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Abstract

Reduced representation genome sequencing has popularized the application of single nucleotide polymorphisms (SNPs) to
address evolutionary and conservation questions in non-model organisms. Patterns of genetic structure and diversity based on
SNPs often diverge from those obtained with microsatellites to different degrees, but few studies have explicitly compared their
performance under similar sampling regimes in a shared analytical framework. We compared range-wide patterns of genetic
structure and diversity in two amphibians endemic to the Iberian Peninsula: Hyla molleri and Pelobates cultripes, based
on microsatellite (18 and 14 loci) and SNP (15,412 and 33,140 loci) datasets of comparable sample size and spatial extent.
Model-based clustering analyses with STRUCTURE revealed minor differences in genetic structure between marker types,
but inconsistent values of the optimal number of populations (K) inferred. SNPs yielded more repeatable and less admixed
ancestries with increasing K compared to microsatellites. Genetic diversity was weakly correlated between marker types, with
SNPs providing a better representation of southern refugia and of gradients of genetic diversity congruent with the demographic
history of both species. Our results suggest that the larger number of loci in a SNP dataset can provide more reliable inferences
of patterns of genetic structure and diversity than a typical microsatellite dataset, at least at the spatial and temporal scales
investigated.

Introduction

Nuclear microsatellites became popular during the 1990’s as a powerful tool to assess patterns of genetic
variation in populations (Allendorf, 2017; Ellegren, 2004). While they are still widely used, the development
of Genotyping-by-Sequencing techniques, like RADseq (Baird et al., 2008; Miller, Dunham, Amores, Cresko,
& Johnson, 2007) and similar techniques of genome complexity reduction (e.g. ddRAD, bestRAD), coupled
with the decreasing costs of massive parallel sequencing, have extended the reach of massive single nucleotide
polymorphism (SNP) genotyping to the study of non-model organisms (Baird et al., 2008; Davey et al.,
2011; Peterson, Weber, Kay, Fisher, & Hoekstra, 2012; Allendorf, 2017; Andrews, Good, Miller, Luikart, &
Hohenlohe, 2016; Putman & Carbone, 2014). This has led to a discussion about the relative benefits of using
each type of marker in conservation and evolutionary biology (Allendorf, 2017; Hodel et al., 2017; Morin,
Luikart, & Wayne, 2004; Puckett, 2017).

Mutation rates in microsatellites are several orders of magnitude higher than those estimated for SNPs (Dal-
las, 1992; Ellegren, 2004; Lynch, 2010; Weber & Wong, 1993; Zhang & Hewitt, 2003). Combined with the
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larger number of possible alleles for a single locus, microsatellites provide immense levels of polymorphism,
yielding high statistical power in population genetic inference (Allendorf, 2017; Avise, 2004). Microsatellites
are very sensitive to sudden, or recent, demographical processes, and are well suited to detect subtle popu-
lation structure or recent bottlenecks (Haasl & Payseur, 2011; Luikart & Cornuet, 1998; Pereira, Teixeira,
& Velo-Antón, 2018; Putman & Carbone, 2014). However, high polymorphism is usually associated with ho-
moplasy (Garza & Freimer, 1996; Hedrick, 1999; Queney, Ferrand, Weiss, Mougel, & Monnerot, 2001), and
poses difficulties in fitting adequate evolutionary models to heterogeneous mutation processes (Di Rienzo et
al., 1994; Ellegren, 2004; Valdes, Slatkin, & Freimer, 1993; Weber & Wong, 1993; Webster, Smith, & Ellegren,
2002). This can lead to unreliable estimates of divergence times (Kalinowski, 2002; Queney et al., 2001) and
underestimation of genetic differentiation between populations caused by high intra-populational heterozygo-
sity (Hedrick, 1999). Furthermore, microsatellites are not well suited to reconstruct the evolutionary history
of lineages or species under certain demographic scenarios, for instance during range expansions, when conse-
cutive founder events and allele surfing processes in newly formed populations inflate genetic differentiation
(Pereira et al., 2018). A microsatellite locus contains from four to twelve times more information than a SNP
(Liu, Chen, Wang, Oh, & Zhao, 2005). However, current genotyping costs for SNPs are relatively low, so
the lower per-locus information of SNPs is largely compensated by the sequencing of thousands of them at a
similar cost than the genotyping of a few microsatellites (Hodel et al., 2016; Puckett, 2017). A large number
of SNPs and their genome-wide distribution secure a range of mutation rates that can, in principle, provide
sufficient information at different evolutionary scales, from recent demographic processes within-species to
interspecies phylogenies (DeFaveri, Viitaniemi, Leder, & Merilä, 2013; Petersen et al., 2013).

