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Introduction

The concept of similarity is one of the important subjects in Linear algebra. Two square matrices A and B
are called similar if B = P−1AP for some invertible square matrix P. Similar matrices have many common
properties such as rank, determinant, trace, eigenvalues, characteristic polynomial etc. Two square matrices
are similar if and only if they have the same Jordan normal form. There is the concept of similarity in number
systems as in the similarity of matrices. It is known that two complex numbers are similar to each other
if and only if they are equal. However, this definition is different for quaternions since quaternion algebra
is non-commutative. Two quaternions (or coquaternions) p and q are said to be similar if there exists a
quaternion a 6= 0, satisfying the equality a−1pa = q (Zhang & matrices of quaternions, n.d.), (Falcão et al.,
n.d.), (Falcão et al., n.d.). This definition equivalent to the linear equation px = xq has a nonzero solution
x. If p and q are similar, then it is denoted by p ∼ q. Besides, Two quaternions q =Sq +Vq and p =Sp +Vp

are similar if and only if Sq = Sp and ‖Vq‖ = ‖Vp‖ . The similarity of quaternions is an equivalent relation.
The roots of split quaternions can be examined with the help of some classifications, which is the result of
similarity ?, (Özdemir, n.d.).

Besides, we encounter the concepts of semisimilarity and con-semisimilarity as well as the similarity of
quaternions in the literature (Zhang & matrices of quaternions, n.d.), (Liping & of quaternion matrices and,
n.d.). Two quaternions p and q are said to be semi-similar if there exist quaternions x and y satisfying
equations xpy = q and ypx = q. Also, p and q are said to be con-semisimilar if there are x and y satisfying
the equalities xpy = q and yqx = p (Y. & two pairs of quadratic equations in, n.d.), (Tian et al., n.d.). The
semi-similarity was first defined and studied by Hartwing and Bevis (E. & for matrices, n.d.), (Bevis et al.,
n.d.). Both semi-similarity and con-semi-similarity are equivalence relations. In this study, we will not deal
with the concept of semi-similarity and con-semi-similarity.
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The similarity of quaternions and quaternion matrices is studied by many mathematicians. Similarity in
quaternion matrices is not as clear as the similarity of real and complex matrices, since the quaternion
product is non-commutative. So, it is not easy to solve linear and nonlinear equations in quaternions. Wolf
proved that the quaternion matrices A and B are similar if and only if the real matrices χ (A) and χ (B) are
similar, where the matrix

χ (A) = [

A1 A2

−A2 A1
is the adjoint of the quaternion matrix A = A1 +A2j (Wolf & of matrices in which the elements

are, n.d.), (Tian & over, n.d.), (Zhang & matrices of quaternions, n.d.). The similarity of quaternion matrices
is closely related to the solution of linear quaternionic equations ax − xb = c, ax − xb = c and xax = b.
Therefore, the solution of these linear equations in the set of quaternions and split quaternions has been
studied by many mathematicians (M. & linear split, n.d.), ?, (Y. & two pairs of quadratic equations in, n.d.),
(Kula et al., n.d.).

In this article, the definition and some properties of similarity of hybrid numbers are studied. The hybrid
number system is a set of numbers defined by Özdemir in 2018 and combining dual, complex and perplex
(hyperbolic) number sets. The set of hybrid numbers is isomorphic to split quaternions. Therefore, results
similar to those in split quaternions will be obtained. In the first section, this number set is summarized
briefly. Detailed information for hybrid numbers can be found in Özdemir’s articles ?, (Özdemir & n-th roots
of a 2× 2 real, n.d.).

Hybrid Numbers

The set of hybrid numbers, which is a noncommutative ring, is a generalization of complex, hyperbolic and
dual number sets and it is defined as

K =
{
a+bi+cε+dh : a, b, c, d ∈ R, i2=− 1, ε2=0, h2=1, ih= −hi= ε+i

}
.

Multiplication table of hybrid numbers as follows.

· i ε h
i −1 1− h ε+ i
ε h + 1 0 −ε
h −ε− i ε 1

(1)

Hybrid numbers are classified as timelike, spacelike and lightlike such as in split quaternions. Since the
algebra of hybrid numbers is isomorphic to the algebra of 2×2 real matrices, 2× 2 matrices can be classified
with respect to kind of corresponding hybrid number. So, hybrid numbers provide great simplicity for finding
n-th roots of 2 × 2 matrices. We can define polar form of a 2 × 2 matrix and use De Moivre’s formulas to
find n-th roots of 2× 2 matrices ?.

