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Abstract

Closed form expressions in real Clifford geometric algebras Cl(0,3), Cl(3,0), Cl(1,2), and Cl(2,1) are presented in a coordinate-

free form for exponential function when the exponent is a general multivector. The main difficulty in solving the problem is

connected with an entanglement (or mixing) of vector and bivector components ai and ajk in a form (ai-ajk)2, i[?] j[?] k . After

disentanglement, the obtained formulas simplify to the well-known Moivre-type trigonometric/hyperbolic function for vector

or bivector exponentials. The presented formulas may find wide application in solving GA differential equations, in signal

processing, automatic control and robotics.
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Summary

Closed form expressions in real Clifford geometric algebras Cl0,3, Cl3,0, Cl1,2, and
Cl2,1 are presented in a coordinate-free form for exponential function when the expo-
nent is a general multivector. The main difficulty in solving the problem is connected
with an entanglement (or mixing) of vector and bivector components ai and ajk in
a form (ai − ajk)2, i ≠ j ≠ k . After disentanglement, the obtained formulas sim-
plify to the well-known Moivre-type trigonometric/hyperbolic function for vector or
bivector exponentials. The presented formulas may find wide application in solving
GA differential equations, in signal processing, automatic control and robotics.
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1 INTRODUCTION

In the complex number algebra, which is isomorphic to Cl0,1 Clifford geometric algebra, the complex exponential may be
expanded into trigonometric function sum (de Moivre’s theorem). In 2D and 3D GA algebras similar formulas are known too
under the name “polar decomposition”. In particular, if the square of the blade is equal to ±1, then GA exponential can also be
expanded in de Moivre-type sum, i.e., in either trigonometric or hyperbolic functions respectively1,2,3. However, expansion of
GA exponential in case of 3D and higher algebras, when the exponent is a general multivector, as we shall see is much more
complicated and as far as the authors know has not been analyzed fully as yet. The authors of articles4,5 have considered general
properties of functions of MV variable for Clifford algebras n = p+ q ≤ 3, including the exponential function. For this purpose
they have made use of the property that in these algebras the pseudoscalar I commutes with all MV elements and I2 = ±1.
This has allowed to introduce more general functions related to a polar decomposition of MVs. However, the analysis is not full
enough. A different approach to resolve the problem is to factor, if possible, the exponential into product of simpler exponentials,
for example, in the polar form6,7,8,9. A general bivector exponential in Cl4,1 algebra was analyzed in10 in connection with 3D
conformal GA. In paper11, exact and closed form expressions for coefficients at basis elements to calculate GA exponentials in
coordinate form are presented for all 3D GAs. However, in this form the final MV formulas constructed in some orthogonal basis
are rather complicated and inconvenient to carry a detailed analysis of the properties of GA exponential functions, although
they may be useful in some practical cases, for example, for all-purpose computer programs to calculate GA exponentials with
numerical coefficients.
In this paper the exact exponential formulas11 are transformed to coordinate-free form what allows to carry a detailed analysis

and gives a clear geometric interpretation to the problem. Also, special cases where various additional conditions and relations
are imposed upon GA elements are considered what may be useful in applications of exponentials in practice. In Sec. 2 the
notation is introduced. In Sec. 3 the exponential of the simplest, namely Cl0,3 algebra is considered. Since algebras Cl3,0 and

0Abbreviations:MV, multivector; GA, geometric (Clifford) algebra; 3D, three dimensional vector space
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Cl1,2 are isomorphic, in Sec. 4 the exponentials for both algebras are investigated simultaneously. In Sec. 5 the exponential
of the most difficult Cl2,1 algebra is presented. In Sec. 6 possible applications of exponentials to solve GA linear differential
equations are presented. Finally, in Sec. 7 we discuss further development of the problem, including the inverse function, viz.
the GA logarithm.