The different molecular nature of SNPs and microsatellites is expected to impact their resolution power at
different evolutionary scales, with microsatellites better reflecting recent demographic processes but rapidly
losing resolution above the species level, and SNPs providing less information per locus but securing resolution
of demographic processes over a wider evolutionary window (DeFaveri et al., 2013; Estoup, Jarne, & Cornuet,
2002; Haasl & Payseur, 2011). A review of the recent literature shows that thousands of SNPs are generally
more powerful in detecting genetic structure than typical microsatellite datasets (Elbers, Clostio, & Taylor,
2017; Hodel et al., 2017; Jeffries et al., 2016; Malenfant, Coltman, & Davis, 2015; McCartney-Melstad, Vu,
& Shaffer, 2018; Puckett, 2017; Puckett & Eggert, 2016; Rašić, Filipović, Weeks, & Hoffmann, 2014). The
choice of marker (SNPsversus microsatellites) also seems to affect estimates of the proportions of individual
ancestries and the inferred optimal number of clusters (Bradbury et al., 2015; Malenfant et al., 2015; Elbers
et al., 2017; Bohling et al., 2019). These studies have made important contributions to our understanding of
differences in patterns of genetic diversity and structure using both types of markers. However, the lack of
comparable datasets, differences in the clustering methods used, and the absence of metrics allowing direct
comparisons across marker types limit generalization of these results.

We present an explicit comparison of patterns of genetic structure and diversity based on comparable datasets
of microsatellites and SNPs in two amphibian species: the Iberian tree frog, Hyla molleriBedriaga, 1889,
and the Western Spadefoot, Pelobates cultripes(Cuvier, 1829). Both are nearly endemic to the Iberian
Peninsula (with some populations reaching southern France), and their range-wide phylogeography has been
previously investigated based on mitochondrial and microsatellite datasets (Gutiérrez-Rodŕıguez, Barbosa, &
Mart́ınez-Solano, 2017; Sánchez-Montes, Recuero, Barbosa, & Martinez-Solano, 2019). These studies linked
their contrasting phylogeographic patterns with different demographic histories during the Late Quaternary.
Hyla molleri is present in Continental and Atlantic Iberia, and its higher tolerance to colder conditions was
hypothesized to account for their inferred demographic stability since the Last-Glacial Maximum (~ 21,000
years ago) (Sanchez-Montes et al., 2019). In contrast, P. cultripes is a more thermophilous species present in
southern and central Iberia, in areas with a Mediterranean influence. This species seems to have experienced
important range contractions to southern glacial refugia during colder times in the Pleistocene, resulting in
a south-to-north gradient of decreasing genetic diversity (Gutierrez-Rodriguez et al., 2017). The availability
of comprehensive microsatellite datasets and the contrasting demographic histories in a shared geographical
area make these two species good study systems for a robust comparative assessment of patterns of genetic
diversity and structure obtained with microsatellites and SNPs.
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Materials and Methods

We used published microsatellite datasets for H. molleri andP. cultripes (Gutierrez-Rodriguez et al., 2017;
Sanchez-Montes et al., 2019) and generated SNP datasets for both species. Patterns of genetic structure
between markers were compared based on model-based clustering analyses and those of genetic diversity
were assessed with individual heterozygosity estimates.

