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Abstract

We demonstrate the use of information theory metrics, Shannon entropy and mutual information, for measuring internal

and forced variability in general circulation coastal and global ocean models. These metrics have been applied on spatially

and temporally averaged data. A combined metric reliably delineates intrinsic and extrinsic variability in a wider range

of circumstances than previous approaches based on variance ratios that therefore assume Gaussian distributions. Shannon

entropy and mutual information manage correlated fields, apply to any distribution, and are insensitive to outliers and a change

of units or scale. Different metrics are used to quantify internal vs forced variability in (1) idealized Gaussian and uniformly

distributed data, (2) an initial condition ensemble of a realistic coastal ocean model (OSOM), (3) the GFDL-ESM2M climate

model large ensemble. A metric based on information theory partly agrees with the traditional variance-based metric and

identifies regions where non-linear correlations might exist. Mutual information and Shannon entropy are used to quantify the

impact of different boundary forcings in a coastal ocean model ensemble. Information theory enables ranking the potential

impacts of improving boundary and forcing conditions across multiple predicted variables with different dimensions. The climate

model ensemble application shows how information theory metrics are robust even in a highly skewed probability distribution

(Arctic sea surface temperature) resulting from sharply non-linear behavior (freezing point).
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Abstract8

Ocean model simulations show variability due to intrinsic chaos and external forcing9

(air-sea fluxes, river input, anthropogenic emissions, etc.). It is important to estimate10

their contributions to total variability for attribution. Using variance to estimate vari-11

ability might be unreliable due to the existence of higher statistical moments. We show12

the use of non-parametric information theory metrics, Shannon entropy and mutual13

information, for measuring internal and forced variability in coastal and global ocean14

models. These metrics are applied on spatially and temporally averaged data. Metrics15

delineate variability in a wider range of circumstances than previous approaches based16

on variance ratios that assume Gaussian distributions. Metrics work on correlated17

fields, apply to any distribution, and are insensitive to outliers and a change of units18

or scale. Metrics are applied to (1) idealized data, (2) ensemble of a realistic coastal19

ocean model (OSOM), (3) GFDL-ESM2M large ensemble. The information theory20

metric partly agrees with the variance-based metric and possibly identifies regions of21

non-linear correlations. The metric detects higher intrinsic variability in the Arctic22

region as compared to the variance metric. The climate model ensemble application23

shows how information theory metrics are robust in a skewed probability distribution24

(Arctic sea surface temperature) resulting from sharply non-linear behavior (freezing25

point). In different experiments, we quantify sensitivity of OSOM to changes in forcing.26

Variations in the river runoff and changing the wind product do not add information27

(variability). Information theory enables ranking the impacts of improving boundary28

and forcing conditions across multiple variables with different dimensions.29

Plain Language Summary30

It is important in climate modeling to distinguish variability caused by external31

forces versus variability that arises within the system to estimate causes in a particular32

variation. Disturbances from the atmosphere such as wind, solar heating and cooling,33

anthropogenic emissions are external disturbances and variations due to swirls are34

internal chaotic disturbances. We use information theory - a way to quantify the35

amount of variability in these models. Here, we study multiple runs of a coastal36

ocean model and an ocean climate model. We found that it matters a lot how you37

measure the internal and external variability. Making fewer assumptions about the38

statistics of variability proved more robust, especially in the Arctic in global model39

and at depth in an estuary. For the global model, we found internal chaos to dominate40

temperature variations in the Arctic in contrast to variations in salinity. In a different41

set of experiments, the coastal model was run by slightly changing the wind, averaging42

the river input instead of the full river flow, etc. We found that we cannot neglect river43

input. Different winds had the same impact. These experiments reveal the importance44

of uncertainty in forcing conditions to help us design a forecasting system.45

1 Introduction46

In an ocean or climate model, it is pertinent to understand the cause of variability,47

as it leads to implications for predictability, prioritization of data collections for as-48

similation, and provides an understanding of the dynamics at play in different regions.49

In a coastal model, variability can arise from extrinsic factors such as wind forcing,50

solar and thermal forcing, tides, rivers, evaporation, and precipitation, or it can be51

due to internal chaos inherent to the governing fluid equations (Sane et al., 2021). In52

a climate model, modes of variability such as El Niño, the North Atlantic Oscillation,53

or the Southern Annular Mode can conceal or delay the emergence of attributable54

anthropogenic climate change signals (Milinski et al., 2019). In high-resolution ocean55

models, internal chaos or intrinsic variability can also be due to eddies (Leroux et al.,56