Many definitions such as conjugate and norm in hybrid numbers are similar to those in split quaternions. The
conjugate of a hybrid number q =a+bi+cε+dh =Req+ Imq is defined as q = Req− Imq = a−bi−cε−dh.
We say that a hybrid number;

{

2
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q is spacelike if Cq < 0;
q is timelike if Cq > 0;
q is lightlike if Cq = 0.

where Cq = qq = qq =a2 + (b− c)2 − c2 − d2. The inverse of a hybrid number

q =a+ bi + cε+ dh is found as q−1 = q/Cq.for ‖q‖ 6= 0. Lightlike hybrid numbers have no inverse. Besides,
norm of q is defined as

‖q‖ =
√
|Cq| =

√∣∣∣a2 + (b− c)2 − c2 − d2
∣∣∣.

This norm definition is also consistent with the norm definition in complex, dual and double numbers.
Algebraic and geometric properties of these three number system can be found in the articles (Kisil et al.,
n.d.), (A. et al., n.d.), (F. et al., n.d.), (J. et al., n.d.). The vector, Eq = ((b− c) , c, d) is called the hybrid
vector of q. We say that a hybrid number;

{

q is elliptic if 4q < 0;
q is hyperbolic if 4q > 0;
q is parabolic if 4q = 0.

where 4q = − (b− c)2 + c2 + d2. Also, the real number
√∣∣4q

∣∣ will be called

as the norm of the hybrid vector of q and will be denoted by ‖Eq‖ . For detailed information about hybrid
numbers see the references (Özdemir & Introduction to hybrid numbers, n.d.), (missing citation) and ?.

Matrix of hybrid numbers

Let q =q1 + q2i + q3ε + q4h and x be two hybrid numbers. The linear transformations of the left and right
multiplications in K are defined as,

ϕ, τ : K→ K
ϕ(q) = qx and τ(q) = xq

respectively. The matrix representations of these transformations are as follows:

ϕ(q)=
q1 q3−q2 q2 q4
q2 q1−q4 0 q2
q3 −q4 q1+q4 q2−q3
q4 q3 −q2 q1

 , τ(q)=


q1 q3−q2 q2 q4
q2 q1+q4 0 −q2
q3 q4 q1−q4 q3−q2
q4 −q3 q2 q1

 (2)

Notice that, the eigenvalues of ϕ(q) and τ(q) are q1 +‖Eq‖ , q1−‖Eq‖ and q1 +‖Eq‖ , q1−‖Eq‖ respectively.
Also, we have

detϕ(q) = det τ(q) = ‖q‖2 .

It is clear that the eigenvalues of ϕ(q) and τ(q) are equal and they can be given by the Table 1, according
to character and type of the hybrid number.

3
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Type r Character Spacelike Lightlike Timelike
Hyperbolic q1 ± ‖Eq‖ q1 q1 ± ‖Eq‖
Parabolic - 0 q1
Elliptic - - q1 ± ‖Eq‖ i

Table 1 : Eigenvalues of the matrices ϕ(q) and τ(q)

Using the matrices ϕ(q) and τ(q), it can be obtained following corollary.
Lemma 1. Let p,q ∈ K and λ ∈ R.Then

1. ϕ(q) = ϕ(p)⇐⇒ q = p ⇐⇒ τ(q) = τ(p)

2. ϕ(q + p) = ϕ(q) + ϕ(p), τ(q + p) = τ(q) + τ(p)

3. ϕ(qp) = ϕ(q)ϕ(p), τ(qp) = τ(q)τ(p)

4. ϕ(q)τ(p) = τ(p)ϕ(q)

5. ϕ(λq) = ϕ(qλ) = λϕ(q), τ(λq) = τ(qλ) = λτ(q)

6. ϕ(1) = τ(1) = I4

7. ϕ(q) + ϕ(q) = 2q1I4, τ(q) + τ(q) = 2q1I4

8. ϕ(q−1) = (ϕ)−1(q), τ(q−1) = τ−1(q) where ‖q‖ 6= 0

9. ϕ(q)aϕ(q) = a, detϕ(q) = 1

10. ξτ(q) = ϕ(q)ξ, ξ = [

1 0
0 −I3

11. detϕ(q) = det τ(q) = ‖q‖4

12. ϕ(q−1) = ξτK(q−1)ξ = {
1

C2(q)ξτ(q)ξ, q is spacelike
−1

C2(q)ξτ(q)ξ, q is timelike
It has generalized inverse q is lightlike
Theorem 2. Let p,q ∈ K. Then

−→qx = ϕ(q)−→x
xq=τ(q)−→x
−−→qxp = ϕ(q)τ(p)−→x = τ(p)ϕ(q)−→x

and

ϕ(q)τ(p) = τ(p)ϕ(q).

4
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Proof. Let real vector representation of q ∈ K be −→q . Then, it can be expressed as

−→q = ϕ(q)bt, −→q = τ(q)bt, b = (1, 0, 0, 0).