2 NOTATION AND GENERAL PROPERTIES OF GA EXPONENTIAL

In calculations below we have intensively used our symbolic GA program written for Mathematica package12. In the pro-
gram, in GA space endowed with orthonormal basis we expanded a general 3D MV in inverse degree lexicographic ordering:
{1, e1, e2, e3, e12, e13, e23, e123 ≡ I}, where ei are basis vectors, eij are the bivectors and I is the pseudoscalar.1 The number of
subscripts indicates the grade. The scalar is a grade-0 element, the vectors ei are the grade-1 elements, etc. In the orthonormalized
basis used here the geometric product of basis vectors satisfies the anti-commutation relation,

eiej + ejei = ±2�ij . (1)

For Cl3,0 and Cl0,3 algebras the squares of basis vectors, correspondingly, are e2i = +1 and e2i = −1, where i = 1, 2, 3. For
mixed signature algebras such as Cl2,1 and Cl1,2 the squares are e21 = e22 = 1, e23 = −1 and e21 = 1, e22 = e23 = −1, respectively.
The general MV that belongs to real Clifford algebras Clp,q , when n = p + q = 3 can be expressed as

A = a0 + a1e1 + a2e2 + a3e3 + a12e12 + a23e23 + a13e13 + a123I
≡ a0 + a + + a123I,

(2)

where ai, aij and a123 are the real coefficients, and a = a1e1 + a2e2 + a3e3 and = a12e12 + a23e23 + a13e13 is, respectively, the
vector and bivector. I is the pseudoscalar, I = e123. Similarly, the exponential of A is denoted as

eA =B = b0 + b1e1 + b2e2 + b3e3 + b12e12 + b23e23 + b13e13 + b123I
≡ b0 + b +  + b123I.

(3)

The main involutions, namely the reversion, grade inversion and Clifford conjugation are denoted, respectively, by tilde,
circumflex and their combination,

Ã = a0 + a − − a123I, Â = a0 − a + − a123I,
˜̂
A = a0 − a − + a123I. (4)

2.1 General properties of GA exponential
The exponential of MV is another MV that belongs to the same geometric algebra. Therefore, we shall assume that the defining
equation for exponential is eA = B, whereA,B ∈ Clp,q and p+q = 3. The following general properties hold forMV exponential:

exp(A + B) = exp(A) exp(B) if and only if AB = BA,‹eA = eÃ, “eA = eÂ,
‹“eA = e

˜̂A,
V exp(A)V−1 = exp(VAV−1).

(5)

From the first formula the exponential identity follows expA = (expA∕m)m, m ∈ ℕ. In the numerical matrix function theory it
is frequently used where it is called the inverse scaling and squaring method13. The middle line of (5) indicates that involution
and exponentiation operations commute. In the last expression the transformation V, for example the rotor, has been lifted to
exponent, i.e. similarity transformation commutes with exponentiation.
The GA exponential eA can be expanded in a series that has exactly the same structure as a scalar exponential2,14, from

which GA trigonometric and hyperbolic GA functions as well as various other relations that are analogues of respective scalars

1An increasing order of digits in basis elements is used, i.e., we write e13 instead of e31 = −e13. This convention is reflected in opposite signs when expressions are
expanded in a coordinate basis.
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FIGURE 1 Change of value of coefficient a12 = 5 of Cl3,0 MV A = −8−6e2−9e3+5e12−5e13+6e23−4e123 with increasing
number of terms in the exponential series. The first significant figure for the MV coefficient is obtained after taking 64 series
terms. Similar behaviour is characteristic to other MVs and coefficients.

functions follow4,11. For example,
cos2 A + sin2 A = 1, cosh2 A − sinh2 A = 1,
sin(2A) = 2 sinA cosA = 2 cosA sinA,
cos(2A) = cos2 A − sin2 A.

(6)

Also, it should be noted that GA functions of the same argument commute. Thus, the sine and cosine functions as well as
hyperbolic GA sine and cosine functions satisfy: sinA cosA = cosA sinA and sinhA coshA = coshA sinhA.
In sections 3-5 the exact (symbolic) formulas for GA exponentials in an expanded form but coordinate-free form are presented.

If the MV is in a numerical form or one is interested in a checking of GA formula, for instance in a preliminary stage of
calculation, a finite series expansion may be useful as well. It is known that GA exponential is convergent for all MVs14,
however convergence is not monotonous (see fig. 1 ). To minimize the number of multiplications it is convenient to represent
the exponential in a nested form (aka Horner’s rule)

eA = 1 + A
1
(1 + A

2
(1 + A

3
(1 + A

4
(1 +…)))), (7)

which requires aminimal number ofMVproducts to calculate the truncated series thanworking out each power ofA. If numerical
coefficients inA are not too large the exponential eA can be approximated to high precision by (7). The series may be programmed
as a simple iterative procedure repeated k-times that begins from the end (dots) with the initial value at A∕k = 1 and then
iteratively moving to left.2
We start from the Cl0,3 GA where the expanded exponential in the coordinate form has the simplest MV coefficients.