2018; Llovel et al., 2018). Accurately quantifying the relative contribution of external57

–2–



manuscript submitted to JGR: Oceans

and internal factors can help to elucidate the causes responsible for observed variabil-58

ity in models, help to identify key observable metrics, and help quantify concepts such59

as the time of emergence of climate signals (Hawkins & Sutton, 2012).60

Numerous methods exist in the literature to quantify intrinsic and extrinsic vari-61

ability using models or observations (e.g., Frankcombe et al. (2015); Schurer et al.62

(2013); Y.-C. Liang et al. (2020)). Two types of model ensembles are common: initial63

condition ensembles (where the same model is used repeatedly with perturbed ini-64

tial conditions and intrinsic variability occurs via chaos), and multi-model ensembles65

(where a variety of models differing in numerics and parameterizations are used to sim-66

ulate change under the same forcing–in this case “intrinsic” variability also includes67

aspects of model formulations). Initial condition ensembles are a set of simulations68

sharing the same forcing and the same governing equations and identical parame-69

terizations, but they still diverge from one another because slightly different initial70

conditions evolve into substantially different conditions later in the simulations due to71

intrinsic chaos–most geophysical fluid dynamics models and climate models are intrin-72

sically chaotic. Most of the discussion here will focus on initial condition ensembles,73

but the metrics proposed can be adapted to both types of ensembles.74

To help visualize variability, a generic idealized output from an ocean or atmo-75

spheric model is shown in Figure 1. Each color represents a different ensemble member,76

and the black solid line is the mean of those members. The solid black line is the sig-77

nal due mainly to extrinsic factors (aside from the limits of the finite ensemble size)78

and the spread of the model (schematized by the double-headed magenta arrow in79

Figure 1) can be considered due to intrinsic variability or internal chaos.80
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Figure 1. A sketch of a typical ocean or climate model output for an arbitrary variable. Each

ensemble is shown in a different color, and the mean of the ensemble is shown as a black line.

The ensemble mean can be considered to be the trend set by external forcings. The model spread

shown by the double-headed magenta arrow indicates the chaos of the model.

One method of quantifying intrinsic and extrinsic variability is to look at vari-81

ances (second central statistical moment) of the model spread and the mean of the82

model (Leroux et al., 2018; Llovel et al., 2018; Waldman et al., 2018; Yettella et al.,83

2018). Variance is sufficient to constrain all metrics of variability about the mean when84

distributions are Gaussian and uncorrelated, but a single statistical moment usually85

measures only part of a more complex variability distribution. Many climatological86

variables show non-Gaussian distributions (e.g., Franzke et al. (2020)). In fact, gener-87

alized variance might be misleading (e.g., Kowal (1971)). Quantification of variability88

should be robust to or have a known dependence on changes in the units of the quan-89

tity or the scale (e.g., changing temperature from Celsius to Fahrenheit or Kelvin).90

–3–



manuscript submitted to JGR: Oceans

Comparative metrics, such as intrinsic vs. extrinsic variability, should not depend on91

these arbitrary choices of units at all.92

Variability, in essence, is a function of the number of occurrences or frequency93

of occurrence, often estimated by a histogram formed after appropriately binning the94

data, which then approximates a distribution with a discrete probability pi as a fraction95

over all states of the visited system. A histogram thus makes the estimated and96

visited number of states discrete rather than continuous. Information entropy metrics97

measure variability by taking into account the probability distribution of the binned98

data, drawing on the concept from statistical mechanics of entropy in quantifying99

the number of microstates that a variable can occupy. The fundamental measure in100

information theory is the Shannon entropy (Shannon, 1948) (a.k.a. the information101

entropy) that characterizes the amount of variability in a variable (Carcassi et al.,102

2021). Mutual information, another metric introduced by Shannon (1948), measures103

how much information a variable contains about another variable.104

Information theory is applied in signal processing, computer science, statistical105

mechanics, quantum mechanics, etc. It is used to quantify the amount of informa-106

tion, disorder, freedom, or lack of freedom (Brissaud, 2005). The application of these107

abstract notions to geophysical flows can have immense practical benefit when infor-108

mation entropy is interpreted as a measure of variability, as entropy does not rely on109

any particular parametric probability distribution. Information theory metrics are not110

new to climate sciences. They have been introduced in predictability studies, evalu-111

ating the skill of statistical models, as well as uncertainty studies (Leung & North,112