Data collection

Samples from H. molleri and P. cultripes covered most of their current ranges (Figure S1; Table S1). They
were evenly distributed across the main genetic clusters determined in previous works with microsatellites
(Gutierrez-Rodriguez et al., 2017; Sanchez-Montes et al., 2019), securing the representation of more than
20 samples per north/south clusters. Microsatellite genotypes from H. molleri included 84 individuals from
25 localities genotyped at 18 loci (10% missing data) from Sanchez-Montes et al. (2019). Microsatellite
genotypes from P. cultripes included 83 individuals from 43 localities genotyped at 14 loci (0 % missing data)
from Gutierrez-Rodriguez et al. (2017). To facilitate comparisons between marker datasets, we selected the
same 83 individuals of P. cultripes for SNP genotyping. However, in H. molleri only 39 individuals from the
microsatellite dataset were amenable for SNP genotyping. In this case, we sampled additional individuals
from the same or nearby locations as represented in the original microsatellite study to complete a dataset
of 90 individuals from 25 localities (Table S1; Figure S1).

Genomic DNA was extracted with ExtractMe Genomic DNA 96-Well kits (DNA GDAŃSK), and concen-
trated with QIAamp DNA Micro (QIAGEN GmbtH) kits, when necessary. DNA extracts from H. molleri
and P. cultripes were standardized to 500 ng of DNA (with exceptions as low as 390 ng) and sent for se-
quencing at Diversity Arrays Technology (Australia), which uses a proprietary protocol to sequence reduced
representation of the genome from double-digested restriction fragments. We chose DArTseq because it has
been reported to work well with large and complex genomes, like those of amphibians (Lambert, Skelly, &
Ezaz, 2016). The restriction fragments generated were sequenced in an Illumina HiSeq 2500 as single-end
reads of 77 nucleotides (nt). The sequencing depths for H. molleri and P. cultripes were 7.7 and 5 million
reads per sample, respectively. Diversity Arrays Technology provides genotypes from the proprietary DArT-
Soft14 pipeline in a text file along with several quality parameters on each SNP. Around 30% of the samples
in the run are included as internal replicates to provide confidence levels on the genotype calls.

Data filtering

We applied several filtering steps to the SNP genotype matrices using R 3.6.0 (R Core Team 2019) functions
from the dartR 1.1.11 package (Gruber, Unmack, Berry, & Georges, 2018) and custom code. The filters were
applied as follows. First, we retained samples with a proportion of loci with calls (call rate per individual)
greater than 0.35 and loci with high confidence on their genotype calls (RepAvg parameter from DArTseq
greater than 0.95). We kept loci with balanced alleles (proportion of reads for each allele across samples
between 0.15 and 0.85) and removed loci whose coverage was 3.5 times higher than the median coverage
across loci to remove potential paralogs (O’Leary, Puritz, Willis, Hollenbeck, & Portnoy, 2018). Then, we
removed loci with a call rate (proportion of samples with a call) lower than 0.8, retained only one SNP per
contig (the one with greatest repeatability) and removed alleles with a frequency less than 0.02 (O’Leary et
al., 2018) (Figure S2).

Genetic structure

We conducted model-based genetic structure analyses in STRUCTURE v2.3.4 (Pritchard, Stephens, &
Donnelly, 2000). For each dataset, we performed 10 replicate runs with values assuming a number of clusters
(K) between 1 and 8 (K = 1 to K = 8), to encompass the optimal number of clusters (K = 2, K = 4 and K
= 6) found in previous studies with microsatellites for the study species (Gutiérrez-Rodŕıguez et al., 2017;
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Sánchez-Montes et al., 2019), and explore any potential finer substructure. We used an admixture model
with correlated allele frequencies (Falush, Stephens, & Pritchard, 2003) with no prior information on sample
origin. For the microsatellite data, we used the same run lengths as in the original publications: 500,000
burnin steps followed by 1,000,000 iterations. For the SNP datasets, run lengths were shorter as data chains
often converge faster: 30,000 burnin steps followed by 10,000 iterations (Table S2; Figures S3.1 and S3.2).
For the SNP runs, we estimated lambda with K = 1 by averaging lambda estimates across three replicate
runs. These values of lambda (0.67 for H. molleri and 0.69 for P. cultripes ) were then used across all runs
of the SNP data, whereas for microsatellites lambda was fixed to 1. Lower values of lambda can improve
the modeling of correlated allele frequencies when using SNPs, where often the data is skewed towards rare
alleles (Falush et al., 2003). We ran STRUCTURE in parallel in 8 cores usingStructure_threader (Pina-
Martins, Silva, Fino, & Paulo, 2017), recording steps to log files every 50 and 5000 iterations for the SNP
and microsatellite data, respectively.

