Advancing Remote Sensing and Machine Learning-Driven
Frameworks for Groundwater Withdrawal Estimation in Arizona:
Linking Land Subsidence to Groundwater Withdrawals

Sayantan Majumdar!, Ryan Smith!, Brian Conway?, and V Lakshmi?

"Missouri University of Science and Technology
2Arizona Department of Water Resources
3University of Virginia

October 15, 2021

Abstract

Groundwater plays a crucial role in sustaining global food security but is being over-exploited in many basins of the world.
Despite its importance and finite availability, local-scale monitoring of groundwater withdrawals required for sustainable water
management practices is not carried out in most countries, including the United States. In this study, we combine publicly
available datasets into a machine learning framework for estimating groundwater withdrawals over the state of Arizona. Here
we include evapotranspiration, precipitation, crop coefficients, land use, well density, and watershed stress metrics for our
predictions. We employ random forests to predict groundwater withdrawals from 2002-2020 at a 2 km spatial resolution using
in-situ groundwater withdrawal data available for Arizona Active Management Areas (AMA) and Irrigation Non-Expansion
Areas (INA) from 2002-2009 for training and 2010-2020 for validating the model respectively. The results show high training
(R2[?] 0.86) and good testing (R2[?] 0.69) scores with normalized mean absolute error (NMAE) [?] 0.64 and normalized
root mean square error (NRMSE) [?] 2.36 for the AMA/INA region. Using this method, we spatially extrapolate the existing
groundwater withdrawal estimates to the entire state and observe the co-occurrence of both groundwater withdrawals and land
subsidence in South-Central and Southern Arizona. Our model predicts groundwater withdrawals in regions where production
wells are present on agricultural lands and subsidence is observed from Interferometric Synthetic Aperture Radar (InSAR),
but withdrawals are not monitored. By performing a comparative analysis over these regions using the predicted groundwater
withdrawals and InSAR-based land subsidence estimates, we observe a varying degree of subsidence for similar volumes of
withdrawals in different basins. The performance of our model on validation datasets and its favorable comparison with
independent water use proxies such as InSAR demonstrate the effectiveness and extensibility of our combined remote sensing

and machine learning-based approach.
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AMA/INA Test Error Metric
R? NRMSE NMAE
Phoenix (PHX) 0.69 2.05 0.64
Pinal (PIN) 0.76 1.85 0.51
Tucson (TUC) 0.51 4.07 0.99
Santa Cruz (SCA) 0.66 2.79 0.75
Prescott (PRE) 0.59 3.24 1.01
Harquahala (HAR) 0.32 4.39 1.01
Douglas (DIN) 0.59 1.82 0.67
Joseph City (JCI) 0.76 2.29 0.77
Mean

gﬁn i;?l?ﬁ::s TS/TPGW Ifr‘:ﬁ?:;)‘;l‘l“;g;:’fir Reference

RAN [197.77 | 00001 | Unconfined g{lﬁ:; Sr‘l’édc‘);’l‘;é;‘;ayké(n b

MMU | 325.96 0.0981 Confined Stolley et al. (2020)

HAR | 361.45 0.0329 Unconfined/partially | golley et al. (2020)

confined
PHX |290.66 | 0.0038 Unconfined M. M. Miller and Shirzaei
(2015)

PIN 339.97 0.0118 Unconfined Rascona (2006)

TUC |260.53 0.001 Unconfined Eastoe and Gu (2016)

DOU | 12.07 0.0038 Unconfined" Coates and Cushman (1955)

DIN 324.58 0.0947 Partially confined Coates and Cushman (1955)

WIL 240.79 0.1069 Partially confined? Nelson et al. (2018)

SAF 207.95 0.0637 Partially confined Corkhill (2015)

T Wells along the edge of the basin, where this region lies, were interpreted by Coates and Cushman

(1955) not to have confining layers.

¥ Most wells drilled in the area that is presently subsiding at the time Coates and Cushman (1955) were

produced were shallow (average depth of 89 m), while wells drilled after 1955 were much deeper
(average depth of 145 m, ADWR, 2020). Coates and Cushman (1955) reported mostly unconfined

conditions with confining conditions observed at many deep wells (100 m depth and greater). For this

reason, we consider the principal aquifer at present to be partially confined.
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