According to Corollary 1, we have

−→qx = ϕ(qx)bt = ϕ(q)ϕ(x)bt = ϕ(q)−→x
−→xq = τ(xq)bt = τ(q)τ(x)bt = τ(q)−→x

and

−−→qxp =
−−−→
q(xp) = ϕ(q)

−−→
(xp) = ϕ(q)τ(p)−→x

−−→qxp =
−−−→
(qx)p = τ(p)

−−→
(xp) = τ(p)ϕ(q)−→x .

Since these equations are provided that for all p,q ∈ K, they can be written,

ϕ(q)τ(p) = τ(p)ϕ(q).

Generalized inverse

In the next chapters, we will need the generalized inverse of a matrix to solve some systems of linear equations.
Let’s give this definition and some features. For detalied infomation see (Ben-Israel & inverses: n.d.) and
(missing citation).
Definition 3. Let A be an m× n matrix. The n×m matrix G, which provides the equation AGA = A, is
called the generalized inverse of the matrix A.
Theorem 4. Let

A =[
R B
C D

]
=[

R B
C CR−1B

]
be an m× n matrix with r = rank(A), where R is an invertible r × r matrix. Then, the generalized inverse
of A is

G =[
R−1 [0]1
[0]2 [0]3

]
,

where [0]i are represented zero matrices of dimension necessary to make G an n×m matrix.

5
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Theorem 5. Let A be an m × n matrix and its generalized inverse is G. Then, for any fixed y ∈ Rm, the
followings are satisfied.
1. Ax = y, has a solution x ∈ Rn if and only if AGy = y.
2. If the equation Ax = y has a solution, then x is a solution of Ax = y if and only if

x = Gy + (I−GA)z

for some z ∈ Rn

The Similarity of Hybrid Numbers

Definition 6. Let q and p be two hybrid numbers. q and p are called to be similar hybrid numbers, if there
exists a hybrid number a 6= 0, satisfying the equality a−1qa = p, and it is denoted by q ∼ p. The similarity
relation "∼" on hybrid numbers is an equivalence relation, since it is reflexive, symmetric and transitive. It
is clear that q ∼ p implies ‖q‖ = ‖p‖ , since

∥∥a−1qa
∥∥ = ‖q‖ .

Theorem 7. Let p,q ∈ K .Then, q ∼ p if and only if

Re(q) = Re(p) and ‖Ep‖ = ‖Eq‖ .

Proof. Let p and q be similar hybrid numbers. From the corollary 1, we find

Re(p) = Re(a−1qa) = Re(a−1aq) = Re(q)

‖p‖ =
∥∥a−1qa

∥∥ =
∥∥a−1

∥∥ ‖q‖ ‖a‖ = ‖q‖

where a is a hybrid number and ‖a‖ 6= 0. Considering the above equations, the equality ‖Ep‖ = ‖Eq‖ is
obtained.

Theorem 8. Let q =q1 + q2i + q3ε+ q4h and p =p1 + p2i + p3ε+ p4h be two hybrid numbers. If we denote
as

Ωqp := ϕ(q)− τ(p), (3)

then we have the following properties.
1. The determinant of the matrix Ωqp := ϕ(q)− τ(p) is,

det Ωqp = s4 − 2s2(4q +4p) + (4q −4p)2,

where s = q1 − p1. So, det Ωqp = 0 if and only if Re(q) = Re(p) and ‖Eq‖ = ‖Ep‖ .
2. The eigenvalues of the matrix Ωqp can be given in the following table.

6
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p r q Hyperbolic Parabolic Elliptic

Hyperbolic
s +

∣∣4p ±4q

∣∣ ,
s−

∣∣4p ±4q

∣∣ s±4p
s +

(
4p ± i4q

)
,

s−
(
4p ± i4q

)
Parabolic s±4q s s± i4q

Elliptic
s +

(
i4p ±4q

)
,

s−
(
i4p ±4q

) s± i4p
s +

(
4p ±4q

)
i,

s−
(
4p ±4q

)
i

Table 2 : Eigenvalues of the matrix Ωqp

3. If q1 6= p1 or ‖Eq‖ 6= ‖Ep‖ , then Ωqp is a nonsingular matrix and its inverse can be expressed as

Ω−1
qp = ϕ−1(q2 − 2p1q + ‖p‖2)[ϕ(q)− τ(p)]

= ϕ−1(2sq + ‖p‖2 − ‖q‖2)[ϕ(q)− τ(p)]

or

Ω−1
qp = τ−1(p2 − 2q1p + ‖q‖2)[ϕ(q)− τ(p)]

= τ−1(2sp + ‖q‖2 − ‖p‖2)[ϕ(q)− τ(p)].

4. If p and q are non-parabolic similar hybrid numbers, then Ωqp is a singular matrix and its generalized
inverse is

Ω−1
qp =

1

4
∣∣4q

∣∣Ωqp.