Convergence between the 10 replicate runs for each K was evaluated using Gelman and Rubin’s convergence
diagnostic, GR (Gelman & Rubin, 1992), with function coda ::gelman.diag (Plummer, Best, Cowles, & Vines,
2006). Values below 1.05 indicate good convergence (Vats & Knudson, 2018). We used KFinder (Wang,
2019) to compare the best number of clusters for each dataset through three approaches: (1) Pr[X|K], the
probability of data X given K clusters (Pritchard et al., 2000), (2) Evanno’s ΔK, which considers the rate
of change in the logarithm of the probability of data between successive K values (Evanno, Regnaut, &
Goudet, 2005), and (3) PI, parsimony index, a newly proposed metric that favors K values yielding clusters
with the most consistent and with minimal average individual admixture. The latter is assumed to be a
more consistent metric across a wider range of demographic scenarios (Wang, 2019). We ran CLUMPAK
(Kopelman, Mayzel, Jakobsson, Rosenberg, & Mayrose, 2015) on STRUCTURE outputs. CLUMPAK feeds
the software CLUMPP with results of replicate runs for each K value to generate consensus solutions for the
distinct modes. It also computes the similarity between Q-matrices (ancestry matrices) from each run and
matches clusters across successive values of K.

STRUCTURE results were contrasted with a model-free hierarchical clustering method using the Neighbor-
Joining algorithm on pairwise genetic distances (Supplementary File S1).

Congruence in ancestries between microsatellite and SNP datasets

We assessed the congruence of the Q-matrices from STRUCTURE results between SNP and microsatellite
datasets using the Symmetric Similarity Coefficient (SSC) (Jakobsson & Rosenberg, 2007). For P. cultripes
, since all individuals were identical among datasets, we ran CLUMPAK over the combined STRUCTURE
results from both markers (n = 20 runs per K). The CLUMPP algorithm in CLUMPAK computes a pairwise
distance matrix for all runs in each K based on the SSC. For H. molleri , since we sampled different individuals
from the same localities for microsatellites and SNPs, we averaged individual ancestries per locality, and used
R package starmie 0.1.2 (Tonkin-Hill & Lee, 2016) to run CLUMPP and compute the similarity coefficients.
SSC ranges from negative values to a maximum of 1 when Q-matrices are identical. Pairwise SSCs were
computed between runs from the same marker (SNPs-SNPs, microsatellites-microsatellites), in addition to
cross-comparisons between markers (SNPs-microsatellites). To aid visualization of spatial patterns of genetic
structure, we computed mean ancestries per locality for each species and marker from major clusters after
CLUMPAK results. Then, for each species and K value, we aligned the microsatellite and SNP matrices
using the CLUMPP algorithm from starmie 0.1.2 (Tonkin-Hill & Lee, 2016).

