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Abstract

Background Vaccines that incorporate multiple SARS-CoV-2 antigens can further broaden the breadth of virus-specific cel-
lular and humoral immunity. This study describes the development and immunogenicity of SARS-CoV-2 VLP vaccine that
incorporates the 4 structural proteins of SARS-CoV-2. Methods VLPs were generated in transiently transfected HEK293
cells, purified by multimodal chromatography and characterized by tunable resistive pulse sensing, AFM, SEM, and TEM.
Immunoblotting studies verified the protein identities of VLPs. Cellular and humoral immune responses of immunized animals
demonstrated the immune potency of the formulated VLP vaccine. Results Transiently transfected HEK293 cells reproducibly
generated vesicular VLPs that were similar in size to and expressing all four structural proteins of SARS-CoV-2. Alum ad-
sorbed, K3-CpG ODN adjuvanted VLPs elicited high titer anti-S, anti-RBD, anti-N IgG, triggered multifunctional Thl biased
T cell responses, reduced virus load and prevented lung pathology upon live virus challenge in vaccinated animals. Conclusion
These data suggest that VLPs expressing all four structural protein antigens of SARS-CoV-2 are immunogenic and can protect

animals from developing COVID-19 infection following vaccination.
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ABSTRACT

Background Vaccines that incorporate multiple SARS-CoV-2 antigens can further broaden the breadth of
virus-specific cellular and humoral immunity. This study describes the development and immunogenicity of
SARS-CoV-2 VLP vaccine that incorporates the 4 structural proteins of SARS-CoV-2.

Methods VLPs were generated in transiently transfected HEK293 cells, purified by multimodal chromatog-
raphy and characterized by tunable resistive pulse sensing, AFM, SEM, and TEM. Immunoblotting studies
verified the protein identities of VLPs. Cellular and humoral immune responses of immunized animals
demonstrated the immune potency of the formulated VLP vaccine.

Results Transiently transfected HEK293 cells reproducibly generated vesicular VLPs that were similar in
size to and expressing all four structural proteins of SARS-CoV-2. Alum adsorbed, K3-CpG ODN adjuvanted
VLPs elicited high titer anti-S, anti-RBD, anti-N IgG, triggered multifunctional Th1 biased T cell responses,
reduced virus load and prevented lung pathology upon live virus challenge in vaccinated animals.

Conclusion These data suggest that VLPs expressing all four structural protein antigens of SARS-CoV-2
are immunogenic and can protect animals from developing COVID-19 infection following vaccination.
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CpG ODN Adjuvant, COVID-19, SARS-CoV-2, , Vaccine, Virus like particle,
Introduction

Rapid development of effective vaccines is indispensable in constraining the COVID-19 pandemic. Multi-
ple highly effective COVID-19 vaccines have recently been approved for human use and several are still in
clinical development.! The majority of current SARS-CoV-2 vaccines target only the Spike (S) antigen with
the main intent of eliciting neutralizing antibodies against the receptor binding domain (RBD) to neutralize
infection.?6 However, the emergence of variants of concern Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1)
and Delta (B.1.617.2) with altered S sequences, raises concerns on dependence on S-based vaccines, par-
ticularly in light of recent evidence indicating the potential for variants to at least partially escape from
neutralizing antibodies.”'® Although neutralizing and spike binding antibodies strongly correlate with pro-
tective immune mechanisms'?, cellular immunity also likely contributes to virus clearance.??-23 In addition to
spike, targeting of other SARS-CoV-2 antigens in vaccines, such as the membrane (M) and nucleocapsid (N),
could hypothetically present an advantage over S-dependency of vaccines two-fold: First, M and N harbor



immunodominant CD4+ and CD8+ T-cell epitopes that can further broaden the breadth of cellular and
humoral immunity;24Second, non-neutralizing anti-N antibodies can potentially contribute to heterosubtypic
immunity, as previously demonstrated for other enveloped viruses.?>26 To this end, herein, we describe the
preclinical development of a virus like particle (VLP) vaccine expressing the Hexaproline prefusion stabi-
lized spike (S-6p)27 in addition to N, M and envelope (E) of SARS-CoV-2 structural proteins. To improve
immunogenicity, S-6p VLPs were adsorbed to alhydrogel (alum) and formulated with a K-type CpG ODN
(also referred to as B type) as a vaccine adjuvant to boost both humoral and cellular (Thl cells and CTL)
immunity.28-39

MATERIALS AND METHODS
Cloning of VLP encoding genes

Human codon optimized genes coding for WT, 2p-S, HexaPro Spike (6p-S)27, membrane glycoprotein (M)
(NCBI Refseq: YP_009724393.1), envelope (E) (NCBI Refseq: YP_009724392.1) and nucleocapsid (N) (NCBI
Refseq: YP_009724397.2) proteins of SARS-CoV-2 were synthesized by Integrated DNA Technologies, Inc.
(California, USA) with a C- terminus histidine tag. In order to achieve mammalian expression of S, M, E
and N genes, pVitrol and pVitro2 mammalian dual expression plasmids (Invivogen, France) were used. The
sequences for S (WT, 2p-S, 6p-S) were cloned at the BamHI site and the sequence of E was cloned at the
BgllI site of the pVitro2 plasmid. The sequence for M was inserted at the BamHI while N was cloned at
the BgllI site of pVitrol. Plasmid sequences were verified by next generation sequencing (NGS) (Intergen,
Ankara).