5. If p and q are parabolic similar hybrid numbers with ‖Eq‖ = ‖Ep‖ = 0, then the matrix Ωqp is also
singular, and its generalized inverse is

Ω−1
qp = [

A−1 [0]
[0] [0]

.where A = [

0 p2 − p3 − q2 + q3
q2 − p2 −p4 − q4

, q2 6= p2, p2 − p3 6= q2 − q3 and, [0] is a 2 by 2 zero matrix. Besides, row

echelon form of Ωqp is

[

1 0 p4+q4
p2−p3−q2+q3

− p3+q3
p2−p3−q2+q3

0 1 q2−p2

p2−p3−q2+q3

q4−p4

p2−p3−q2+q3

.

Proof. 1. Let q =q1 + q2i + q3ε + q4h and p =p1 + p2i + p3ε + p4h ∈ K be two hybrid numbers, then from
the equality Ωqp=ϕ(q)− τ(p), we obtain

Ωqp =

7
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
s p2 − p3 − q2 + q3 q2 − p2 q4 − p4

q2 − p2 s− p4 − q4 0 p2 + q2
q3 − p3 −p4 − q4 s + p4 + q4 p2 − p3 + q2 − q3
q4 − p4 p3 + q3 −p2 − q2 s



where s = q1 − p1. Now, if we calculate determinant of Ωqp, we obtain

det Ωqp = s4 + 2s2(p22 − 2p2p3 − p24 + q22 − 2q2q3 − q24)

+(p22 − 2p2p3 − p24 − q22 + 2q2q3 + q24)2

= s4 − 2s2(4q +4p) + (4q −4p)2

2. The characteristic polynomial of Ωqp is

|λI− Ωqp| = [(λ− s)2 − (4q −4p)2][(λ− s)2 − (4q +4p)2].

According to this equality, we can see that accuracy of Table 2.
3. If we expand the product [ϕ(q)− τ(p)] Ωqp, we obtain

= ϕ(q2)− ϕ(q)τ(p)− τ(p)ϕ(q) + τ(p)τ(p)

= ϕ(q2)−ϕ(q)τ(p)−ϕ(q)τ(p)+τ(pp)

= ϕ(q2)− ϕ(q)τ(p + p) + τ(pp)

= ϕ(q2)− ϕ(q)2p1 + ‖p‖2 I4
= ϕ(q2 − 2p1q + ‖p‖2 )

and similarly, we can find the equality

[ϕ(q)− τ(p)] Ωqp = τ(p2 − 2q1p + ‖q‖2 ).

If we multiply the first equation from left by ϕ−1(q2 − 2p1q + ‖p‖2 ) and right by Ω−1
qp , then we obtain

Ω−1
qp = ϕ−1(q2 − 2p1q + ‖p‖2 ) [ϕ(q)− τ(p)]

= ϕ−1(2sq−‖q‖2 + ‖p‖2 ) [ϕ(q)−τ(p)] .

Using the same way, we can calculate the below equation.

Ω−1
qp = τ−1(2sp + ‖q‖2 − ‖p‖2)[ϕ(q)− τ(p)].

4. If q and p are similar non-parabolic hybrid numbers, then we have

Ωqp = ϕ(q)− τ(p) = ϕ(Imq)− τ(Imp),

and

(Imq)2 = (Imp)2 =
∣∣4q

∣∣ .
Now, let’s calculate the below equation,

8
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Ω3
qp = [ϕ(Imq)− τ(Imp)]3

= [ϕ(Imq)]
3 − 3 [ϕ(Imq)]

2
τ(Imp)

+3ϕ(Imq) [τ(Imp)]
2 − [τ(Imp)]

3

=
∣∣4q

∣∣ϕ(Imq)− 3 [ϕ(Imq)]
2
τ(Imp)

+3
∣∣4q

∣∣ϕ(Imq)−
∣∣4q

∣∣ τ(Imp)

= 4
∣∣4q

∣∣ [ϕ(Imq)− τ(Imp)].

So we obtain that, Ω3
qp = 4

∣∣4q

∣∣Ωqp and consequently, we can find the equation.

Ω−1
qp =

1

4
∣∣4q

∣∣Ωqp.

5. If q,p are the parabolic hybrid numbers with ‖Eq‖ = ‖Ep‖ = 0, row echelon form of the matrix Ωqp can
be easily calculated. When the condition CR−1B = D is true for Ωqp, then according to Theorem 4, the
generalized inverse of Ωqp is

Ω−1
qp = [

R−1 [0]
[0] [0]

and the condition ΩqpΩ−1
qpΩqp = Ωqp is provided.