We evaluated admixture in individual ancestries of P. cultripesfor each K in STRUCTURE using a newly
developed index: the Coefficient of Admixture, CA. CAKi for individual iacross clusters of a Q-matrix from a
given K in STRUCTURE represent individual levels of genetic admixture, 0 indicating all ancestry belonging
to a single cluster, and 1, equal proportions across clusters (details in Supplementary File S2).
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Genetic diversity

Individual heterozygosity with each marker type was computed as the proportion of heterozygous loci stan-
dardized by the heterozygosity of loci across the dataset (standardized multilocus heterozygosity, sMLH)
(Coltman, Pilkington, Smith, & Pemberton, 1999), usinginbreedR::sMLH (Stoffel et al., 2016) in R. We then
represented the median sMLH per locality for each dataset in a map to describe the spatial distribution of
genetic diversity. Pearson correlations were computed between sMLH from microsatellite and SNP data, for
individuals of P. cultripes . We also explored patterns of genetic diversity along the axes of demographic
expansions from inferred glacial refugia in both species. For that purpose, the putative effects of latitudinal
and longitudinal gradients on patterns of genetic diversity were assessed with linear models in R, using sMLH
as a dependent variable and latitude and longitude as fixed effects.

Results

We produced panels of 15,412 SNPs (7.6 % missing data) for 90 individuals of H. molleri and 33,140 SNPs
(5.2 % missing data) for 83 individuals of P. cultripes .

Genetic structure

STRUCTURE runs converged well for low K values but not for larger K values (Table S2; Figures S3.1 and
S3.2). The best-supported number of genetic clusters (K) identified using STRUCTURE varied according
to the metric used (PI or ΔK) and marker type. In most cases, we found the best support for two genetic
lineages (K = 2), but some metrics identified further substructure, with up to six genetic clusters (K = 6)
when using PI (Table S3; Figures S4.1 and S4.2).

Ancestries derived from both markers were spatially coherent at different K values. That is, individuals
from the same or nearby localities shared similar ancestries and more admixed individuals coincided with
geographical shifts in cluster assignment (Figure 1). For K = 2, both marker types were congruent in
identifiying major subdividions in each species: a northern and a southern lineage forH. molleri , and a
central-western and a northeastern lineage forP. cultripes . From K = 3 to K = 8, the spatial patterns
of genetic structure for both species were largely congruent between marker types in terms of admixture
levels and ancestry group assignment (Figures 1 and S5). Both markers generally agreed on the genetic
ancestry of localities or group of localities as sharing a singular genetic ancestry, although the K value at
which for a given assignment to a cluster could differ between markers. For instance, for H. molleri , the
western-coastal populations from Portugal (dark purple, Figure 1) formed a well-differentiated cluster at K
= 3 with SNPs and at K = 4 with microsatellites. Another example is the locality Ojos de Villaverde, at the
southeastern-most corner of the distribution ofH. molleri. This locality appeared well differentiated at K =
4 for SNPs (green), but at K = 5 in microsatellites (magenta) (Figure 1). In P. cultripes , we observed the
same phenomenon. For instance, the localities from northwestern Portugal were very differentiated at K =
4 with SNPs (green), but at K = 5 with microsatellites (green, Figure 1). Both markers agreed in localities
within the northern half of the Iberian Peninsula with nearly “pure” ancestries and no further clustering
after K = 4, and yielded very admixed localities in the southern half of Iberia from K = 4 to K = 8, although
the levels of admixture and the ancestry assignments differed notably between markers. In P. cultripes , for
K = 7 and K = 8, microsatellites yielded more admixed individual ancestries compared to SNPs (Figure S5),
driven by the more admixed southern localities (Figure 1). For H. molleri , we could not quantify reliably
these differences in admixture levels between markers because the individuals analyzed for each dataset were
not all the same.

Genetic structure based on STRUCTURE analyses was highly congruent with that inferred by model-free
hierarchical clustering (Supplementary File S1), which yielded well-supported clades for SNPs but less so in
microsatellite-based topologies.
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Congruence in individual/locality ancestries between microsatellites and SNPs