1990; Schneider & Griffies, 1999; Kleeman, 2002; DelSole & Tippett, 2007; Majda &113

Gershgorin, 2010; Stevenson et al., 2013) and recently in studying variability (Gomez,114

2020), coastal predictability (Sane et al., 2021) and drivers of drought (Shin et al.,115

2023).116

In the two parts of this article, we bring well-established concepts of information117

theory to the particular application of measuring intrinsic and extrinsic variability118

for ensemble model runs within atmospheric and oceanographic modeling. We use119

Shannon entropy and mutual information and a particularly useful combination of the120

two. We indirectly employ conditional entropy, which depends on Shannon entropy121

and mutual information but is less intuitive so is not discussed in detail. Recent theo-122

retical advances in understanding dynamical systems through the lens of information123

theory relate causality analysis and information transfer (e.g., X. S. Liang (2014)).124

Although important, this theory has had few concrete applications. Even the basic125

information theory concepts (Shannon entropy and mutual information) have enjoyed126

only limited adoption by the oceanic and atmospheric community, primarily arising127

in predictability quantification (e.g., Sane et al. (2021)). We begin to bridge the gap128

with a pragmatic framework which can be easily replicated and improved upon, in-129

cluding causality analysis and the evolution of entropy within modeling systems like130

those studied here.131

In Part 1, we apply this intrinsic vs. extrinsic metric to three sets of data: 1)132

Idealized Gaussian and uniformly distributed arrays with specified correlation, 2) Ini-133

tial condition ensemble output of a regional coastal model (OSOM) (Sane et al., 2021)134

over July-August 2006 where most variables are not Gaussian, and 3) The GFDL-135

ESM2M Large Ensemble (Rodgers et al., 2015; Deser et al., 2020), an climate model136

initial condition ensemble hereby referred to as GFDL-LE. This large ensemble dataset137

contains historical and future projection data following the RCP 8.5 scenario. All the138

GFDL-LE monthly mean data from 1950 to 2100 were used in the analysis.139

In Part 2, we use OSOM to demonstrate the use of Shannon entropy and mutual140

information to quantify the extrinsic forcing effects of altered boundary forcing types.141

For example, is wind forcing dominant over river forcing, does using temporal averaged142

river runoff cause any appreciable changes in estuarine circulation, or does change in143
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the wind product alter circulation? In coastal and estuarine systems, knowledge of144

which forcings are dominant helps prioritize data collection and refinement of the145

most impactful forcings.146

1.1 Information theory147

We introduce information theory concisely assuming the reader has no back-148

ground knowledge–this section contains standard definitions. Consider a probability149

distribution pi obtained after binning data into N bins. The user chooses the appro-150

priate number of bins or bin widths for the range of data. Shannon (1948) identified151

the average information content in N possible outcomes, equally or not equally likely,152

as given by:153

H =

N∑
i=1

pi log2(1/pi), (1)

where H is the Shannon entropy with unit of bits when log is base 2 and pi is the154

probability of the ith outcome. The factor log2(1/pi) measures the information of the155

ith outcome as proposed by Hartley (1928) and is also a measure of uncertainty (Cover,156

1999), as it measures the information gained by knowing that the ith outcome has157

happened or equivalently that the variable falls in the ith bin. The term information158

does not mean knowledge, but it means the amount of uncertainty shown by a variable159

or the freedom that a variable has when visiting different combinations of the N bins.160

Shannon (1948) found Equation 1 to provide the average information (or uncertainty)161

for all events in a record. For the entire set of elements, a highly probable event has162

less uncertainty associated with it, and a low probability event has high uncertainty163

associated with it. Thus, the prefactor pi is used to weight the information over all164

possibilities. One way to interpret the need for the prefactor pi is that in repeated165

experiments the events with higher probability will occur more often; hence they should166

contribute more to the quantification of variability than infrequent events.167

Stone (2015) gives an intuitive way to understand Shannon entropy using a binary168

tree. A binary tree is a tree chart which starts with one node and splits into two169

branches at each node. At each node you can take a left or right turn to proceed, and170

if there are, say, 3 levels in the tree, then 8 (i.e. 23) outcomes or possible destinations171

exist. If a binary tree has N equally probable outcomes, then the set of instructions172

required to reach the correct destination is given by h = (N)(1/N) log2 (N) = log2 (N).173