Theorem 9. If q is a non-parabolic hybrid number and q /∈ R. The general solution of the linear equation
qx = xq is

x = z +
1∣∣4q

∣∣ (Imq)z(Imq)

where z = z1 + z2i + z3ε + z4h is an arbitrary hybrid number. If q is a parabolic hybrid number and the
coefficients of its i and ε components are non-zero, then the matrix Ωqp and its row echelon form are

[

0 2q3 −2q2 0
2q2 −2q4 0 0

2q2 − 2q3 −2q4 2q4 0
0 0 0 0

and [

1 0 − q4
q3

0

0 1 − q2
q3

0

0 0 0 0
0 0 0 0

respectively. So, the general solution of the equation qx = xq is

x = z3
q4
q3

+ z3
q2
q3

i + z3ε+ z4h

where z = z1 + z2i + z3ε+ z4h ∈ K is an arbitrary hybrid number and q3 6= 0.

Proof. Let q be a non-parabolic hybrid number. Then, according to the equation qx = xq, we obtain

[ϕ(Imq)− τ(Imq)]−→x =
−→
0 .

9
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The general solution of this equation can be expressed as

−→x = 2[I4 − Ω−1
qpΩqp]−→z ,

where −→z is an arbitrary real vector. If we use it in the Theorem 8-4, we get

−→x = 2[I4 −
1

4
∣∣4q

∣∣Ω2
qq]−→z

= 2[I4 −
1

4
∣∣4q

∣∣ (2 ∣∣4q

∣∣ I4 − 2ϕK(Imq)τ(Imq))]−→z

= [I4 +
1∣∣4q

∣∣ϕ(Imq)τ(Imq)]−→z

= z +
1∣∣4q

∣∣ (Imq)z(Imq). (4)

Therefore, if we take z = (Imq)z0 in, (4), we find that

x = (Imq)z0 +
1∣∣4q

∣∣ (Imq)(Imq)z0(Imq)

= (Imq)z0 + z0(Imq)

= (Imq)(Rez0 + Imz0) + (Rez0 + Imz0)(Imq)

= 2Rez0(Imq) + (Imq)(Imz0) + (Imz0)(Imq).

So, we can see that

(Imq)(Imz0) + (Imz0)(Imq) ∈ R.

If q is a parabolic hybrid number and x = x1 + x2i + x3ε + x4h, then, we obtain the matrices (??). The
equation qx = xq is identical to Ωqqx = 0 and it can be solved by writing this equation

[

0 2q3 −2q2 0
2q2 −2q4 0 0

2q2 − 2q3 −2q4 2q4 0
0 0 0 0

[

z1
z2
z3
z4

= 0.According to Theorem 5, a solution of the equation qx = xq is

x = [

q4
2q2q3

1
2q2

0 0
1

2q3
0 0 0

0 0 0 0
0 0 0 0

[

10
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0
0
0
0

+ [

0 0 q4
q3

0

0 0 q2
q3

0

0 0 1 0
0 0 0 1

[

z1
z2
z3
z4

= [

q4
q3
z3

q2
q3
z3
z3
z4

,that is x = z3
q4
q3

+ z3
q2
q3
i + z3ε+ z4h.

Corollary 10. If q is a non-parabolic hybrid number and q /∈ R, then the general solution of the linear
equation qx = xq is x = λ0 + λ1q, where λ0 = (Imq)(Imz0) + (Imz0)(Imq) and λ1 = 2Re (z0).
Example 11. Let’s find the solution of the equation qx = xq for the hybrid number q =q1 + q2i+ q3ε+ q4h.
The general solution is x = λ0 + λ1q, where

λ0 = (Imq)(Imz0) + (Imz0)(Imq) =[
2cq2 + 2dq4 − 2b (q2 − q3) 0 0 0

]
tand, λ1 = 2Re (z0) = 2a and, z = a+ bi + cε+ dh is arbitrary hybrid

number. Therefore, the general solution of qx = xq is

x = λ0 + λ1q = [

2aq1 + 2cq2 + 2dq4 − 2b (q2 − q3) 2aq2 2aq3 2aq4
t.Actually, one can see the accuracy of this solution

by checking in the equation.
Theorem 12. Let q,p ∈ K be two non-parabolic hybrid numbers. Then we have the following properties. 1.
The linear equation qx = xp has a nonzero solution if and only if Re(q) =Re (p) , and ‖Eq‖ = ‖Ep‖ . 2. In
that case, the general solution of the equation qx = xp is

x = z +
1

‖Eq‖ ‖Ep‖
(Imq)z(Imp)

where z ∈ K is an arbitrary hybrid number. In particular, if p 6= q and Imq + Imp 6= 0, then the general
solution of qx = px can be written as

x = λ0(Imq + Imp) + λ1[‖Eq‖ ‖Ep‖+ (Imq)(Imp)]

where λ0, λ1 are arbitrary real numbers.