Transient transfection of suspension HEK?293 cells

HEK293 suspension adapted cells (Florabio, Turkey) were grown in serum free Orchid293 CD transfection
medium (Florabio, Izmir) supplemented with 400 mg/L L-glutamine (Sigma, Canada). Cells were transiently
transfected with 1 ug each of pVitrol + pVitro2 and PEIpro (Polyplus, France) at a ratio of 2:1 (v/w). 96-
120 hours of post-transfection, VLP containing culture supernatants were harvested and filtered through a
0.22 ym filter membrane.

Purification of VLPs

To eliminate host cell-derived nucleic acids, the harvest was treated with 200 U/ml of Denarase (c-LEcta,
Germany) for 2 hours at 37°C. VLPs were purified on a Hi-Screen Capto Core 400 (Cytiva, USA) column using
AKTA-CO fast protein liquid chromatography system (Cytiva, USA). Flow-through fractions containing
VLPs were pooled and subjected to ultrafiltration/dialfiltration on a Sartocon®) Slice 200 Hydrosart@®)
100kDA (Sartorius, Germany) cassette.

SDS-PAGE, Western blotting and VLP quantification

For SDS-PAGE, the samples were mixed with reducing 4X Laemmli Buffer and denatured at 95°C for 5
minutes. 18 pl of sample was loaded into each well of 4-20% Mini-PROTEAN TGX Stain-Free Protein Gel
(Bio-Rad, USA). Following completion of SDS-PAGE, gels were transferred to a PVDF 0.2 ym membrane
using the Mini Trans-Blot@®) Cell System (Bio-Rad, USA) for an hour at 100V. As primary antibodies,
HRP-conjugated 6xHis, His-Tag antibody (Proteintech, USA), Spike-S1 and Nucleocapsid antibody (ProSci,
USA) were used. Anti-rabbit and anti-mouse secondary antibodies were used for anti-spike S1 and anti-N
immunoblots. The HRP activity was detected with ECL Prime HRP Reagent (Cytiva, U.S.A.) and imaged
by an Amersham Imager 600 (Cytiva, USA). VLP content was quantified with the Pierce™ micro BCA
protein assay kit (Thermo Fisher Scientific, USA) according to manufacturer’s instructions.

Characterization of VLPs by SEM, AFM and TEM

A 10 pl of the VLP solution was deposited onto a silica surface, air-dried and sputter-coated with 8 nm of
Au/Pd alloy using a precision coating system prior to imaging on an environmental SEM (Technia; FEI,
USA).



Purified VLPs were diluted 1:100 in PBS and adsorbed onto mica sheets. The adsorbed samples were air-
dried and micrometer-scale AFM imaging was conducted in non-contact dynamic mode (NanoMagnetics
Instruments, Turkey) according to manufacturer’s instructions. Scans were analyzed using the NMI Image
Analyzer software.

VLP producing HEK293 cells were processed for standard TEM. Briefly, cells were fixed in 2% glutaraldehyde
30 min at RT, fixed in 1% osmium tetroxide, dehydrated through a graded series of ethanol (30-100%) and
embedded in Epon 812 resin. Sections were stained with uranyl acetate and lead citrate. Imaging was
performed at 80 kV using a JEOL-JEM 1400 transmission electron microscope. Digital images of the
specimens were acquired using a CCD camera (Gatan Inc., USA).

Nanoparticle Analysis of VLPs Using TRPS

Tunable resistive pulse sensing (TRPS) measurements were executed with the gNano Gold (IZON S/N 601A)
system and analyzed with the IZON Control Suite 3.4.2.48 software (IZON Science LTD). The calibration
particles, IZON coating solution, wetting solution and nanopores were used according to the manufacturer’s
protocols. 35uL of 1:1000 diluted calibration particles (CPC100, IZON Reagent Kit, RK3-167) or sample
liquid was loaded and each sample reading was repeated three times.

Bead Based Binding Assays

Carboxyl modified latex beads (2 mg of 4% (w/v), Thermo Fisher Scientific, USA) were coated with 5ug
recombinant hACE2 (ProSci, USA) or recIL-1f in PBS and blocked in 5% BSA in PBS. Beads were washed
once and resuspended in 5% BSA/PBS/0.05% NaN3 (FACS buffer). VLPs were loaded with 50 uM car-
boxyfluorescein succinimidyl ester (CFSE) for 30 mins at 37°C and free dye was removed using a HiTrap®)
Desalting column (Cytiva, U.S.A.). Recombinant hACE2 and anti-IL1$ coated beads were diluted 1:50.
CFSE labelled VLPs were serially diluted five times, each dilution was mixed with an equal volume of
coated bead followed by overnight incubation at 4°C. Beads were washed three times and analyzed on a
Novocyte 3000 flow cytometer.