Both species showed higher intra-marker similarity (H. molleri , SSCs = 0.27 - 1.00; P. cultripes , SSCs =
0.77 - 1.00) than inter-marker similarity (H. molleri , SSCs = -0.03 - 0.42;P. cultripes , SSCs = 0.55 – 0.89)
(Figure 2). For microsatellites, ancestries were very similar (SSCs close to 1) from K = 2 to K = 8 (except
K = 7) for H. molleri and from K = 2 to K = 4 for P. cultripes . For SNPs, STRUCTURE results were
almost identical only from K = 2 to K = 4 for H. molleri , but up to K = 6 for P. cultripes . Larger K
values were in all cases associated with less consistent results across STRUCTURE runs. For most K values,
pairwise SSC values in microsatellite runs had a larger spread (i.e. a greater range of values), especially at
larger K values. This spread was minimum for STRUCTURE results derived from SNPs, though at larger
K values (K = 4 to K = 8 for H. molleri ; K = 6 to K = 8 forP. cultripes ) they tended to converge into
2 or even 3 regions of the parameter space (Figure 2). The similarity between SNP-microsatellite runs did
not follow a clear pattern along increasing K. For H. molleri , SSCs were homogenously lower across all K
values than for P. cultripes , highlighting the distinct solutions obtained between datasets. For this species,
SSCs were maximum at K = 2 (0.89), and minimum at K = 4 (0.55). From K = 5 to K = 8, SSCs had a
small increase in the 0.58 – 0.68 range.

Microsatellites yielded more admixed ancestries at larger values of K (i.e. K = 7 and K = 8; Figure S5)
which seem to be driven by the more complex patterns of genetic structure in the southern localities (Figure
1).

Genetic diversity

Correlation of genetic diversity between microsatellites and SNPs-based measures was weak in both species
(P. cultripes , Pearson’sr = 0.39, P < 0.001). Genetic diversity (sMLH) from SNPs in H. molleri was highest
in southwest Iberia and decreased towards northern (β = -0.08; P < 0.001) and eastern localities (β = -0.04;
P = 0.02) (Figure 3; Table S4). We did not detect a significant correlation of microsatellite diversity with
latitude (P = 0.63) or longitude (P = 0.10).

For P. cultripes , genetic diversity decreased with latitude for SNPs (β = -0.07; P < 0.001) and microsatellites
(β = -0.09; P < 0.001). Longitude had a marginal effect on diversity from SNPs (β = -0.02; P = 0.06) but
not from microsatellites (P = 0.93). Both markers agreed in diversity being (1) extremely low in the north-
eastern localities, in costal France, both on the Atlantic and Mediterranean sides, (2) moderately low in the
Northern Plateau and along the Mediterranean coast and interior, and (3) greatest in the central south-
western localities (Figure 3; Table S4). These south-western localities also showed the largest complexity in
genetic structure and patterns of admixture across K (Figure 1).

Discussion

Our comparative assessment revealed that a typical microsatellite dataset (18 loci in H. molleri and 14 in P.
cultripes ) can yield similar range-wide patterns of genetic structure than those inferred with a few thousand
SNPs (15,412 and 33,140, respectively). Differences across marker types involved mainly inference of the
optimal number of clusters (K), and assessment of individual and population admixture levels.

Effect of marker type in model-based clustering and genetic diversity

We found overall concordance between markers in recovering the same major genetic clusters in STRUC-
TURE analyses (Figure 1), although the model-free clustering approach based on NJ yielded poorly sup-
ported clustering for microsatellites compared to SNPs (Supplementary File S1). This shows that population
genetic models implemented in STRUCTURE are efficient to infer genetic structure from a few highly poly-
morphic microsatellite loci, with comparable performance to analyses using thousands of bialellic SNPs.
Many population genetics studies often rely on a few microsatellites compared to the hundreds or thousands
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of SNPs needed to address similar questions regarding population structure (Haasl & Payseur, 2011; Puck-
ett, 2017). Previous research comparing both marker types claimed that SNPs offered a “better” resolution
to address biological questions when compared to microsatellites, usually referring to SNPs being able to
identify more differentiated genetic clusters (Rašić et al., 2014; Malenfant et al., 2015; Jeffries et al., 2016;
Puckett & Eggert, 2016; Elbers et al., 2017; Hodel et al., 2017; McCartney-Melstad et al., 2018). These
assertions in favor of SNPs over microsatellites could potentially be exaggerated, because they mostly derive
from non-parametric (e.g. PCA or DAPC) instead of model-based methods.