Proof. According to Theorem 8, the equation qx = px is equivalent to

[ϕ(q)− τ(p)]−→x = Ωqp
−→x = 0.

And this equation has a nonzero solution if and only if |Ωqp| = 0, which is equivalent to Req =Rep, and
‖Eq‖ = ‖Ep‖ , according to Theorem 8-4. So, the general solution of this equation can be written as

11
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−→x = 2
[
I4 − Ω−1

qpΩqp

]−→z
where −→z is an arbitrary real vector. Then, using Ω−1

qp in Theorem 8-4, we find

−→x = 2
[
I4 − Ω−1

qpΩqp

]−→z
= 2

[
I4 −

1

4
∣∣4q

∣∣Ω2(q,p)

]
−→z

= 2

[
I4 −

1

4
∣∣4q

∣∣ (2 ∣∣4q

∣∣ I4 − 2ϕ(Imq)τ(Imp))

]
−→z

=

[
I4 +

1∣∣4q

∣∣ϕ(Imq)τ(Imp)

]
−→z

= −→z +
1∣∣4q

∣∣ϕ(Imq)τ(Imp)−→z

= −→z +
1

‖Eq‖ ‖Ep‖
(Imq)−→z (Imp) .

If p 6= q in qx = xp, then we write z = Imq and z = ‖Eq‖ ‖Ep‖ in

x = z +
1

‖Eq‖ ‖Ep‖
(Imq)−→z (Imp)

respectively, it becomes

x1 = Imq + Imp and x2 = ‖Eq‖ ‖Ep‖+ ImqImp.

Thus,

x = λ0[Imq + Imp] + λ1[‖Eq‖ ‖Ep‖+ ImqImp]

is also a solution of qx = xp under the conditions Req =Rep and ‖Eq‖ = ‖Ep‖ . The independence of x1 and
x2 can be seen from two simple facts that Rex1 = 0 and Rex1 6= 0. Accordingly

x = λ0[Imq + Imp] + λ1[‖Eq‖ ‖Ep‖+ ImqImp]

is exactly the general solution to qx = xp, since the rank of Ωqp is 2.

Example 13. Let’s take the non-parabolic hybrid numbers q =2+i+ε+2h and p =2+2i+2ε+h. The linear
equation qx = xp has a nonzero solution. So, we have Imq+Imp=3i+3ε+3h and ‖Eq‖ ‖Ep‖+ImqImp =
9− 3i and the general solution is x = λ0[3i + 3ε+ 3h] + λ1[9− 3i].
Theorem 14. Let q and p ∈ K be two parabolic hybrid numbers. Then we have the following properties. 1.
The linear equation qx = xp has a nonzero solution. Also, q and p are similar if and only if Req =Rep,
and ‖Eq‖ = ‖Ep‖ = 0. 2. The general solution of qx = xp is

x = ( z4p3+z4q3
p2−p3−q2+q3

− z3p4+z3q4
p2−p3−q2+q3

)+( z3p2−z3q2
p2−p3−q2+q3

+ z4p4−z4q4
p2−p3−q2+q3

)i+z3ε+z4h

where z = z1 + z2i + z3ε+ z4h ∈ K is an arbitrary and p2 6= q2, p2−p3 6= q2−q3.

12
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Proof. Matrix representation of the equation qx = xp is Ωqp
−→x = c. Since q and p are similar parabolic

hybrid numbers, inverse of the matrix Ωqp can be calculated from Theorem 4. According to the definition of
similarty for parabolic hybrid numbers, we have s = 0 and the matrix

Ωqp =
0 p2 − p3 − q2 + q3 q2 − p2 q4 − p4

q2 − p2 −p4 − q4 0 p2 + q2
q3 − p3 −p4 − q4 p4 + q4 p2 − p3 + q2 − q3
q4 − p4 p3 + q3 −p2 − q2 0

 .

We can easily see that the condition CR−1B = D of Theorem 4 is satisfied where

C =[
q3−p3 −p4−q4
q4−p4 p3+q3

]
, B=[

q2−p2 q4−p4
0 p2+q2

]
D =[

p4 + q4 p2 − p3 + q2 − q3
−p2 − q2 0

and R =[
0 p2 − p3 − q2 + q3

q2 − p2 −p4 − q4

]
Therefore, the generalized inverse of the matrix Ωqp is

Ω−1
qp =


− p4+q4

(p2−q2)(p2−p3−q2+q3)
− 1

p2−q2
0 0

1
p2−p3−q2+q3

0 0 0

0 0 0 0
0 0 0 0

 .