Immunization studies

All animal studies were conducted with prior approval of the animal ethics committee of Bilkent University
(BIAEC, 2020-7/14.42020).

VLPs were adsorbed onto 2% Alhydrogel® (10.2 mg/mL, Alum hereafter) and adjuvanted with K3-CpG
ODN (2.6pg/mL). Groups of female mice (BALB/c, C57BL/6, or K18 hACE2 Tg, 6-8 weeks old, N=5-
12/group in separate experiments) were subcutaneously (s.c.) injected with 200 ul VLP vaccine (0.75-24
ug VLP antigen) two weeks apart. On indicated days, mice were bled and sera were stored at -20°C until
further use. In some experiments, WT, 2p- or 6p-spike expressing VL.Ps were formulated only with Alum, or
K3-CpG ODN. In rat and ferret immunization experiments, 10 or 40 ug VLP adsorbed onto 600 pg Alum
and adjuvanted with 300 pg K3-CpG ODN) was s.c. injected two weeks apart and blood was collected on
indicates days.

IgG ELISA

Maxibinding semi-hydrophobic ELISA plates (SPL Life Sciences, Korea) were coated with 50 pl/well in-house
recombinant 6p-S (5 pg/ml) and nucleocapsid (20 yg/ml), RBD (3 pg/ml) and inactive SARS-CoV-2 virus
(5 pg/ml) in PBS at 4°C overnight. 1:50 diluted mice sera were 5-fold serially diluted in 5% BSA in PBS-
Tween (0.05%). ALP conjugated anti-mouse IgG, anti-mouse IgG1 and anti-mouse IgG2a (Southern Biotech,
USA) antibodies were utilized at a 1:1000 dilution. PNPP substrate was added according to manufacturer’s
instructions. OD values were measured at 405nm with a microplate reader (Molecular Devices, USA).

Cytometric Bead Array for Measurement of CD4+ Helper T Responses

CD4+ T helper cell cytokine levels were assessed with the LEGENDplex MU Th Cytokine Panel (12-plex)
w/ VbP V03 kit (Biolegend, U.S.A.) according to the manufacturer’s instructions from the supernatants of



splenocytes stimulated with nucleocapsid (20 pg/ml) and 6p-Spike proteins (5 pg/ml).
SARS-CoV-2 challenge in K18 hACE2 transgenic mice

ACE2 Tg BALB/c mice (6-8wks old, 10mice/group) were immunized twice subcutaneously 14 days apart
with low (10ug) or high (40ug) dose of VLP+Alum+K3-CpG vaccine or with placebo. On day 36, mice were
challenged for three consecutive days with live SARS-CoV-2 virus (10°pfu/50ul) intranasally. One week
after last virus instillation, animals were sacrificed and major organs were recovered. Viral loads in lung
specimens were assessed by qRT-PCR using nucleocapsid primers NCland NC2.

Histomorphometric Evaluation

Lung samples were fixed in buffered formaldehyde solution. Tissues were dehydrated in an automated tissue
processor (TP1020, Leica, Germany). Sections were obtained in a temperature-controlled paraffin station
(LG1150H-C, Leica, Germany) on a sliding microtome (SM2000R, Leica, Germany), were deparaffinized at
600C overnight and stained with Hematoxylin-Eosin and Gomori’s Trichrome techniques. All sections were
evaluated using a bright field microscope with a camera attachment using an image analysis program (DM6B,
DFC7000T, LAS X, Leica, Germany). Inflammation was semi-quantitatively scored between 0 and 5 in the
perivascular, peribronchiolar, subpleural regions and in the whole section. American Thoracic Society’s
acute lung injury scoring was followed to report total lung injury.*® The parenchymal inflammation area
was evaluated for each animal by combining the images obtained at 4x magnification using Tile Scanning
feature of the analysis program and the area of inflammation was calculated quantitatively in um? and then
proportioned to the total lung area.

Virus Neutralization Assay

Heat-inactivated two-fold serially diluted sera were mixed with an equal volume of 100 TCID50 of SARS-
CoV-2 for 1 hour at 37°C. 100 yL of each dilution was transferred in quadruplicate onto VERO E6 cells.
After 4 days of incubation, plates were inspected by an inverted optical microscope and the highest serum
dilution that protected more than 90% of cells from cytopathic effect CPE was taken as the neutralization
titre.

Statistical Analysis

Statistical differences of all treatment groups were analyzed using Graph Pad Prism 9 statistical software.
Groups were compared by one-way ANOVA with Dunnett’s multiple comparisons test. In all analyses a p
value below 0.05 was considered to be statistically significant.