There were, however, discordances between markers. The inferred optimal number of clusters was not
consistent across marker types and method of estimation (Figure S4; Table S3). The clear peak of ΔK at K
= 2 in the SNP dataset in H. molleri contrasted with the peak of ΔK at K = 4 and K = 6 in microsatellites
in our results and in Sánchez-Montes et al. (2019), respectively. Also, the PI pointed to higher larger optimal
values of K than those selected by Evanno’s ΔK (Figure S4). The clear peaks of ΔK at K = 2 in the SNP
datasets describe the top level of hierarchical population structure and must be interpreted cautiously, since
K = 2 is the optimal K value most often reported across studies even when further genetic substructure is
present (Janes et al., 2017). The number of samples per population can have a strong effect on the optimal
K value inferred (Puechmaille, 2016). Furthermore, the history of populations is often more complex than
the “top-level” clustering approach in STRUCTURE, and as K increases, violations in the assumptions of
STRUCTURE may hamper the inference of the correct population structure (Lawson, van Dorp, & Falush,
2018).

Inferred ancestral groups (clusters) and their proportions of ancestry were not fully congruent between
marker types. The similarity in the Q-matrices between markers varied for both species across K. This
was evidenced by ancestral groups arising at different K depending on the marker type and the different
characterization of ancestral groups reflected in the amount of admixture and spatial extent of the clusters
(Figure 1). Also, genetic admixture was higher in microsatellites than in SNPs only at larger K values for
P. cultripes , driven by the localities with higher genetic diversity (central and southern Iberia) (Figures
1 and S5). Greater genetic admixture detected by microsatellites, together with their greater variance in
STRUCTURE solutions at large values of K (Figure 2), suggest microsatellites have reduced power to detect
weaker or more complex signals of genetic structure, as those reflected at larger values of K. For SNPs, even
at larger values of K (K > 6), the SSC fell into alternative discrete solutions (Figure 2). These alternative
solutions to the optimal K problem deserve independent biological interpretations (Kopelman et al., 2015;
Pritchard et al., 2000; Wang et al., 2007), but should be considered with caution to avoid over-interpretation
(Lawson et al., 2018). Previous studies comparing STRUCTURE results between SNPs and microsatellites
used datasets or approaches that were not fully comparable between the two marker types, limiting the
scope of their conclusions. For instance, Bradbury et al. (2015) described different levels of admixture
between markers but used different biological samples for each marker type, while Bohling et al., (2019)
relied on different clustering approaches, NGSadmix (for SNP data) and STRUCTURE (for microsatellites),
to conclude that microsatellites yielded less precise and less consistent results. Of the few studies that
used exactly the same individuals and clustering approach across different marker types, Lemopoulos et al.
(2018) found nearly identical ancestry memberships, whereas Malenfant et al. (2015) reported more admixed
ancestries for microsatellites, in agreement with our results.

Genetic diversity increased with latitude in SNPs for both species but only in P. cultripes for microsatellites.
Genetic diversity as estimated from SNPs was spatially more coherent with genetic structure, showing less
variance between localities from the same cluster (e.g. the southern group of P. cultripes ) (Figure 3). The
differences in genetic diversity between marker types resulted in a weak correlation of the corresponding
sMLH values (Supplementary Figure S6). This suggests that microsatellites might be offering sub-optimal
representative measures of genomic diversity (Fischer et al., 2017; Väli, Einarsson, Waits, & Ellegren, 2008)
compared to SNPs.