One can see that this matrix satisfies the condition of the definition 3 which is ΩqpΩ−1
qpΩqp = Ωqp. Thus,

we obtain the general solution of qx = xp as follows, according to the Theorem 5

x =
z4

p3+q3
p2−p3−q2+q3

− z3 p4+q4
p2−p3−q2+q3

z3
p2−q2

p2−p3−q2+q3
+ z4

p4−q4
p2−p3−q2+q3

z3
z4

 .

13
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Example 15. Let’s take the similar parabolic hybrid numbers, q =3− 2i + 3ε+ 4h, p =3− 8i + 5ε− 12h,
the linear equation qx = xp has a general solution

x = −(z4 + z3) + (z3
3

4
+ 2z4)i + z3ε+ z4h

where z = z1 + z2i + z3ε+ z4h is an arbitrary hybrid number. This linear equation can be written as

Ωqp
−→x = [

0 −8 6 16
6 8 0 −10
−2 8 −8 −18
16 8 10 0

−→x = 0.We have det Ωqp = 0 and this matrix provide generalized inverse condition,

CR−1B = [

−2 8
16 8

[

1
6

1
6

− 1
8 0

[

6 16
0 −10

= [

−8 −18
10 0

= D.Therefore, the generalized inverse of Ωqp is

Ω−1
qp = [

1
6

1
6 0 0

− 1
8 0 0 0

0 0 0 0
0 0 0 0

.According to the Theorem 5, we find, x = −(z4 + z3) + (z3
3
4 + 2z4)i + z3ε+ z4h.

Now, let’s give a direct conclusion of Theorem 12.
Corollary 16. The equation qx = xq in hybrid numbers always has a nonzero solution. Moreover, q ∼ q =
q1 + ‖Eq‖V where V = {i, ε, h}.
Therefore, we have the following tables :

Type r Character Spacelike Lightlike Timelike
Hyperbolic q1 + ‖Eq‖ q1 q1 + ‖Eq‖
Parabolic - 0 q1
Elliptic - - q1 + ‖Eq‖ i

Table 3 : Similarity of q in K

14
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Type r Character Spacelike Lightlike Timelike
Hyperbolic λ0(‖Eq‖h+Imq) λ0Imq λ0(‖Eq‖h+Imq)

+λ1(‖Eq‖+ (Imq)h) +λ1(‖Eq‖+ (Imq)h)
Parabolic - 0 λ0Imq
Elliptic - - λ0(‖Eq‖ i+Imq))

+λ1(‖Eq‖+ (Imq) i)
Table 5 : General solution of qx = xq̂ in K

where λ0, λ1 are arbitrary real numbers..
Theorem 17. Let q and p are non-parabolic similar hybrid numbers. Then, the equation qx− xp = c has
a solution if and only if qc = cp. Moreover, the general solution of qx− xp = c can be expressed as

x =
1

4
∣∣4q

∣∣ (qc− cp) + z +
1∣∣4q

∣∣ (Imq)z(Imp)

where z is an arbitrary hybrid number.

Proof. The equation qx− xp = c can be written as,

[ϕ(q)− τ(p)]−→x = Ωqp
−→x = −→c .

This equation is solvable if only if ΩqpΩ−1
qp
−→c = −→c which is equivalent to

[ϕ(Imq)τ(Imp)]−→c = −
∣∣4q

∣∣−→c .
Returning it from matrix form to hybridian form, we can write the equation

(Imq)c(Imp) = −
∣∣4q

∣∣−→c .
Therefore, we find

(Imq)(Imq)c(Imp) = −(Imq)
∣∣4q

∣∣−→c
−→c (Imp) = −(Imq)−→c

and then qc = cp. In that case, the general solution of () can be given as

x = Ω−1
qp
−→c + 2[I4 +

1∣∣4q

∣∣ (Imq)(Imp)]−→z ,

where −→z = (a, b, c, d) is an arbitrary real vector. Thus, we can find

x =
1

4
∣∣4q

∣∣ (qc− cp) + z +
1∣∣4q

∣∣ (Imq)z(Imp).

15
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Example 18. Let’s find take the general solution of equation qx − xp = c for the non-parabolic hybrid
numbers q =2 + i + 2ε+ 3h, p =2 + 2i + 3ε+ 2h, c = i + ε− h. We have,

(qc−cp) = ϕ (q) c− τ (p) c =[
−2 −8 2 2

]
t.Therefore, according to the Theorem 17, we obtain the the general solution as

x =
1

24
46a− 10b+ 8c− 2d− 1
8b− 8a+ 8c+ 16d− 4

2a+ 10b+ 16c+ 26d+ 1
2a+ 10b+ 16c+ 26d+ 1


where −→z = (a, b, c, d) is an arbitrary real vector.
Theorem 19. Let q =q1 + q2i + q3ε+ q4h and p =p1 + p2i + p3ε+ p4h be parabolic similar hybrid numbers
with p2 6= q2, p2 − p3 6= q2 − q3. Then, the equation

qx− xp = c

has a solution where

c = c1+c2i+(
−c1 (p4+q4)

p2−q2
− c2(q3−p3)

p2−q2
)ε+(

c1(p2+q2)

p2−q2
+
c2(p4−q4)

p2−q2
)h ∈K.