The uncertainty about reaching the correct destination will be removed by providing174

log2 (N) bits of information. In other words, if the entropy is h then 2h states are175

possible.176

A second metric from Shannon (1948) which is also widely used is mutual infor-
mation. The mutual information between two signals x and y denoted by I(X;Y ) is
(Cover, 1999)

I =

N∑
j=1

N∑
i=1

pij log2

(
pij
pipj

)
, (2)

where pij is the joint probability of ith outcome of x and jth outcome of y. The marginal177

probability of ith and jth outcomes of x and y respectively are pi and pj . The addend178

within the summations can be expanded to pij (log2 (pij)− log2 (pi)− log2 (pj)). I can179

be interpreted as the extra information in entropy of marginal distributions of x and y180

over the joint distribution. Mutual information is symmetric between x and y and is181

the measure of the amount of information they share. For example, if the distributions182

are statistically independent, then pij = pipj and thus I = 0. If the two records x183

and y are identical, then pij = pi = pj and I = H. I is the average reduction in184
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uncertainty in x due to knowing y or vice versa and denotes how much information is185

transmitted between the two variables.186

In the context of ocean or climate modeling, entropy can be used to measure vari-187

ability in a model output or available data. This is in tandem with the interpretation188

of Shannon entropy in physical sciences as given in Carcassi et al. (2021). When cal-189

culating the Shannon entropy, the primary concern is counting the possible states, e.g.190

the various bins in a histogram, where the variable can go into while any assigned bin191

value or its dimensions are of lesser importance. Entropy metrics measure variability192

in bits (when the logarithm is of base 2), and hence changing the scale, e.g. switching193

from Celsius to Fahrenheit for temperature, does not change the value of variability194

(under equivalent binning). Mutual information and entropy are both dimensionally195

agnostic. They are also not sensitive to outliers due to the weighting prefactor and196

can capture nonlinear interactions (Watanabe, 1960; Correa & Lindstrom, 2013) and197

discontinuous distributions, including states visited intermittently. We will present the198

effect of correlation and outliers by examples of idealized random vectors.199

The following methods and results sections are divided into the two parts of the200

overall objective of the paper. Parts A of both sections relate to evaluating intrinsic201

and extrinsic variability in ensemble models. Parts B describe the usage of Shannon202

entropy and mutual information on coastal regional modeling data to understand and203

compare the effects of using different boundary conditions.204

2 Methods205

2.1 Part A: Intrinsic and Extrinsic Variability for Ensemble Data206

Analysis begins on each grid point on the ocean surface or ocean bottom. Let
a variable in the ensemble be given by f(n, t, x, y) where f is the variable, n denotes
the index of the ensemble member and goes from 1 to N , t is the time index and goes
from t1 to tM , x, y represents the spatial grid point at the surface or bottom. The
total number of members of the ensemble is N and each member has M time steps.
At a particular grid point f(n, t, x, y) is f(n, t). To obtain the signal due to extrinsic
forcings, the “differencing” approach (Frankcombe et al., 2015) has been followed to
estimate the forced response. This approach involves averaging the members of the
ensemble to derive ensemble mean. The ensemble mean is given by the following:

g(t) =
1

N

n=N∑
n=1

f(n, t) (3)

g(t) is a single time-varying signal for each grid point obtained by averaging across the
ensemble members. There are potential problems with assuming that the ensemble
mean represents extrinsic variability only, such as if models are differently sensitive
to the forcing signal based on the model’s equilibrium sensitivity, as elaborated in
Frankcombe et al. (2015) and Johnson et al. (2023). For a first-order approximation,
we will assume the ensemble mean is the best estimate of the forced response. Once
g(t) is obtained, the intrinsic variability can be estimated by subtracting the ensemble
mean g(t) from each ensemble member. The ensemble signal, forced response, and
intrinsic variability are then related by:

f(n, t) = g(t) + η(n, t), (4)

where η(n, t) is the intrinsic variability or noise that differs from one ensemble member207

to another. Note that the above decomposition takes place at each grid point. In208

Figure 1a, f(n, t) are shown by multi-colored ensemble members. g(t) is shown by a209

thick black line. As seen in Figure 1b, g(t) has a probability distribution shown in210

gray and subsequently has the first, second and possibly important higher statistical211
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moments. The gray density histogram shows variability due to extrinsic factors, and212

the pink density histogram shows total variability given by extrinsic and intrinsic213

factors.214

2.1.1 Evaluating entropies215

The ensemble simulation data has been used without detrending to evaluate g(t)216

and η(n, t). Detrending will remove some nonstationarity from the data, but will also217

remove some part of the extrinsic variability. Our aim is not to determine the forced218

response but to estimate the degree of variability contributed by the forced response219