The lack of full agreement between spatial patterns of genetic diversity between marker types, even when
comparable datasets and analytical methods are used could be explained by the larger number of SNPs
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compared to microsatellite loci. In this sense, the high number of SNPs may overcome some of the limitations
of using few loci as surrogates of genome-wide variation, like stochasticity related to loci selection and the
associated ascertainment bias (Fischer et al., 2017; Guillot & Foll, 2009; Lemopoulos et al., 2019; Morin et
al., 2004). Different marker discovery approaches (e.g. representation of functional genomic regions) could
be related to some of the differences between markers (Clark, Hubisz, Bustamante, Williamson, & Nielsen,
2005; Dufresnes, Brelsford, Béziers, & Perrin, 2014; Lachance & Tishkoff, 2014). Additionally, differences in
type and rate mutation could also account for the differences in patterns between markers (Ellegren, 2004;
Morin et al., 2004). The better representation of loci covering a wider evolutionary scale in SNPs compared
to microsatellites (Haasl & Payseur, 2011; Linck & Battey, 2019; Morin et al., 2004) could be responsible to
some loss of resolution with microsatellites when representing older demographic processes.

Contribution of SNPs to the evolutionary history of H. molleri and P. cultripes

Our SNPs results on H. molleri are consistent with those of Sánchez-Montes et al. (2019) in recovering
two major clusters, southern and northern, coinciding with the two major mitochondrial lineages and the
north/south microsatellite clusters. Patterns of genetic diversity as measured with SNPs increase with lati-
tude and decrease from coastal localities of central Portugal towards the east (Figure 3). Sánchez-Montes
et al. (2019) also found greater mitochondrial and microsatellite diversity in western localities, but no clear
association with latitude. Our findings support the existence of southwestern refugia for H. molleri in Iberia,
where it would have persisted through glacial cycles in Atlantic central-south Portugal and Sierra Morena,
followed by two major historical dispersal axes, towards the north and east.

For P. cultripes , analysis of the SNP dataset provided results congruent with microsatellites and mitochon-
drial DNA from Gutiérrez-Rodŕıguez et al. (2017), identifying three main lineages: a southern one with high
genetic diversity and complex genetic structure, a second lineage in the Northern Plateau with low genetic di-
versity, and a third lineage in the northeast, with very low genetic diversity (Figures 1 and 3). The two latter
groups were not further sub-structured, but we found signs of finer substructure in the southern lineage. Our
results support northern and eastern colonization routes from southern refugia, with the Northern-Plateau
lineage probably resulting from a relatively recent colonization event, contrasting with the interpretation of
Gutiérrez-Rodŕıguez et al. (2017), who suggested the existence of a Northern-Plateau refugium. This study
thus adds to the growing body of evidence showing the importance of southern refugia for a broad range of
taxa in the Iberian Peninsula across glaciations in the Pleistocene (Gómez & Lunt, 2007). Inferred trends of
decreasing genomic diversity towards northern latitudes provide valuable information for the management
of the genetically diverse populations from southern refugia and their less diverse northern counterparts,
both of which face increased risk of extinction under future climatic scenarios (Araújo, Guilhaumon, Neto,
Ortego, & Calmaestra, 2011).
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Legend to Figures

Figure 1: Genetic structure in Hyla molleri (left) andPelobates cultripes (right) based on STRUCTURE
analyses of the SNP and microsatellite datasets. Pies represent averaged proportion of inferred ancestries of
the major mode in CLUMPAK, from K = 2 to K = 8. Shaded areas represent the species distributions. To
facilitate visual comparison of spatial patterns of genetic structure between markers, Q-matrices from both
markers for any given K and species were aligned using CLUMPP before plotting.

Figure 2: Comparison of STRUCTURE results in the SNP and microsatellite datasets for H. molleri (A) and
P. cultripes (B). The horizontal axis shows Pairwise Symmetric Similarity Coefficients between Q-matrices
from STRUCTURE runs across K values (vertical axis) using averaged ancestries per locality in H. molleri
and individual ancestries in P. cultripes . Comparisons involving the same marker type (microsatellite-
microsatellite: blue triangles, and SNP-SNP: green circles) show higher similarity than those involving
different marker types (red squares).

Figure 3: Genetic diversity measured as multilocus heterozygosity (sMLH) for H. molleri (A: SNPs, B:
microsatellies) and P. cultripes (C: SNPs, D: microsatellites). Integers represent median sMLH values for
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each locality.
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