3 MV EXPONENTIALS IN Cl0,3 ALGEBRA

3.1 Exponential in coordinate-free form
In GA the symbolic formulas may be written in coordinate and coordinate-free forms. The latter presentation is compact and
carries clear geometrical interpretation and therefore is preferred. However, the formulas written in the coordinates sometimes
may be useful too, in particular, in GA numerical calculations by non-symbolic programmes. In11 we have found a general MV
exponentials in coordinate form for all 3D GAs. Although the expressions are rather involved, however, they acquire a simple
form if coordinate-free notation (the second lines in Eqs. (2) and (3)) are used. Moreover, geometrical analysis of GA formulas
becomes simpler and more evident when formulas are rewritten in a coordinate-free form.

2InMathematica the algorithm reads expHorner[A−, n−] ∶=Module[{B = 1, s = n + 1},While[(s = s − 1) > 0, B = 1. + GP[B,A∕s]];B], where n is the number of
iterations and GP is the geometric product. If MV coefficients are large (aJ ≥ 3), in addition, the formula (exp(A∕m))m, where m is the integer, may be applied at first to
accelerate the convergence and then to raise the result to the mth power.
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In a case of Cl0,3 algebra, after multiplication of coordinates by respective basis elements and then collection to vector,
bivector, trivector and their products one can transform the exponential components11 to a generic coordinate-free form,

exp(A) =1
2
ea0

(

ea123(1 + I)
(

cos a+ +
sin a+
a+

(a +)
)

+ e−a123(1 − I)
(

cos a− +
sin a−
a−

(a +)
)

)

. (8)

where a− and a+ are the scalars,

a− =
√

−(a ⋅ a + ⋅) + 2Ia ∧ =
√

(a3 + a12)2 + (a2 − a13)2 + (a1 + a23)2, (9)

a+ =
√

−(a ⋅ a + ⋅) − 2Ia ∧ =
√

(a3 − a12)2 + (a2 + a13)2 + (a1 − a23)2 . (10)

The scalars show how the vector and bivector components are entangled (mixed up). As we shall see the appearance of trigono-
metric functions in Eq. (8) indicates that the exponential inCl0,3 (and in all remaining 3D algebras) has an oscillatory character as
a function of the coefficients, similarly as it is in the Moivte formula case. When the denominator in the formula (8), either a+ or
a−, reduces to zero we will have a special case. The generic formula (8) then should be modified by replacing the corresponding
ratios by their limits, lima±→0

sin a±
a±

= 1.
If either vector a or bivector  in (8)-(10) is absent then a+ = a− ≡ a, where a is a magnitude of the vector a =∣ a ∣=

(

a˜̂a) 1
2 =

√

a21 + a
2
2 + a

2
3 , or of the bivector a =∣  ∣=

(

‹“)
1
2 =

√

a212 + a
2
13 + a

2
23 . If, in addition, the scalar and pseudoscalar

are absent, a0 = a123 = 0, the formula (8) reduces to the well-known trigonometric expressions for exponential of vector and
bivector in a polar form2, namely,

ea = cos ∣ a ∣ + a
∣ a ∣

sin ∣ a ∣, e = cos ∣  ∣ + 
∣  ∣

sin ∣  ∣ . (11)

Note that the appearance of trigonometric functions in (11) is due to vector and bivector properties, a2 < 0 and2 < 0 in Cl0,3.
If exponential consists of scalar and pseudoscalar only then a+ = a− = 0 and the Eq. (8) simplifies to hyperbolic sine and
cosine functions,

ea0+Ia123 = ea0(cosh a123 + I sinh a123), I2 = 1. (12)
In the following we shall distinguish two kinds of coordinate-free formulas for exponential functions, namely, generic and

special. The formula (8) is an example of generic formula since it is valid for almost all real coefficient aJ values, where J is a
compound index: J = i, ij, or ijk. The expression (12) represents the special formula, since in the case a+ = 0 and/or a− = 0
we have division by zero in (8) and therefore should use a modified formula (which, in this case can be obtained by computing
limit of (8) when a+ → 0, and/or a− → 0). On the other hand the Eq. (11) represents an important in practice case of generic
solution (obtained by simply equating the coefficients at scalar and pseudoscalar and, respectively, at bivector and vector, to
zero). For completeness, it would be interesting to remark that in a case of logarithmic functions one may add an additional free
MV to the generic or special symbolic solution15. Such free terms do not appear for GA exponential functions.