Results
Expression, purification and characterization of SARS-CoV-2 VLPs

A panel of spike (S) protein encoding genes (with unmodified and modified versions) of SARS-CoV-2 S,
membrane glycoprotein (M), envelope (E) and nucleocapsid (N) were engineered (Figure 1A). Spike genes
were designed and synthesized in three forms: WT with unmodified S, 2P with two proline substitutions
(K986P, VI987P)31-34 or 6P with six proline substitutions (F817P, A892P, ASI9IP, A942P, K9IS6P, VISTP)2"
to stabilize the prefusion conformation. Modifications made to the polybasic furin cleavage site between S1
and S2, locations of the CD33 signal sequence, T4 fibritin (foldon) trimerization motif and the histidine tag
sequence are also indicated in Figure 1A. For the nucleocapsid construct, amino acid sequence of the authentic
virus was used without modification. S, M, E and N genes were codon optimized for mammalian cells and
cloned into pVitrol (N and M) and pVitro2 (WT, 2P or 6P S, and E) dual mammalian expression plasmids.
Transient transfection of pVitrol and pVitro2 S,M,E and N-encoding plasmids into HEK293 cells resulted in
cellular assembly, secretion and subsequent accumulation of VLPs in culture supernatant. For the purification
of SARS-CoV-2 VLPs (Figure 1B), Denarase treated and clarified cell culture supernatant was loaded onto a
HiScreen CaptoCore 400 multimodal size-exclusion/ion-exchange chromatography column (Cytiva, Sweden)
and pooled flow-through fraction was subjected to ultrafiltration/diafiltration. VLPs were characterized by
transmission electron microscopy (TEM; Figure 1C), scanning electron microscopy (SEM; Figure 1D), atomic



force microscopy (AFM; Figure 1E), tunable resistive pulse sensing (TRPS; Figure 1F) and immunoblotting
for SARS-CoV-2 antigen content using anti-His-Tag, anti-N (Figure 1G) and anti-S1 antibodies (Figure 1H).
HEK?293 producer cells released intact VLPs into the culture supernatant (Figure 1C). Purified VLPs were
spherical, vesicular structures (Figures 1D and E) that were similar in size to SARS-CoV-2 virions (117438,
127441 and 119436 for the WT, 2p or 6p incorporating VLPs, respectively; Figure 1F). Spike protein
expression in 2p-VLPs was enhanced relative to WT spike displaying VLPs, whereas 6p-S base construct
enabled maximal spike incorporation (Figure 1G). Membrane, envelope and nucleocapsid expressions were
relatively stable and did not change substantially among WT, 2p or 6p spike expressing VLPs (Figure 1G).
Comparison of spike-specific immunoblots of 6p-VLPs with inactivated SARS-CoV-2 virions revealed that
6p-VLPs displayed intact full-length spike, whereas a substantial amount of the spike protein generated S1
fragments in the case of inactivated SARS-CoV-2 virions (Figure 1H). 6p-VLPs specifically bound to human
ACE2 receptor coated beads but not to recombinant IL-13 coated control beads (Figure S1), demonstrating
the specificity of the VLP-expressed spike protein towards the host receptor. VLPs retained their intact
antigenic content even when incubated at 40°C up to 3 days (Figure S2A). Furthermore, they retained
their morphology after adsorption to alum and CpG adjuvantation (Figure S2B). These results illustrate the
feasibility of generating VLPs as a vaccine candidate, targeting the 4 structural proteins of SARS-CoV-2.

Immunogenicity of SARS-CoV-2 VLP vaccine

To assess the immunogenicity of the VLP vaccine, 4-8 weeks-old female BALB/c mice were subcutaneously
immunized with 0.4 (low dose; LD) and 4 pg (high dose; HD) 2p- or 6p-VLPs, separated by a 2-week
interval. VLPs were either administered as such or in combination with K3-CpG (20 pg/mouse), alum (5
ug/mouse) or both. Mice immunized with LD or HD VLP had detectable anti-S-binding IgG and IgG1 after
primary (Figure 2A) and booster injections (Figure 2B). As expected, magnitude of the secondary anti-S
IgG response in all HD groups was substantially higher than their LD counterparts (5.2, 12.4, 12.2 and 8.5-
fold for 6p-VLP, 6p-VLP+K3-CpG, 6p-VLP+Alum, 6p-VLP+ K3-CpG +Alum groups, respectively; Figure
2B). 6p-VLP+ K3-CpG +Alum elicited 2.7-fold more anti-S IgG when compared to its formulated 2p-VLP
counterpart (Figure 2B), indicating that adjuvanted hexaproline stabilized S is more immunogenic than the
2p-stabilized spike containing VLPs. Neither Alum, nor K3-CpG or K3-CpG /Alum combination further
elevated anti-S IgG or IgGl1 titers. However, compared to HD VLP alone, only the K3-CpG adjuvanted
groups elicited significant anti-S IgG2a (13- and 9-fold for 6p-VLP HD+ K3-CpG and 6p-VLP HD+Alum+
K3-CpG when compared to HD 6p-VLP alone group, Figure 2B), demonstrating the preferential Thl skewing
immunostimulatory activity of K3-CpG ODN. Similarly, all VLP formulations elicited anti-RBD and anti-N
IgG and IgG1 antibodies, whereas highest anti-RBD and anti-N IgG2a titers were stimulated only in mice
immunized with HD VLP plus K3-CpG or CpG/Alum (Figures S3 A-D). Although in the BALB/c model
IgG1 titers induced by HD 6p-VLP+Alum+ K3-CpG well exceeded that of IgG2a, in hACE2 transgenic
C57BL/6 mice, the same formulation elicited an anti-RBD IgG2c dominated response (Figure 4A; IgG2c:IgG1
ratio 3:1). Considering the role of IgG2a and/or IgG2c in viral clearance mechanisms®>-3%, K3-CpG ODN
adjuvantation confers an advantage over non-adjuvanted and/or Alum adsorbed VLP administration.