The general solution of qx− xp = c can be expressed as

x = x1 + x2i + z3ε+ z4h

where

x1 =
z4p3 + z4q3
p2−p3−q2+q3

− c1p4 + c1q4
(p2−q2) (p2−p3−q2+q3)

− c2
p2 − q2

− z3p4 + z3q4
p2−p3−q2+q3

x2 =
c1

p2−p3−q2+q3
+

z3p2 − z3q2
p2−p3−q2+q3

+
z4p4 − z4q4
p2−p3−q2+q3

.

and z = z1 + z2i + z3ε+ z4h is an arbitrary hybrid number.

Proof. Since q and p are similar parabolic hybrid numbers, the generalized inverse of Ωqp is as given in the
Theorem 4. So, its general solution is

x =
z4

p3+q3
p2−p3−q2+q3

− c1 p4+q4
(p2−q2)(p2−p3−q2+q3)

− c2
p2−q2

− z3 p4+q4
p2−p3−q2+q3

c1
p2−p3−q2+q3

+ z3
p2−q2

p2−p3−q2+q3
+ z4

p4−q4
p2−p3−q2+q3

z3
z4

 .

16
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Example 20. Let’s find the general solution of equation qx − px = c for the parabolic hybrid numbers
q =− 2− 4i+ 6ε+ 8h, p =− 2− i + 12ε+ 5h, c = 1 + i + 29ε− 4h. According to Theorem 19, the solution
of Ωqpx = c is

x =[
28

15
− 32

15
z4 −

13

15
z3

1

15
z4 −

1

15
z3 +

1

15
z3 z4

]
twhere z = z1 + z2i + z3ε + z4h is an arbitrary hybrid

number.
Theorem 21. Let q and p be two non-similar hybrid numbers. Namely, Req 6= Rep or ‖Eq‖ 6= ‖Ep‖ . Then
the equation qx− xp = c has a unique solution

x = (2sq + ‖p‖2 − ‖q‖2)−1(qc− cp)

= (qc− cp)(2sq + ‖p‖2 − ‖q‖2)−1

where s = Req− Rep.

Proof. Since q and p are not similar, det Ωqp 6= 0 and Ωqp has an inverse which it can be expressed as
Theorem 8-3

Ω−1
qp = ϕ−1(2sq + ‖p‖2 − ‖q‖2)[ϕ(q)− τ(p)],

Ω−1
qp = τ−1(−2sq + ‖p‖2 − ‖q‖2)[ϕ(q)− τ(p)].

Thus, we get

−→x = Ω−1
qp
−→c

= ϕ−1(2sq + ‖p‖2 − ‖q‖2)[ϕ(q)− τ(p)]−→c
= (2sq + ‖p‖2 − ‖q‖2)−1(qc− cp)

and

−→x = Ω−1
qp
−→c

= τ−1(−2sq + ‖p‖2 − ‖q‖2)[ϕ(q)− τ(p)]−→c
= (qc− cp)(2sq + ‖p‖2 − ‖q‖2)−1.

Example 22. Let’s find the unique solution of the equation qx− xp = c for the hybrid numbers, q =2 + i+
ε+ 2h, p =1 + 2i + 2ε+ h, c = −2 + 3i + ε+ 5h. Since q and p are not similar, we have

(2sq + ‖p‖2 − ‖q‖2) = 2(2 + i + ε+ 2h)− 4− (−1) = 1 + 2i + 2ε + 4h

and

17
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qc− cp = ϕ (q) c− τ (p) c = (16,−11,−7,−3)
t
.

Therefore, we obtain

[
16 −11 −7 −3

]
t

=[
− 42

19
81
19

55
19

59
19

]
t

= − 42
19 + 81

19 i + 55
19ε+ 59

19h.

Conclusions

In this article, we examined the similarity of hybrid numbers and linear equations with hybrid coefficients.
For this purpose, we have examined the appropriate studies in quaternions. We found similarities in our
examination. As a result, when we examine and categorize a hybrid number according to its module and
casual character, we obtained different results in terms of the similarity of the two hybrid numbers. However,
while solving linear equations with hybrid number coefficients, in the solution of similar parabolic hybrid
equations naturally emerged different from the quaternions. This is because the ‖Eq‖ of a parabolic hybrid
number q is zero. This difficulty is solved by the generalized inverse theorem which is used to find the inverse
of non-square matrices. The examination of these situations has brought a new solution to the systems of
linear equations.
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