(extrinsic response) and the intrinsic variability originating from the intrinsic chaos.220

Metrics have been calculated at each grid point by treating them independently.221

Usually we are limited in the number of ensemble members due to computational222

costs, so we concatenate into a jugaad in order to use all the ensemble members at223

once to evaluate information entropies. All the ensemble members given by f(n, t) are224

rearranged into a single row vector f as:225

f = [f(1, t1), f(1, t2), ...f(1, tM ), f(2, t1), f(2, t2), .....f(N − 1, tM ), f(N, t1), ....f(N, tM )] ,
(5)

and g is the row vector obtained by arranging N copies of g(t) in the following fashion:226

g = [g(t1), g(t2), ...g(tM ),︸ ︷︷ ︸
1

g(t1), g(t2), ...g(tM ),︸ ︷︷ ︸
2

... g(t1), g(t2), ...g(tM )︸ ︷︷ ︸
N

] (6)

This enables wide sampling and obtains an accurate probability distribution for f (as-227

suming approximate stationarity, or enforcing stationarity by detrending), and allows228

g to be of the same size as f and having the same probability distribution as that of229

g(t). The information statistics we get at each grid point are time-invariant, since the230

complete time series is considered. It is the user’s choice to choose either the complete231

time series or a section of it for analysis. We have chosen the whole time series be-232

cause this is a sufficient demonstration of the value of information theory metrics. A233

time-evolving analysis raises additional issues about causality and the shifting proba-234

bilities distributions of climate states that are not the focus here (X. S. Liang, 2013;235

DelSole & Tippett, 2018). By using the whole time series, we treat all variability as236

drawn from the same distribution and seek only to associate internal (associated with237

each ensemble member) and external (associated with the ensemble mean) sources of238

variability following Leroux et al. (2018). The time series f and g are both expressed239

as row vectors of the same size, N ×M . This step is crucial, as vectors having the240

same number of elements are necessary to evaluate joint probability distribution. This241

enables us to calculate the mutual information between f and g.242

Calculating the Shannon entropy of f and the mutual information between f243

and g is a difficult task that necessitates careful consideration. Optimal binning for244

precise measurement of information entropies is a research topic in itself, and var-245

ious techniques have been proposed, such as equidistant partitioning, equiprobable246

partitioning, k nearest neighbor, usage of B-spline curves for binning to name a few247

(Hacine-Gharbi et al., 2012; Kowalski et al., 2012; Knuth, 2019). A comprehensive248

review of these methods can be found in Papana and Kugiumtzis (2008). Although the249

histogram binning technique is one of the most commonly used techniques (for example250

Campuzano et al. (2018); Pothapakula et al. (2019); Shin et al. (2023)), it introduces251

uncertainty. There are several techniques to estimate this uncertainty, such as the one252

proposed in Knuth et al. (2005). In this article, we use histograms with equidistant253

partitioning where constant optimal bin widths are determined using the Freedman-254

Diaconis rule (Freedman & Diaconis, 1981; Knuth, 2019) at each grid point to get a255
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discrete probability distribution. The same bin width was used for the marginal and256

joint probability distributions. Two approaches were used to estimate the sensitivity257

of the metric to binning: varying the bin width around the optimal value and boot-258

strapping over the ensemble members. The metrics were found to be more sensitive to259

changes in the bin widths than to bootstrapping. Therefore, to estimate uncertainty,260

if the width of the bin was found to be δw, then it was varied from 0.5δw to 1.5δw to261

obtain a reasonable estimate of uncertainty. Sweeping across the number of bins was262

performed also in (Sane et al., 2021) to get an estimate of predictability time-scale.263

2.1.2 Information theory based metric264

Using f and g, we propose the following metric γ, which has the same intent as
metrics in (Leroux et al., 2018) to quantify the fraction of variability that is intrinsic,
i.e., the typical amount that is unique to an ensemble member or statistical instance,
but unlike (Leroux et al., 2018) this metric is built from standard information theory
quantities:

γ = 1− I(f ; g)

H(f)
. (7)

H(f) is the Shannon entropy of f , and I(f ; g) is mutual information between f and g.265