Antigen-specific helper T cell responses were also investigated in immunized mice. Following restimulation
with recombinant spike or nucleocapsid, splenocytes from mice immunized with 6p-VLP or 6p-VLP plus
Alum, secreted significant amounts of Th2 cytokines IL-4, IL-5, IL-13 and IL-10 (Figure 2C and D, Figure S4A
and B). In contrast, only the K3-CpG or CpG/Alum adjuvanted VLPs induced a Th1 biased IFN-y response
but no Th2 associated cytokines (Figure 2C and D, FigS4A and B), suggesting that 6p-VLP/Alum/K3-
CpG vaccination would prevent Th2-biased immune responses and therefore avoid Th2-dependent vaccine-
associated enhanced respiratory disease (VAERS).3%-41

To study the effect of the formulation dose on VLP immunogenicity, BALB/c mice were subcutaneously
immunized with 6 different doses (ranging from 24 to 0.75 ug) of 6p- VLP/Alum/K3-CpG and IgG titers
against the whole inactivated virus was determined by ELISA (Figure 3A). The effective concentration at
50% (EC50), was then determined by a non-linear regression curve fit in GraphPad Prism (Figure 3A). The
EC50 for the 6p- VLP/Alum/K3-CpG vaccine was determined to be 2.83 pg.



To test the HD 6p-VLP+Alum+K3-CpG immunogenicity in different animal species, rats were immunized
subcutaneously with 40 pg of 6p-VLP/K3-CpG/Alum 2 weeks apart and live virus neutralizing antibody
titers were evaluated 2 weeks after booster injection (Figure 3B). Similarly, ferrets were vaccinated either with
a 10 pg or a 40 yg dose of the 6p-VLP vaccine and live virus neutralizing antibody titers were determined
2 weeks after priming and booster injections (Figure 3C). 6p-VLP/Alum/K3-CpG combination induced
robust neutralizing antibodies against live SARS-CoV-2 in rats and ferrets. These data indicate that 6p-
VLP/Alum/K3-CpG formulation is a potent immunogen that can elicit virus-neutralizing activity in multiple
species. VLPs expressing either WT 6p-S or Alpha variant 6p-S were also synthesized and then formulated
with alum/CpG ODN to test their immunogenicity in C57BL/6 mice. In alpha 6p-S VLPs, spike protein
expression was more enhanced compared to WT 6p-S VLPs (Figure 3 D). Consistently, alpha 6p-S VLPs
elicited higher levels of anti-S and anti-inactivated virus (Wuhan) IgG in comparison to WT 6p-S VLPs,
whereas anti-N IgG levels remained similar (Figure 3E). Antibodies raised against WT, Alpha, Beta and
Gamma variant RBDs were also analyzed (Figure 3F). Alpha 6p-S VLPs elicited ? 37.3- 20.5- 1.7- and
11.9-fold more anti-WT, anti-alpha, anti-beta and anti-gamma RBD IgG, respectively, when compared to
WT 6p-S VLP immunized mice (Figure 3F). These results suggest that alpha 6p-S expressing VLPs might
be advantageous over their WT 6p-S VLP counterpart in eliciting a broader cross-protective response against
variant RBDs

Protective Efficacy of the SARS-CoV-2 VLP vaccine in K18-hACE2 transgenic mice

To evaluate the immunoprotective activity of the 6p-VLP vaccine against challenge with authentic
SARS-CoV-2, K18-hACE2 transgenic mice (Jackson Laboratories, USA) were immunized with 8 ug 6p-
VLP/Alum/K3-CpG (high dose; HD) on days zero and 14. A low dose vaccine group (2 ug; low dose; LD)
was also included to identify the potential of the VLP vaccine to induce VAERS when suboptimal anti-
bodies are generated. 14 days after booster, mice immunized with the HD VLP vaccine induced significant
levels of anti-RBD IgG, IgG1l and IgG2c when compared to placebo group (Figure 4A). In contrast, the
LD vaccine generated only low titers of RBD-specific IgG2c¢ (Figure 4A). Virus Neutralizing antibody titers
(VNT) against original Wuhan or the B.1.1.7 UK variant live viruses was also measured from serum of HD
6p-VLP+Alum+K3-CpG immunized mice, 2 weeks after booster injection (Figure 4B). There was an aver-
age of 1.4-fold reduction in VNTs against the more transmissible B.1.1.7 UK variant when compared to the
authentic virus, suggesting that the VLP vaccine might be effective against this specific variant of concern.