Example 1. Exponential of MV in Cl0,3. Let’s compute the exponential of A = −8 − 6e2 − 9e3 + 5e12 − 5e13 + 6e23 − 4e123
using the coordinate-free expression (8). We find a− =

√

53 and a+ =
√

353 . The exact numerical answer then is

exp(A) = e−8

2

(

e4(1 − e123)
(

cos
√

53 + sin
√

53
√

53
(−6e2 − 9e3 + 5e12 − 5e13 + 6e23)

)

+ e−4(1 + e123)
(

cos
√

353 + sin
√

353
√

353
(−6e2 − 9e3 + 5e12 − 5e13 + 6e23)

)

)

.

For comparison, the calculation of the exponential series (7) by Mathematica v.12 in a floating point regime gives six significant
figures of the exact solution after summation of 70 series terms (iterations). However, it should be stressed that the convergence
is alternating and not monotonic (see fig. 1 ), and to get the first significant figure for all basis MV elements no less than 64
series terms (iterations) are needed in this particular case. The iteration number may be decreased if the inverse scaling and
squaring method13 is applied (see subsection 2.1) at a price of computing MV powers.

3.2 Vector-bivector entanglement in Cl0,3
In equations (9) and (10), the outer product a∧ in general case is a trivector. It entangles or mixes up the components of vector
and bivectorin in the exponential (8). This is easy to see if we equate to zero either a or . Then, a+ = a− =∣ a ∣ if  = 0 and
a+ = a− =∣  ∣ if a = 0, where ∣ a ∣=

(

a˜̂a) 1
2 and ∣  ∣=

(

‹“)
1
2 . The trivector also vanishes if a and are unequal to zero but
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the vector a lies in the plane . In this case3 the components satisfy the condition Ia ∧ = a1a23 − a2a13 + a3a12 = 0. Then
the entanglement (mixing) coefficients become a+ = a− → am =

√

∣ a ∣2 + ∣  ∣2 and the exponential (8) reduces to

eA = ea0eIa123
(

cos am + a +
am

sin am
)

, a‖. (13)

Thus, the exponential eA in this case can be factorized. It is interesting that the multiplier in round brackets now represents a
disentangled Moivre-type formula for a sum of vector and bivector, where the magnitude of (a +) is

am =∣ a + ∣=

√

(a +)
·�◊�(a +) =

√

∣ a ∣2 + ∣  ∣2. (14)

We shall remind that in Eq. (13) the vector a lies in the plane . A similar formula can be obtained in opposite case if we
assumes that, for example, the vector a‖e3 is perpendicular to bivector ‖e12 and a3a12 ≠ 0, i.e., the vector and bivector are
characterized by a single scalar term in the entanglement formula.4 Then the expression (8) gives

eA = −
(

cos(a12 − a3) +
a12e12 + a3e3
a12 − a3

sin(a12 − a3)
)

. (15)

In conclusion, apart from Moivre-type expressions (see Eqs. (11) and (12)), the generic GA exponential (8) also contains
entangled MVs which under additional conditions may be disentangled as seen from Eqs (13) and (15).

4 MV EXPONENTIALS IN Cl3,0 AND Cl1,2 ALGEBRAS

After multiplication of the scalar coefficients given in11 by respective basis elements and collection into a sum, and finally
combining the resulting expression into a coordinate-free form we find the generic exponential of MV A,

exp(A) =ea0(cos a123 + I sin a123)
(

cos a− cosh a+ + I sin a− sinh a+

+ 1
a2+ + a2−

(

cosh a+ sin a− − I cos a− sinh a+
)(

a−(a +) + a+I(a +)
)

)

, (16)

where scalar coefficients a± are

a− = −2Ia ∧
√

2
√

a ⋅ a + ⋅ +
√

(a ⋅ a + ⋅)2 − 4(a ∧)2
,

a+ =

√

a ⋅ a + ⋅ +
√

(a ⋅ a + ⋅)2 − 4(a ∧)2
√

2
, when a ∧ ≠ 0, and (17)

{

a+ =
√

a ⋅ a + ⋅, a− = 0, a ⋅ a + ⋅ > 0
a+ = 0, a− =

√

−(a ⋅ a + ⋅), a ⋅ a + ⋅ < 0,
when a ∧ = 0.

