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Abstract

Our knowledge of glacial history of the western (Norwegian) part of the Barents Sea has greatly improved during the last
decades, notably due to the high-resolution multibeam swath bathymetry data. In contrast, published seafloor data from
the eastern part of the Barents Sea and the Kara Sea are much more sparse. This study presents new geophysical/geological
evidence for reconstructing glacial dynamics of the eastern part of the Barents-Kara Ice Sheet during the Last Glacial Maximum
and subsequent deglaciation. Archival data used in this study include more than 300,000 km of sparker and high-resolution
Parasound profiles verified by boreholes drilled with continuous core recovery to 50-100 m below sea bed. This dataset was
used to construct continuous geological cross-sections and a series of maps, including detailed bathymetry (in 10-m isobaths)
and sediment thickness maps of major seismo-stratigraphic units. Based on the bathymetric and sediment thickness data we
map megascale glacial lineations, drumlin-like ridges up to 50 m high and subglacial channels up to 100 m deep, as well as
accumulations of glacial deposits (basal, lateral and end moraines) and ice-proximal acoustically transparent bodies (ATBs).
Spatial and stratigraphic analysis of these bedforms enables us to put forward a new hypothesis that ice moved on the shelf from
the Arctic Ocean along the Saint Anna Trough (SAT). Further south, near the northern tip of the Novaya Zemlya islands, the
ice flow split into three major lobes moving to the southwest into the Barents Sea and to the south and southeast into the Kara
Sea. Deglaciation in the study area progressed with several ice stillstands and subsequent readvances marked by end-moraines
and accumulation of ice-proximal sediments. During deglaciation events, when the SAT became ice free due to iceberg calving,
the ice flow reversed its direction toward the SAT, forming a fluting and a massive ATB on the western SAT slope. The exact
timing and mechanisms of the ice transgression(s) from the Arctic Ocean are not well understood. Additional high-resolution
data such as multibeam bathymetry surveys are needed to verify the spatiotemporal distribution of glaciogenic bedforms, and

glaciological modeling is required to comprehend the ice dynamics and put it in the pan-Arctic context.
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1-8 Main seismic profiles.

Thickness map of seismostratigraphic unit SSU-III (glacial till) showing a southward glacial advance via Saint

Anna Trough (SAT).



MAP 2. THICKNESS OF SSU-IIIA (ATB)
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During deglaciation the ice flow reversed its direction towards the SAT (ice free by that time), forming lineated
seafloor features in the East Barents Trough (EBT) and a massive Acoustically Transparent Body (ATB) on the

western SAT slope.



AREAS OF DETAILED (A-E) AND PRIOR DATA (1-11)

1. Fragment of the IBCAO map
(Jakobsson et al., 2012)
showing general bathymetry with
rounded contours of sea bottom non-
characteristic for glaciated shelves.

2. Fragment of navigation map with a
200-m isobath and depth readings.

3. Detailed bathymetry constructed in
this study using numerous depth
readings from navigation map and
measurements from continuous
seismic records. The resultant
bathymetry shows linear pattern
characteristic to glacial shelves.

4. Thickness map of SSU-IIl constructed
using the continuous seismic records
and detailed bathymetry. Based on the
distribution of glacigenic deposits, we
interpret the elongated features as
drumlins and the ice flow direction
from the northeast.

A. Comparison of the bathymtry charts constructed using different approaches (1-3), and the interpretation of ice
dynamics based on the detailed bathymetry and subbottom profiles (4). See Maps 1 and 2 for location of Area A.



1. Fragment of the IBCAO map
(Jakobsson et al., 2012)
showing general bathymetry of
morainic ridge with rounded
contours. Inferred ice flow
direction can be interpreted from
the NW, from the Frantz Josef
Land (FJL).

2. Thickness lines previously
constructed by other researchers
using the IBCAO map.
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4.  Thickness map of glacigenic
sediments (SSU-III) constructed
using the continuous seismic
records and the detailed
bathymetry. Because ATB is
located in the front of the
morainic ridge, we interpret the
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B. Comparison of the bathymetry charts (1 and 3) constructed using different approaches, and thickness maps (2
and 4) using different bathymetry. See maps 1 and 2 for location of Area B.
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Central channel

Examples of bathymetry and subbottom
profiles of seafloor channels (to 60 m deep)
crossing the Admiralty Bank moraines. We
infer that these channels were the main
pathways for sediment constructing the ATB
in the Central Deep to the southwest.

C and D. Examples of seafloor channels (to 60 m deep) crossing the Admiralty Bank moraines. We infer that
these channels were the main pathways for sediment constructing the ATB in the Central Deep. See maps 1 and 2
for Areas C and D.