On day 21 after booster injection, mice were intranasally challenged with 10° pfu of live SARS-CoV-2 (Wuhan
strain) on 3 consecutive days. One week after the last instillation, lungs were harvested for histopathological
evaluation (Figure 4D and E). Histomorphometric evaluations were based on the following criteria: (i)
Inflammation was semi-quantitatively scored between 0 and 5 in the perivascular, peribronchiolar, subpleural
regions and in the whole section.?? (ii) Total lung injury was evaluated based on the American Thoracic
Society’s acute lung injury score.*3 The parenchymal inflammation area was quantitatively evaluated.**

Untreated/unchallenged healthy K18-hACE2 transgenic mouse lung samples (negative control), exhibited low
grade local parenchymal inflammation at the periphery (Fig. 4D). Alveolar integrity was preserved without
interalveolar septum thickening, intra-alveolar inflammatory cell infiltration or protein debris accumulation.
High-dose vaccine prevented perivascular (p<0.0001), peribronchiolar (p=0.0002), subpleural (p<0.0001)
and total (p<0.0001) lung parenchymal inflammation when compared to the placebo group (Figure 4D and
E). Minimal inflammation scores equivalent to healthy animals were recorded in the high-dose vaccine group
(Fig. 4E).

High-dose vaccine significantly reduced acute lung injury score consisting of inflammatory cell infiltration in
the alveolar lumen and interstitial space, hyaline membrane formation, protein debris in the airways, and
thickening of the interalveolar septum compared to that of the placebo group (Figure 4D). Lung specimens
from animals vaccinated with high-dose VLP had low injury scores similar to healthy lung specimens (Figure
4F). Placebo and low-dose vaccine failed to prevent acute lung injury and presented with parenchymal
consolidation with diffuse infiltration of mononuclear cells and macrophages, thickened interalveolar septa to
varying degrees, and hyaline membranes at the alveolar walls facing the lumen (Figure 4D). The high-dose



vaccine group generally exhibited a limited and mild parenchymal infiltration at peribronchiolar regions.

These results indicate that 6p-VLP vaccination confers immunoprotective activity against SARS-CoV-2
challenge and a suboptimal vaccine dose does not exacerbate virus-induced immunopathology.

Discussion

Several highly effective and safe SARS-CoV-2 vaccines have been approved and are widely administered to
the populations of several countries as an indispensable measure in controlling the current pandemic. Almost
all of these vaccines are based on the spike antigen and elicit neutralizing antibodies especially against the
receptor-binding motif, the least conserved region of the spike antigen. With the emergence of new SARS-
CoV-2 variants of concern and in light of evidence of reduced neutralization activity against some of the
VOCs, vaccines that incorporate multiple antigens that are not under selective antibody pressure, could in
theory contribute to long-term protective immunity through expanding the breath of virus-specific T cell
responses.

In this respect, herein, we described the development and immunogenicity of SARS-CoV-2 VLP vaccine that
incorporates the 4 structural proteins of the virus, all of which possess T cell epitopes.2-26:45-46

Our results showed that HEK-293 cells transfected with SARS-CoV-2 structural proteins reproducibly gener-
ated VLPs that were similar in size and physical form to the authentic virus. VLPs expressing the hexaproline
stabilized prefusion spike antigen adjuvanted with Alum plus K3 CpG ODN elicited high levels of anti-S,
anti-RBD, anti-N IgG and live virus neutralizing antibodies in mice, rats and ferrets. Of note, only the CpG
ODN adjuvanted groups induced IgG2a in immunized BALB/c mice, consistent with an immune response
characterized by CpG ODN-mediated Thl-type cytokines.*” Similarly, only the CpG or CpG/Alum adju-
vanted VLP vaccine triggered S- and N-specific Th1- but not Th2-dominated cytokine secretion from T cells.
Vaccine adjuvants are of utmost importance in enhancing and directing the adaptative immune response to
protein antigens. The widely used vaccine adjuvant alum has a strong Th2 bias. CpG ODN aids in re-
directing alum-induced strong Th2 responses towards the Thl axis.*® Differently, following injection, CpG
ODN adjuvants locate less efficiently to draining lymph nodes in species larger than mice.**This drawback
can be overcome through formulating the antigen and K3-CpG ODN together with alum to facilitate their
delivery to lymph nodes. Our data also indicate that VLPs expressing hexaproline stabilized alpha variant
spike elicited a more potent response against WT and variant RBDs compared to 6p-WT S incorporating
VLPs. Whether this is due to enhanced spike expression in VLPs or a change in immunogenicity of the
variant spike, remains to be determined.?°

In summary, based on the immunogenicity data presented herein, the CpG ODN/alum adjuvanted 6p-VLP
vaccine (VLP-58-1023-A1-K3) is currently being evaluated in a phase 1 human clinical trial (NCT04818281).
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Figure Legends