Since Eq. (16) is in a coordinate-free form the above formulas are valid for both mutually isomorphic Cl3,0 and Cl1,2 algebras.
If formulas are expanded into coordinates, of course, the resulting expressions will differ by signs at some terms. Note that
determinant5 of a vector and bivector part a +  is Det(a + ) = (a2+ + a2−)

2. When Det(a + ) = 0 we have special case
exp(A) = ea0(cos a123+I sin a123)which again can be straightforwardly obtained by computing limit of (16), when both a+ → 0
and a− → 0. Simultaneous vanishing of a+ and a− means vanishing of both the inner a ⋅ a + ⋅ and outer a ∧ products.
Then the well-known Moivre-type formulas from Eq. (16) follow

expA = ea0(cos a123 + sin a123I) a =  = 0, (18)

exp = cos ∣  ∣ + 
∣  ∣

sin ∣  ∣ a0 = a123 = a = 0, (19)

exp a = cosh ∣ a ∣ + a
∣ a ∣

sinh ∣ a ∣ a0 = a123 =  = 0. (20)

3Such a situation is encountered in classical electrodynamics where magnetic field bivector and electric field vector of a free wave lie in a the same plane.
4This approach reminds a popular method in physics where a judicious choice of mutual orientation of the fields and coordinate vectors allows to simplify the problem

substantially.
5In 3D algebras the determinant of MV A is defined by Det(A) = A˜̂AÂÃ 16,17. This determinant should not be confused with a MV transformation determinant 18.
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The equation (18) represents a special case when a+ = a− = 0.
Similarly to Cl0,3 algebra (see subsec. 3.2), in the exponential (16) the vector and bivector may be disentangled if we assume

that a‖, i.e., the vector a lies in the plane . Then, the vector-bivector sum is expressed by trigonometric and hyperbolic
functions in both Cl3,0 and Cl1,2 algebras,

expA =

⎧

⎪

⎨

⎪

⎩

cos
√

∣  ∣2 − ∣ a ∣2 + a+
√

∣∣2−∣a∣2
sin

√

∣  ∣2 − ∣ a ∣2 if a2 < 2,

cosh
√

∣ a ∣2 − ∣  ∣2 + a+
√

∣a∣2−∣∣2
sinh

√

∣ a ∣2 − ∣  ∣2 if a2 > 2.
(21)

Example 2. Exponential of MV inCl3,0. Let’s take the sameMVA = −8−6e2−9e3+5e12−5e13+6e23−4e123 as in Example 1
and calculate the exponential using the coordinate-free expression (16). We find a ⋅ a + ⋅ = 31, −2Ia ∧ = −150. Then

a− = −75
√

2
31+

√

23461
and a+ =

√

31+
√

23461
2

. Finally, the exact numerical answer is

exp(A) = 1
e8
(

cos(4) − sin(4)I
)

(

cos
(

75
√

2
31+

√

23461

)

cosh
(

√

31+
√

23461
2

)

− sin
(

75
√

2
31+

√

23461

)

sinh
(

√

31+
√

23461
2

)

I

+ 1
√

23461

(

(

−75
√

2
31+

√

23461
(−6e2 − 9e3 + 5e12 − 5e13 + 6e23) +

√

31+
√

23461
2

(−6e2 − 9e3 + 5e12 − 5e13 + 6e23)I
)

×
(

− sin
(

75
√

2
31+

√

23461

)

cosh
(

√

31+
√

23461
2

)

− cos
(

75
√

2
31+

√

23461

)

sinh
(

√

31+
√

23461
2

)

I
)

))

. (22)

Example 3. Exponential in Cl1,2 with disentanglement included. Let’s take a simple MV, A = 3− e1+2e12, which represents
disentangled case because a ∧  = 0. Then we have a+ =

√

5 and a− = 0. The answer is expressed in hyperbolic functions:
exp(A) = e3

(

cosh
√

5 +
(

−e1 + 2e12
) sinh

√

5
√

5

)

.

