survival for LACC. This study integrated clinicopathological parameters and treatment plan-
ning CT-based radiomics for predicting CR, 5-year OS, and hematologic toxicities. The clinical and radiomic
models outperformed the single models (validation balanced accuracies: 80.79% vs 70.34% and 75.24%) in
predicting CR, indicating that a hybrid approach may have greater power for CR. For predicting OS, the
radiomic model showed superior performance (validation balanced accuracy: 85.75%). Although only using
the tumor volume to build SVM models can predict short-term CR with good performance (validation bal-
anced accuracy: 72.87%), it showed low predictive power for long-term OS (validation balanced accuracy:
50%). To predict hematologic toxicities, combining radiomic features with clinicopathological parameters can

7
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achieve validation balanced accuracies of 69.93% and 70.96% for severe leucopenia and hypohemoglobin, re-
spectively. Treatment planning CT radiomics of bone marrow may be potential biomarkers for the prediction
of treatment outcomes and hematologic toxicities in LACC.

Previous studies have demonstrated that tumor volume, pelvic lymph node status, and concurrent chemother-
apy are independent prognostic factors of LACC [35]. But Lucia et al. reported that radiomic models have
higher prognostic power than clinicopathological parameters, such as FIGO stage, tumor volume, and nodal
stage [36]. Fang et al. constructed a multihabitat MRI radiomic model to predict tumor response with an
AUC of 0.8 [37]. Our models integrated the CT radiomic features with clinicopathological parameters to
predict CR achieved an AUC of 0.87, which outperformed the clinical (AUC 0.75) model, CT radiomic model
(AUC 0.85), and MRI model (AUC 0.80). For predicting 5-year OS, our radiomic model reached an AUC
of 0.82, the clinical and radiomic model only achieved an AUC of 0.81. The predictive power of the joint
model is reduced possibly because different treatment regimens were performed to 257 patients. After the
models were re-trained using 159 patients treated equally, the clinical and radiomic model achieved better
performance than the radiomic model (Table S3). Previously, Ho et al. and Lucia utilized MRI radiomics to
predict disease-free survival for cervical cancer patients, but the absence of long-term survival led the both
studies to be limited [36, 38]. We predicted both short-term CR and long-term survival, which help radiation
therapists distinguish radio-resistance candidates in the early stage and adjusted treatment regimen in time
such as the addition of radio-sensitizers and/or more intensive follow-up.

Bone marrow cells are easily damaged by low-dose radiation, which may be associated with hematologic
toxicities. Previous studies have found the correlation between hematologic toxicities and dose-volume
parameters of pelvic bone marrow based on PET-CT in rectal cancer and gynecological oncology [39, 40].
Utilizing CT radiomics of the pelvis and sacral vertebrae to predict hematologic toxicities has not yet been
reported. We combined clinicopathological parameters and CT radiomics to predict hypohemoglobin (grade
> 0) and severe leucopenia (grade [?] 3) with AUCs of 0.74 and 0.64. The decreased hemoglobin levels
are associated with the prognosis of radiotherapy and hypoxia-induced radio-resistance [41, 42]. Severe
leucopenia increases the risk of infection and radiotherapy often needs to be suspended when it happens,
which negatively affects the therapeutic efficacy. The accurate and timely prediction of hematologic toxicities
may help to avoid serious complications. Future studies will take dosimetric factors of pelvis and sacral
vertebrae into account to further improve the predictive power of our models for hematologic toxicities.

There are some limitations in our study. (i) Our results were not externally validated. External and
multicentric data are needed to validate our results. (ii) The radiomic predictors for hematologic toxicities
were extracted from CT images, which cannot fully present bone function alterations and bone-related
diseases. Other imaging techniques, such as bone mineral densitometry, PET, and multiparametric MRI,
may provide more predictive information for analyzing radiation-induced hematologic toxicities. (iii) We only
studied planning CT and contrast-enhanced MRI T1-weighted images for predicting treatment outcomes
without considering other CT/MRI sequences and modalities that may reveal underlying information for
prediction. Further research is needed to investigate multimodality radiomic models and refine the optimal
combination of clinical and imaging radiomic features.

In conclusion, noninvasive models based on clinicopathological parameters and treatment planning CT ra-
diomics had predictive power for CR, 5-year OS, and hematologic toxicities. Before clinical application,
external validation with a larger cohort is needed to refine the models for predicting the risk of treatment
failure and hematologic toxicities.
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Table and Figure legends

Table 1. Patient characteristics (n = 257).

Table 2. Clinical endpoints of patients (n = 257).

Table 3. The prediction accuracy of treatment outcomes and hematologic toxicities.

Figure 1 . Schematic of data collection and analysis in the study.

Figure 2. The receiver operating characteristic (ROC) curves for discriminating between the two groups
of patients divided by tumor complete response (a), 5-year overall survival (b), hypohemoglobin (c), and
leucopenia (d) in the training and validation sets. The performance of the training set was evaluated in a
five-fold cross validation.

Figure 3. The Kaplan-Meier Curves of patients in the high-risk and low-risk groups stratified using the
threshold value of the predicted scores in the clinical model (a), the radiomic model (b), and the clinical
and radiomic model (c). The threshold values were defined by the ROC curve of the training set. Patients
censored < 5 years were merged with the validation test when plotting the Kaplan-Meier Curves.

Figure 4. Boxplots and data distribution of the scores of all patients predicted by the clinical model (a),
the radiomic model (b), and the clinical and radiomic model (c) for four clinical endpoints.
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