Figure 1. Development and characterization of the VLP vaccine.(A) Schematic representation
of spike, membrane, envelope and nucleocapsid protein designs. Included are a cleavable signal peptide
(CD33 SP), N-terminal domain (NTD), receptor binding domain (RBD), S1/S2 boundary (S1/S2), fusion
peptide (FP), heptad repeat 1 (HR1), central helix (CH), heptad repeat 2 (HR2), transmembrane domain
(TM), cytoplasmic tail (CT), tobacco etch virus protease cleavage site (TEV), T4 fibritin trimerization
domain (FD), thrombin cleavage site (THM) and six histidine tag sequence (His). The native polybasic furin
cleavage site modifications and proline substitutions to generate the full-length WT, prefusion stabilized 2p
and 6p spike variants are also indicated.(B) Schematic representation of VLP production, purification and
formulation process. Representative transmission electron microscopy image of VLP producing HEK293 cells
(C) , scanning electron microscopy and atomic force microscopy images of individual VLPs ((D) and (E)
are shown. (F ) TRPS size distribution measurement (nm) of WT, 2p and 6p spike variant incorporating
VLPs. Analysis of structural proteins assembled into SARS-CoV-2 VLPs by Western blot using anti-His,
anti-N (G) and anti-S (H) antibodies.

Figure 2. VLPs elicit robust antibody and helper T cell responses in mice. BALB/c mice (n =
12 per group) were immunized on days 0 and 14 with 0.4 (low dose; LD) or 4 pg (high dose; HD) 6p VLP or
2p VLPs without or with Alum (5 pg/mouse), K3 CpG ODN (20 yg/mouse) or Alum+CpG ODN. Control
BALB/c mice were administered Alum or CpG ODN alone (black and gray). Sera were collected 2 weeks
post-prime(A) and 2 weeks post-boost (B) and assessed for SARS-CoV-2 S-specific IgG, IgG1 and IgG2a
by enzyme-linked immunosorbent assay (ELISA). Vaccinated groups were compared by one-way ANOVA
with Dunnett’s multiple comparisons test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Data are
presented as GMT + geometric SEM. (C) Spleens were collected 2 weeks after booster (n=6). 1x10¢/250 pl
splenocytes from naive or immunized mice were stimulated with recombinant spike (5ug/ml) in the presence
of 1 pg/mL anti-mouse CD28. T helper cytokine levels were assessed from 48h culture supernatants using the
LEGENDplex MU Th Cytokine Panel (12-plex). Groups were compared by one-way ANOVA with Dunnett’s
multiple comparisons test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Data are presented as
mean cytokine levels + SEM. (D)Pie charts representing the proportions of individual secreted S-specific T
helper cytokines are presented.

Figure 3. Immunogenicity of the VLP vaccine in mice, rats and ferrets . (A) BALB/c mice
(n=10/group) were subcutaneously immunized with 6 different doses (24-0.75 pg) of 6p VLP/Alum/CpG
on days 0 and 14. 2 weeks after the booster injection, IgG titers against the whole inactivated virus was
determined by ELISA. ED50 was determined by non-linear regression curve fit in GraphPad Prism. (B)
Sprague Dawley rats (n=5) were immunized with 40 yug 6p VLP with Alum (600 ug/rat), K3 CpG ODN (300
pg/rat). Live virus neutralizing antibody titers were evaluated 2 weeks after booster injection. (C)Ferrets
(n=4/group) were vaccinated either with a 10 ug or a 40 pg dose of the VLP with Alum (600 pg/ferret) and
K3 CpG ODN (300 pg/ferret). Live virus neutralizing antibody titers were determined 2 weeks after priming
and booster injection. (D) Analysis of spike protein expression in WT 6p or alpha variant 6p-S expressing
VLPs by Western blot using anti-His (2.5 ug protein/well; 1:2 indicates two-fold diluted sample). (E-F)
C57BL/6 mice (n=5-10/group) were subcutaneously immunized with 8 pg of either WT 6p-S VLP or alpha
variant 6p-S VLP vaccine on days 0 and 14. Two-weeks after booster injection, (E) S-, inactivated virus- and
N-specific IgG titers or (F) WT, alpha, beta or gamma variant RBD-specific IgG titers were determined by
ELISA. Vaccinated groups were compared by one-way ANOVA with Dunnett’s multiple comparisons test.
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Data are presented as GMT + geometric SEM.