I(f ; g) calculates the contribution of extrinsic signal g to the whole ensemble. H(f)266

is the total variability in the ensemble output which is the result of extrinsic and267

intrinsic factors. The metric γ gives ratio of intrinsic variability to total variability.268

When f → g, then I(f ; g) → H(f) = H(g) from (2). This makes γ = 0 when there269

is no intrinsic variability or chaos. When intrinsic chaos fully dominates the ensemble270

output, i.e. f and g are fully decorrelated, then I(f ; g) = 0 yielding γ = 1. We see271

that γ satisfies the extremes of zero noise and total chaos.272

Related quantities appear in other applications. The quantity I(f ; g)/H(f)273

is defined as “uncertainty coefficient” (Eshima, 2020). It is the ratio of entropy274

of f explained by g. H(f) and I(f ; g) are related through conditional entropy by275

H(f) = I(f ; g) +H(f |g) (Cover, 1999). H(f |g) is the conditional entropy H(X|Y ) =276 ∑
p(x|y) log2 p(x|y) (Cover, 1999). It is not necessary to calculate the conditional en-277

tropy to arrive at γ. H(X|Y ) gives the average uncertainty about the value of f after278

g is known, or just the uncertainty in f that is not attributed to g but is attributed279

to η. Hence H(f)− I(f ; g) estimates variability due to intrinsic chaos and γ gives the280

fraction of the variability due to intrinsic chaos.281

I(f ; g) takes into account any correlation or information shared between f and282

g. This is vital because even though the spread of the model η is treated similarly to283

the noise added to the mean signal, it might be that the spread of the model depends284

on the mean signal. A simple example is that if the model spread is relative (e.g.,285

10% of the mean signal, or multiplicative noise), rather than absolute (e.g., 2 units,286

or additive noise), then there is information about the model spread contained in the287

ensemble mean signal. The nonlinear and chaotic nature of fluids often leads the mean288

flow to amplify the chaotic signal (e.g., eddies) and thereby result in altered variability289

statistics that can be represented as multiplicative noise.290

Returning to the binary tree analogy, I(f ; g) would be the set of instructions291

sent by a source to reach one among 2H(f) possible destinations in the presence of292

noise having H(f |g) entropy. To capture the entropy in the noisy binary tree, to each293

of the 2I(f ;g) micro-state possibilities, noise
(
2H(f |g)) gets multiplied and the relation294

becomes 2H(f) = 2I(f ;g)2H(f |g). Another analog of a component of the climate system295

is a noisy communication channel as given in Leung and North (1990), where the296

governing equations of ocean (atmosphere) modeling are taken to communicate from297

forcing to response. The extrinsic forcings are inputs to the channel, the intrinsic chaos298

is the noise created because of channel’s inherent mechanisms, while the outputs are299
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the ensemble members. A noiseless channel will give γ as zero, and a completely noisy300

channel where the output is independent of the input will give γ as 1.301

A seemingly enticing and simpler alternative is γ = 1 − H(g)
H(f) , i.e. just the302

difference between the entropy of the ensemble and the mean entropy as a ratio with303

the entropy of the ensemble. However, this formulation is incorrect because H(g) does304

not quantify the contribution of extrinsic factors to the variability in the ensemble, it305

only quantifies the variability of the mean. Relatedly, H(f)−H(g) does not correctly306

manage the mutual information between the ensemble members and their mean in307

estimating intrinsic variability.308

Another alternative was proposed by (Gomez, 2020): using Shannon entropy309

directly as a measure of intrinsic variability. They propose using Shannon entropy of310

model spread η(n, t) at each time step normalized by the logarithm of the number of311

bins utilized. Their metric has a lower limit of 0 and an upper limit of 1, where 0312

denotes zero noise and hence zero intrinsic variability and 1 denotes complete intrinsic313

variability. Again, this metric is similar to γ in building upon information theory, but314

γ takes into account the variability of the ensemble mean, the correlations between315

the ensemble mean and the intrinsic variability, and it is time invariant. A time-316

dependent version of γ can be made using running time windows instead of the whole317

time series, but care in quantifying or controlling for lack of stationarity is needed318

in this interpretation (DelSole & Tippett, 2018). The Gomez (2020) metric uses the319

spread of the ensemble members similar to measuring Shannon entropy, whereas γ320

utilizes, in an abstract sense, the set of instructions required to choose a destination321

for the particular variable among the possible model states.322

2.1.3 Variance based metric323

A variance based metric as given in (Leroux et al., 2018) has been utilized to com-
pare with our information-based metric. The variance-based metric measures intrinsic
and extrinsic variability using the second moment, variance. It involves calculation of
the following terms σg and ση given by:

σ2
g =

1

M

t=M∑
t=1

(
g(t)− g(t)

)2
, (8)

σ2
η(t) =

1

N

N∑
n=1

η(n, t)2, (9)

where the overbar denotes the temporal averaging. Total variability has been estimated

as
(
σ2
g + σ2

η(t)
)1/2

. The forced variability σg is equivalent to I(f ; g), and the total

variability
(
σ2
g + σ2

η(t)
)1/2

is equivalent to H(f). Therefore, γ is compared to γstd
given by

γstd =

(
σ2
η(t)

)1/2
(
σ2
g + σ2

η(t)
)1/2 (10)

324

2.2 Part B: Information Entropy and Boundary Forcing325

2.2.1 Impact of changes in boundary forcings in coastal models326

Here instead of using the new metric γ, we use its components– Shannon entropy327

and mutual information–individually to compare variability between different simula-328

tions. Quantifying differences because of modifications in the extrinsic forcings may329
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Figure 2. Flattening process for comparing two-dimensional fields using Shannon entropy

and mutual information. As the flattened arrays x1, x2, ... and y1, y2... may not have linear de-

pendence on each other, using linear dependence measures such as Pearson’s correlation might

produce incorrect results. Mutual information measures nonlinear correlations and hence cap-

tures all linear and nonlinear dependence.

be required for coastal applications where systems vary predominantly due to external330

forcings. For these forcing significance experiments, OSOM was run after modifying331

the external forcings (Table 1). OSOM is forced by tides, river runoff, atmospheric332

winds, air-sea fluxes, etc. All model details can be found in Sane et al. (2021). For333

this comparison, we quantify the effects of altering forcing on 4 modeled variables: sea334

surface temperature and salinity, and bottom temperature and salinity. One control335

and four altered forcing sets were utilized,336

1. (Control) Full atmospheric forcing using the North American Mesoscale (NAM)337

analyses, a data-assimilating, high resolution (12 km) meteorological simulation338

(https://www.ncei.noaa.gov/data/north-american-mesoscale-model/access/339

historical/analysis) denoted FF. FF stands for full forcing.340

2. Full set of atmospheric forcing, but using the winds of the Northeast Coastal341

Ocean Forecast System (NECOFS) winds (Beardsley & Chen, 2014) instead of342

NAM, denoted as NECOFS.343

3. River flows are replaced with their monthly averaged flow, other forcing as in344

FF345

4. River flows set to zero, other forcing as in FF.346

5. Wind forcing set to zero, other forcing as in FF.347

These forcing sets have been tabulated in Table 1. The aim is to quantify the effect on348

total variability by removing or altering one of many processes that might contribute.349

To evaluate spatial Shannon entropy, the spatial output at a particular instant in350

time was rearranged into a row vector by a process called flattening, as shown in Fig-351

ure 2. Land mask points were removed. A variable x, which is a two-dimensional vari-352

able, was converted to one-dimensional array (flattened) by concatenation. Shannon353
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Forcing Set Wind forcing River forcing

FF NAM As Observed
NECOFS NECOFS As Observed
MR NAM Time-averaged rivers
ZR NAM Zero river input
ZW Zero winds As Observed
Table 1. Different types of forcing combinations were used to test their effect on variability.

FF stands for full forcing: winds, tides, rivers, etc. For more details, see Sane et al. (2021). MR:

mean rives; ZR: zero rivers; ZW: zero wind.

entropy was found for the flattened variable at each time step to obtain a time-varying354

entropy of each surface or bottom variable.355

Mutual information was applied between the flattened row vectors. Our focus is356

on a pragmatic approach to using information theory for relative comparisons among357

simulations, rather than an equation for the evolution of Shannon entropy and mutual358

information with respect to time (see X. S. Liang and Kleeman (2005)). For example,359

if mutual information on surface salinity between FF and MR is higher than between360