5 MV EXPONENTIAL IN Cl2,1

After assembling coefficients given in11 into MV and then regrouping them to coordinate-free form we find the following
exponential formula in Cl2,1

exp(A) =1
2
ea0

(

ea123(1 + I)
(

co(a2+) + si(a2+)(a +)
)

+ e−a123(1 − I)
(

co(a2−) + si(a2−)(a +)
)

)

, (23)

where the scalar coefficients a± are

a2− = − (a ⋅ a + ⋅) + 2Ia ∧, a2− ≷ 0, (24)
a2+ = − (a ⋅ a + ⋅) − 2Ia ∧, a2+ ≷ 0.

To simplify notation in Eq. (23) we have introduced si and co functions that depending on sign under square root go over to
either trigonometric or hyperbolic functions. All in all, this gives four cases for both si and co functions,

si(a2+) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

sin
√

a2+
√

a2+
, a2+ > 0

sinh
√

−a2+
√

−a2+
, a2+ < 0

; co(a2+) =

⎧

⎪

⎨

⎪

⎩

cos
√

a2+, a2+ > 0

cosh
√

−a2+, a2+ < 0
; (25)

si(a2−) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

sin
√

a2−
√

a2−
, a2− > 0

sinh
√

−a2−
√

−a2−
, a2− < 0

; co(a2−) =

⎧

⎪

⎨

⎪

⎩

cos
√

a2−, a2− > 0

cosh
√

−a2−, a2− < 0
. (26)
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When a− = 0 and/or a+ = 0 we have special cases, which again can be easily included taking already mentioned limits, i.e., by
putting co(0) = 1 and si(0) = 1.

5.1 Special cases
If both the vector a and the bivector  are equal to zero the exponential (23) simplifies to expA = exp(a0 + Ia123) =
ea0(cosh a123 + I sinh a123).
The exponential of vector, when a0 = a123 =  = 0, is

exp(a) =
⎧

⎪

⎨

⎪

⎩

cos
√

−a2 + a
√

−a2
sin

√

−a2 if a2 < 0,

cosh
√

a2 + a
√

a2
sinh

√

a2 if a2 > 0.
(27)

The exponential of bivector, when a0 = a123 = a = 0, is

exp() =

⎧

⎪

⎨

⎪

⎩

cos
√

−2 + 
√

−2
sin

√

−2 if 2 < 0,

cosh
√

2 + 
√

2
sinh

√

2 if 2 > 0.
(28)

If a0 and a123 are not equal to zero then exp(a) and exp() should be multiplied by ea0(cosh a123 + I sinh a123).

Example 4. Exponential of MV in Cl2,1. Case a2− < 0, a2+ > 0.
Using the same MV A = −8− 6e2 − 9e3 + 5e12 − 5e13 + 6e23 − 4e123 for Cl2,1 now we have a2− = −141, a2+ = 159. The answer
then is

exp(A) = 1
2e8

(

1
e4
(1 + I)

(

sin
√

159
√

159

(

−6e2 − 9e3 + 5e12 − 5e13 + 6e23
)

+ cos
√

159
)

+ e4(1 − I)
(

sinh
√

141
√

141

(

−6e2 − 9e3 + 5e12 − 5e13 + 6e23
)

+ cosh
√

141
)

)

.

Example 5. Exponential in Cl2,1. Case a2− < 0, a2+ < 0. Multivector A = −6e2 + 5e12 + e123 of Cl2,1. a2− = −11, a2+ = −11.
The exponential is

exp(A) =1
2

(

(

e(1 + I) + e−1(1 − I)
)

(

sinh
√

11
√

11

(

−6e2 + 5e12
)

+ cosh
√

11
)

)

.

Example 6. Exponential in Cl2,1. Case a2− > 0, a2+ > 0. Exponential of A = 2+ e3 +6e12 +3e123 of Cl2,1. We have a2− = 49,
a2+ = 25. The answer then is

exp(A) =e2
2

(

e3(1 + I)
(

sin 5
5

(

e3 + 6e12
)

+ cos 5
)

+ e−3(1 − I)
(

sin 7
7

(

e3 + 6e12
)

+ cos 7
)

)

.