Figure 4. Immunoprotective activity of the VLP vaccine in K18-hACE2 transgenic mice. K18-
hACE2 transgenic mice (n=10/group) were subcutaneously immunized with 2 ug (Low dose; LD) or 8 pg
(high dose; HD) of the VLP vaccine on days 0 and 14. 2 weeks after booster injection, (A) RBD-specific
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IgG, IgG1, IgG2¢ antibody titers were determined by ELISA and (B) neutralizing antibody titers against
the authentic Wuhan strain and the B.1.1.7. Kent variant were determined. Groups were compared by
one-way ANOVA with Dunnett’s multiple comparisons test. *P < 0.05, **P < 0.01, ***P < 0.001, ****p
< 0.0001. On day 21 after booster, mice were challenged intranasally on 3 consecutive days with 50 yl of 1
x 10° pfu/mouse of SARS-CoV-2 (Wuhan strain). Lungs were collected 7 days after last virus instillation.
(C)Infectious virus loads in lung homogenates were assessed by qRT-PCR against the nucleocapsid (NC1
and NC2). Bars represent the mean virus load (n = 10/group) as 1/ct values. Comparisons were performed
by unpaired Student’s t-test; *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. (D)Histological
micrographs showing healthy (first column), placebo (second column), low dose vaccine (third column)
and high dose vaccine (fourth column) groups. A-D, Hematoxylin — Eosin (H&E), areas marked green
shows inflammed parts of the lungs; E-L, H&E, 20x; M-P, Gomori Trichrome (GT), 40x. a, alveoli; b,
bronchiole; v, blood vessel; blue arrow, protein debris; red arrow, hyaline membrane. (E)Histomorphometric
measurements. The descriptive statistics were presented as median and interquartile range in all graphs
except for inflamed area percent (mean +-S.D). Statistical significance (p<0.05): a, compared to healthy
group; b, compared to placebo group; ¢, compared to low dose vaccine group, d, compared to high dose
vaccine group. Nonparametric variables were compared between groups using Kruskal-Wallis test. Pairwise
comparisons were made with Dunn’s test. Parametric variables were compared in multiple groups using
one-way analysis of variance. Pairwise comparisons were performed with the Tukey test.

Supporting Information

Piryvpe X1. 67"Allg onecipicarid Bivd to nupav AE2 pegentop coated Beadg But vot
o pegoufBivavt IA-1B goated Peadg . Carboxyl modified latex beads were coated with hACE2 or
recombinant IL-1f and then incubated with serially diluted CFSE labeled VLPs. Beads were washed once
and analyzed by flow cytometry for bead-bound VLP-CFSE signal. Top dot plots show the gating strategy
and the lower plots represent bead-bound CFSE signal (y-axis) versus forward scatter (x-axis). Histograms
present VLP CFSE signal intensity (mean fluorescence intensity, MFI) of serially diluted VLPs associated
with negative control IL-1B beads (top 4 histograms) or hACE2 coated beads (lower 4 histograms).

Figure S2. Stability of SARS-CoV-2 VLPs under elevated temperature (a) and following
adsorption to alum and CpG adjuvantation (b) . (a ) 6p VLPs were subjected to thermal stress for
the indicated time periods. Antigen identities were assessed by western blot (anti-His Tag antibodies) and
compared to a sample preserved at 5°C for one week. Positions of S, M and E proteins are indicated by
arrows. (b) Transmission electron microscopy image of formulated 6p VLPs demonstrate that VLPs retain
their morphology after adsorption to alum and CpG adjuvantation.

Figure S3. VLPs elicit robust antibody responses in mice.BALB/c mice (n = 12 per group) were
immunized on days 0 and 14 with 0.4 ((a ) and (b ), low dose; LD) or 4 pg ((c ) and (d ) high dose; HD) 6p
VLP or 2p VLPs without or with Alum (5 pg/mouse), K3 CpG ODN (20 pg/mouse) or Alum+CpG ODN.
Control BALB/c mice were administered Alum or CpG ODN alone (black and gray). Sera were collected
2 weeks post- 2 weeks post-boost and assessed for SARS-CoV-2 RBD- (a and ¢ ) or N-specific (b andd )
IgG, IgG1 and IgG2a by enzyme-linked immunosorbent assay (ELISA). Vaccinated groups were compared
by one-way ANOVA with Dunnett’s multiple comparisons test. *P < 0.05, **P < 0.01, ***P < 0.001, ****pP
< 0.0001. Data are presented as GMT + geometric SEM.

Figure S4. 6p VLP+Alum-+CpG induce S-specific TH1 dominated helper T cells. (a ) 1x106/250
uL splenocytes from naive or immunized BALB/c mice (n=6) were stimulated with recombinant nucleocapsid
(20 pg/ml) in the presence of 1 pg/mL anti-mouse CD28. T helper cytokine levels were assessed from 48h
culture supernatants using the LEGENDplex MU Th Cytokine Panel (12-plex). Groups were compared by
one-way ANOVA with Dunnett’s multiple comparisons test. *P < 0.05, **P < 0.01, ***P < 0.001, ****p
< 0.0001. Data are presented as mean cytokine levels = SEM. (b ) Pie charts representing the proportions
of individual secreted N-specific T helper cytokines are presented.
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SVAS 692 F817P, AB92P, AB99P, A942P, KIB6EP, VIS7P

Nucleocapsid |

(B) h: CaptoCore 400 multimodal 3.
~  Chromatographic separation e
Transfection s ‘ —
Iansfection,

Ultrafiltration

J VLP production ) | | and

e’ N\ - \ Diafiltration
Suspension
HEK293 cells

Formulation:
VLP+Alum+CpG ODN

e 2 6p ’
117438 N~ 127241 11936
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