BOREAS 22 (1993)

Glaciation, eastern Barents Sea
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Cross-section along the regional sparker profiles (see Fig. 2). Seismostratigraphic units are interpreted as: K — Cretaceous bedrock;
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Fig. 4. Sparker record illustrating the structure of the upper part of the seismostratigraphic unit III (Fig. 2A for location).

Fig. 5. Sparker records illustrating the structure of the ‘transparent body’ wedging zone. Fig. SA is a fragment of regional profile C-D.
while Fig, 5B is located slightly southwards of profile G-H (Figs. 2 and 3 for location). Seismostratigraphic units are explained in the text
and in Fig. 3.

E. and 2. Seismic profiles showing the structure of the ATB (herein SSU-IIIA") in the Central Deep (Gataullin et
al., 1993). See maps 1 and 2 for Area E.
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YAMAL PENINSULA

EVIDENCES FOR GLACIAL DRIFT FROM THE KARA SEA SHELF

FRAGMENTS OF MARRESALE CLIFF PHOTOMOSAICS

The upper fragment (central zone of "anticlinorium") shows only
simple gentle folds of lower part of the Marresale Formation.

The lower fragment (close to the Kara Till) shows the prevalence of
asymmetric folds overturned to N-E.

Glaciotectonic deformations on the western coast of the
Yamal peninsula formed by the Baidarata ice lobe moving
from the Kara Sea along the Novaya Zemlya Trough.

1. Evidence for pre-LGM glacial advance to the Yamal Peninsula from the Kara Sea shelf (Gataullin, 1988). The
occurence of specific quartz-chlorite shales on the beaches of the Baidarata Bay north the Polar mountains, and
their complete absence in the Kara Till on the Yamal Peninsula, contradicts reconstructions (e.g. Forman, et al.,
2002) implying ice advance from the Polar Ural.
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3. Draft of the SSU-III thickness map, for the SW Barents Sea (Gataullin, 1993). A most prominent sea floor
geomorphic feature in this area is the Murmansk bank, which we interpreted as a morainic ridge. Other researches
(e.g., Bjarnadottir et al., 2014) suggest it as a grounding zone wedge (GZW) deposited at the margin of streaming
ice. The overall geomorphic and depositional pattern indicates to glacial stillstand during ice retreat and general
glacial advance from the NE. This ice-dynamic pattern does not support the ice divide proposed for the central
Barents Sea (Andreassen et al., 2013; Esteves,et al., 2017).
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4. Thickness map of glacial till (combined SSU-III and V) in the Pechora Sea (southeasternmost Barents Sea),
showing the general ice-flow direction from the north, the LGM limit (Kolguev line), and two ice stillstands
during deglaciation: Kurentsovo line and Admiralty Bank line (Gataullin et al., 2001).
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Fig. 5A. Bathymetry of the
southwestern Kara Sea with
isobaths in 25 m.

Based on the seafloor
morphology we infer that during
the LGM a narrow ice lobe moved
southwards along the Novaya
Zemlya Trough. This ice stream
was constrained in the west by
Novaya Zemlya and in the east
by stagnant ice indicated by
numerous, chaotically oriented
channels to 100 m deep
(Gataullin et. Al., 2003). ‘




SA. Bathymetry of the southwestern Kara Sea.

Fig.7. Isopach map of SSU-IIIA (Late Weichselian Kolguev Till Fig.8. Isopach map of SSU-IIIB (Late Weichselian Kurentsovo Til) Fig9. Isopach map of SSU-IIIC (Late Weichselian Admiralty Bank Til)
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Geological transect 3 between Novaya Zemlya and Yamal Peninsula. Seismic reflection data collected by NIIMORGEO, 1986, MAGE, 1999, BPRC, 2000
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5B. Thickness maps of glacial deposits (SSU-IIT A-C) in the southwestern Kara Sea during the LGM and

deglaciation stillstands; and a geological profile between Novaya Zemlya and Yamal Peninsula (Gataullin et al.,
2003).
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6. Bathymetry of the eastern Barents Sea with isobaths in 25 m (Polyak et al, 2002). North of the LGM limit
(black line) sea floor has linear geomorphic features and accumulations of glacial deposits (SSU-III). To the south,
sea bottom has rounded morphology with depressions filled by pro- and post-glacial sediments and an alluvial
plain further south. This pattern indicates that during the LGM ice invaded the Kara Sea from the north and
blocked the northbound drainage of Siberian rivers.