Example 7. Exponential in Cl2,1. Case a2− > 0, a2+ < 0. A = 2 − 10e2 − 10e3 + 2e13 + e23 + e123, a2− = 35, a2+ = −45. The
answer is

exp(A) =e2
2

(

e(1 + I)
(

sinh 3
√

5
3
√

5

(

−10e2 − 10e3 + 2e13 + e23
)

+ cosh(3
√

5)
)

+ e−1(1 − I)
(

sin
√

35
√

35

(

−10e2 − 10e3 + 2e13 + e23
)

+ cos
√

35
)

)

.

6 EXAMPLES OF APPLICATION: DIFFERENTIAL GA EQUATION-SOLVING

The exponential function plays an important role in solution of linear differential equations19. For example, the solution of a
homogeneous equation

dX
dt

= AX, X = X0 at t = 0, (29)
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with respect to MV X gives GA exponential function X(t) = etAX0, where t is the parameter, for instance, the time. Treating
tA as a new MV, after expansion of etA we will get the evolution of X in time. More generally, with suitable assumptions upon
smoothness of X(t), the solution of the inhomogeneous system

dX
dt

= AX + f (t), X = X0 at t = 0, (30)

may be expressed by

X(t) = etAX0 +

t

∫
0

e(t−s)Af (s)ds. (31)

Some of MV differential equations, for example,
dX
dt

= AX ± XB, X = X0 at t = 0, (32)

have solution that consists of a product of GA exponentials: X(t) = etAX0e±tB. The answer can be easily checked by direct
substitution of X(t) into Eq. (32) and application of Leibniz’s differentiation theorem18. If B = A and the sign is negative we
will get the rotor equation.
Trigonometric GA functions, as well as GA roots, arise in the solution of second order differential equations. For example,

the GA equation13

d2X
dt2

+ AX = 0, at t = 0, X = X0 and (dX∕dt)t=0 = X′
0, (33)

has the solution
X(t) = cos

(

√

A t
)

X0 +
(

√

A
)−1 sin

(

√

A t
)

X′
0, (34)

where
√

A is the square root of A. The trigonometric functions of MV argument can be expressed by exponentials4,11. Closed
form expression for square root of MVwhen p+q = 3 are presented in20. A concrete example of application of GA exponentials
in physics can be found in paper11.

7 CONCLUSIONS AND DISCUSSION

The main results of this paper are the formulas (8), (16) and (23), where real GA exponentials are presented in an expanded
coordinate-free form. Since in 3D algebras the scalar and pseudoscalar belong to GA center, the related coefficients a0 and a123
appear in scalar exponentials only. In all algebras the entanglement (mixing) of vector and bivector components takes place.
The mixing is characterized by scalar coefficients a+ and a−, where the terms of the form (ai − ajk)2, i ≠ j ≠ k appear.
The entanglement can be eliminated by equating to zero either vector or bivector, as a result the well-known trigonometric
and hyperbolic Moivre-type formulas for vector and bivector exponentials are recovered. However, more interesting case is the
disentanglement when the vector is parallel to bivector. In this orientation we obtain the exponential which consists of a sum of
scalar, vector and bivector, Eqs. (13) and (21). Finally, we shall note that for n = p+q = 3 algebras the characteristic polynomial
of matrix representation is of degree 4. Since the algebraic equations of degree 4 are solvable in radicals, our results, the Eqs (8),
(16) and (23) are consistent with this theorem. Moreover, characteristic polynomials of GAs with n = 4 are also of degree 4. It
follows that explicit expressions for exponents can in principle be derived for n = 4 and even for n = 5, due to block diagonal
form of matrix representations of n = 5 algebras.
The GA exponentials with complex coefficients also need deeper analysis, more so, since the relativity theory may be

embedded into complexified 3D algebras21.
The logarithm function is closely related to exponential. Our attempts to find real GA logarithm from general GA exponentials

revealed that the GA logarithm problem is more difficult15, albeit symbolically trackable. Similarly to complex logarithm, the
GA logarithm is a not a single valued function and therefore one must proceed with caution not to mix different branches in
reducing the logarithm to a principal value. In addition, it appeared that to GA logarithm one may add a free MV that vanishes
after exponentiation. Knowledge of explicit forms of both exponents and logarithms opens a way to compute exact symbolic
expressions for trigonometric/hyperbolic functions and their inverses of single MV at least for 3D GAs.
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SUPPORTING INFORMATION

The following supporting information is available as part of the online article: https://github.com/ArturasAcus/
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