Assessing and correcting estimated fCO2 from carbonate chemistry models of the northeastern US

Corbin T Lanker¹, Jennie Rheuban², Louise Cameron³, Ivan D Lima⁴, and Aleck Zhaohui Wang⁵

¹The Ohio State University ²Woods Hole Sea Grant and Woods Hole Oceanographic Institution ³Northeastern University ⁴Woods Hole Oceanographic Inst ⁵Marine Chemistry and Geochemistry

November 22, 2022

Abstract

Understanding changes in the ocean carbonate system is central to understanding ocean and coastal acidification and the effects these phenomena will have in the future. To create a more complete overview of the recent history of the carbonate system in the nearshore Northeastern United States, several recently published or in-development statistical models have used simple ocean chemistry parameters of salinity, temperature dissolved oxygen, and nitrate, or these variables plus the addition of other input parameters: sea surface temperature, chlorophyll a, sea surface height, bathymetry, and atmospheric pCO2 to generate estimates of dissolved inorganic carbon (DIC) and total alkalinity (TA). Both a Random Forest Regression model and a multiple linear regression model predicting carbonate chemistry parameters was tested for accuracy in predicting fugacity of CO2 (fCO2) by comparing them with the publicly available fCO2 data from the Surface Ocean CO2 Atlas (SOCAT) database. Comparisons revealed a bias by the models to overestimate fCO2, which was also observed when comparing the SOCAT dataset to collocated discrete observations. To resolve these biases in fCO2, a correction was fitted to the modeled datasets. This investigation suggests that models that accurately predict carbonate parameters of DIC and TA, may be limited in their ability to reproduce fCO2 conditions in coastal areas without correction. This study suggests that extrapolating ocean carbonate system models based on parameters outside their intended uses should be considered for their potential limitations.

Comparing SOCAT fCO_2 to Corrected Calculated fCO_2

Assessing and correcting estimated fCO₂ from carbonate chemistry models of the northeastern US

WOODS HOLE **OCEANOGRAPHIC** INSTITUTION

¹Woods Hole Oceanographic Institution, Department of Marine Chemistry & Geochemistry, ²The Ohio State University School of Earth Sciences

Introduction

Figure 1. Spatial

Distribution of

Bottle Samples

(Top) and CTD

Casts (Bottom).

Bottle samples

have measures

of TA and DIC,

measurements

are used to

DIC where

available.

model TA and

measures aren't

CTD cast

Characterizing the ocean carbonate system is important in understanding ocean acidification and broader ocean chemistry. Models can help extrapolate carbonate chemistry parameters from existing chemistry data (Fig. 1)

This investigation explores the ability of a Random Forest Regression Model (RFR), a multiple linear regression model (MLR)¹ and bottle samples to predict the fugacity of CO_2 (fCO₂) in the Northeast US nearshore region from modeled or measured total alkalinity (TA) and dissolved inorganic carbon (DIC)

> Spatial Distribution of Bottle Samples 40°N **Spatial Distribution of CTD Casts** Longitude

Methods

To compare modeled fCO₂, the publicly available Surface Ocean CO₂ Atlas (SOCAT) was used as a source of underway fCO₂ values measured at 5m depth. fCO₂ was calculated from measured or modeled TA and

DIC using CO2SYS (v. 1.1). Surface ocean chemistry was calculated from a mean of values from a depth range. Surface fCO₂ was then compared to SOCAT fCO₂ values by matching SOCAT datapoints within a specified radial distance and collection date range of the modeled and bottle datapoints. Multiple depth, distance and time ranges were used and compared for the best fit. fCO_2 comparisons were analyzed using Root Mean Square Error and models of linear fit.

Corbin T Lanker^{1,2} and Jennie E. Rheuban¹

For the Northeast US, it is suspected that CO2SYS fails to accurately predict fCO₂ due to high contributions of organic alkalinity for which generate corrections for the models and bottle samples to make fCO₂

> Fellowship, Louise P. Cameron, Z. Aleck Wang, Ivan D. Lima, NOAA Climate Program Office and SOCAT for all

¹McGarry, K., Siedlecki, S. A., Salisbury, J., & Alin, S. R. (2021). Multiple linear regression models for reconstructing and exploring processes controlling the carbonate system of the northeast US from basic hydrographic data. Journal of