EURASIAN ICE SHEET COMPLEX (EISC) MODEL
(PATTON ET AL., 2016)
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Modeled ice-surface velocity during the Last Glacial Maximum (LGM) (Patton et al., 2016). Data from the
eastern Barents and Kara Seas presented here do not support this model for the eastern portion of EISC.



MAP 3. OVERVIEW OF THE BARENTS-KARA ICE
SHEET
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Interpretation of ice dynamics of the Barents - Kara Ice Sheet during the LGM and subsequent deglaciation. See
Figs 2 and 3 for explanation of the thickness of glacigenic sediments. General southward ice movement is
inferred from the Arctic Ocean along the Saint Anna and Voronin Troughs. Previously proposed empirical
(Andreassen et al., 2013) and modeled (Estaves et al., 2017) ice divides in the central Barents Sea are not
supported by the presented data east of this area.



SUPPORTING SEISMO-STRATIGRAPHIC DATA (1-8)

Seismic profile 1 across a morainic ridge and a small ATB indicating a westward re-advance and a brief stillstand
during deglaciation.

Seismic profile 2. ATB west of morainic ridge indicating ice flow from the east (from the SAT).
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Seismic profile 3 showes a morainic ridge formed by glacial re-advance from the east (from the SAT) and spiky
sea-floor features indicate glacial lineations at the bottom of the East Barent Trough, likely formed by an ice
stream moving towards the SAT during deglaciation.
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Profile 4. Fragment of a high resolution Parasound profile showing glacial lineation in the East Barents Trough.

Seismic profile 5 along the western slope of SAT crosses a series of narrow and elongated ridges composed by
glacigenic deposits (SSU-III) with chaotic acoustic signature and saw-like surface (possibly large drumlins); ice-
proximal deposits with acoustically transparent signature (ATB) are located between the ridges. Spiky seafloor
bedforms (up to 15 m high) indicate glacial lineations on the left side of uppre profile.
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Seismic profile 6 across the western slope of the SAT. Schematic drawing above explains the proposed formation
of the ATB during the late deglaciation, when SAT was free of ice.
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Seismic profile 7 east of the northern tip of Novaya Zemlya showes thrusted moraines indicating southward
movement from the SAT.




Seismic profile 8 along the southeastern portion of the SAT. Thickening of glacigenic deposits (SSU-III) to more
than 75 m indicates glacial advance southwards from the SAT. The LGM till is underlain by a possibly
interglacial layer (SSU-IV) and remnant of an older Kara Till (SSU-V).
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ABSTRACT

Our knowledge of glacial history of the western (Norwegian) part of the Barents Sea has greatly improved during the last
decades, notably due to the high-resolution multibeam swath bathymetry data. In contrast, published seafloor data from the
eastern part of the Barents Sea and the Kara Sea are much more sparse. This study presents new geophysical/geological
evidence for reconstructing glacial dynamics of the eastern part of the Barents-Kara Ice Sheet during the Last Glacial
Maximum and subsequent deglaciation.

Archival data used in this study include more than 300,000 km of sparker and high-resolution Parasound profiles verified by
boreholes drilled with continuous core recovery to 50-100 m below sea bed. This dataset was used to construct continuous
geological cross-sections and a series of maps, including detailed bathymetry (in 10-m isobaths) and sediment thickness maps
of major seismo-stratigraphic units. Based on the bathymetric and sediment thickness data we map megascale glacial
lineations, drumlin-like ridges up to 50 m high and subglacial channels up to 100 m deep, as well as accumulations of glacial
deposits (basal, lateral and end moraines) and ice-proximal acoustically transparent bodies (ATBs).

Spatial and stratigraphic analysis of these bedforms enables us to put forward a new hypothesis that ice moved on the shelf
from the Arctic Ocean along the Saint Anna Trough (SAT). Further south, near the northern tip of the Novaya Zemlya
islands, the ice flow split into three major lobes moving to the southwest into the Barents Sea and to the south and southeast
into the Kara Sea. Deglaciation in the study area progressed with several ice stillstands and subsequent readvances marked by
end-moraines and accumulation of ice-proximal sediments. During deglaciation events, when the SAT became ice free due to
iceberg calving, the ice flow reversed its direction toward the SAT, forming a fluting and a massive ATB on the western SAT
slope. The exact timing and mechanisms of the ice transgression(s) from the Arctic Ocean are not well understood.
Additional high-resolution data such as multibeam bathymetry surveys are needed to verify the spatiotemporal distribution of
glaciogenic bedforms, and glaciological modeling is required to comprehend the ice dynamics and put it in the pan-Arctic
context.
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