FF and ZR, this implies that the penalty for using time-averaged river runoff is not361

as severe as using zero river runoff. The replacement of FF with MR will give more362

similar results to FF than replacing FF with ZR will. We can interpret this to indicate363

that small errors in river runoff flow rates will not cause appreciable changes to surface364

salinity while using zero rivers will strongly impact the solution.365

3 Results366

3.1 Part A: Intrinsic and Extrinsic Variability Results for Ensemble Data367

3.1.1 Idealized Gaussian Arrays368

We test our metric γ, equation (7) on synthetic data consisting of idealized arrays369

of Gaussian data: N (0, 1). For a normal Gaussian distribution Shannon entropy370

depends1 only on the standard deviation σ. The variability in a Gaussian distribution371

can be increased or decreased by changing its standard deviation. Our goal is to372

compare γ and γstd. We set out our numerical experiment as follows: we create 10373

arrays, each having 10,000 elements drawn from a Gaussian distribution. Any two374

arrays from those 10 have a prescribed correlation coefficient between 0 and 1.375

Thus, the 10 arrays are linearly correlated with a specified correlation coefficient.376

These 10 arrays represent ensemble members from climate simulations. The mean of 10377

members gives us the synthetic forced variability signal as would be determined from378

the model output; averaging over the 10 ensemble members reduces the contribution379

from uncorrelated variability and reaffirms the covarying component into the forced380

variability. We apply γ and γstd on this synthetic ensemble by varying the prescribed381

correlation coefficient from 0 to 1. Figure 3 shows that, as expected, both metrics382

increase as the correlation decreases, that is, as internal variability dominates forced.383

1H = log2 2πeσ2 is the Shannon entropy of a Gaussian distribution when probability density is con-

tinuous with σ as standard deviation. The Shannon entropy of a discrete probability distribution differs,

which is inconsequential here, but the reader is encouraged to read Jaynes (1962). Throughout this arti-

cle, discretely sampled and binned probability distributions are obtained directly from the data without

any further parameterization
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Both metrics behave similarly when correlation decreases, i.e., noise increases, but γ384

is more sensitive as correlation tends to 1. This distinction is due to the logarithmic385

nature of Shannon entropy for Gaussian distributions–in essence, information mea-386

sured in bits is not proportional to distance measured between distributions in terms387

of summed variance–in the examples following the consequences of this distinction will388

become clearer. Critically, both functions are monotonic with correlation; however,389

relative comparisons (more intrinsic fraction in one region vs. a different region) are390

preserved.391

A second related experiment was derived from the first and is also shown in392

Figure 3: adding outliers outside of the Gaussian distribution. 50 out of 10000 elements393

of each individual member were artificially corrupted (values were set to a constant394

value of 5) to test the sensitivity of both metrics. Figure 3 shows that γ is insensitive395

to outliers while γstd is not. γ is not sensitive because outliers occur less frequently396

and therefore do not greatly affect the probability distribution, especially with the397

prefactor in (1) and (2). Hence, information theory metrics are robust in comparison398

to using standard deviation (or variance). If the outliers (extreme events) occur at399

higher frequencies, information metrics will naturally start sensing them even if they400

are discontinuous from the typical conditions (e.g., multimodal distributions). The401

above process was repeated for 100 ensemble members, each sampled from Gaussian402

distributions. Increasing the number of ensemble members does not change the result403

qualitatively for both experiments. The results for a Gaussian ensemble of 10 members404

are shown in Figure 3 a and 100 members in Figure 3 b.405

Additionally, a set of experiments was carried out using uniformly distributed406

data U(−1, 1). The prescribed correlated vectors were created using the procedure407

described in Demirtas (2014). 10 and 100 ensemble members were created and γ408

and γstd were found between the members and their mean. The results are shown in409

Figure 3 c, d, respectively. The outlier had a value of 1.5. In all cases, γ was less410

sensitive to outliers than γstd.411

3.1.2 Regional coastal model output412

In this section we show the results of applying γ and γstd on realistic simulation413

data from the Ocean State Ocean Model, hereafter OSOM (Sane et al., 2021). OSOM414

uses the Regional Ocean Modeling System (ROMS) (Shchepetkin & McWilliams, 2005)415

to model Narragansett Bay and the surrounding coastal oceanic regions and waterways.416

OSOM’s primary purpose is to understand and predictive modeling and forecasting417

of the estuarine state and climate of this Rhode Island body. Sane et al. (2021) gives418

more details about the model.419

Using OSOM, an ensemble of simulations has been performed using perturbed420

initial (ocean) conditions under the same atmospheric and tidal forcing for the months421

July and August of 2006. This ensemble consists of 10 members. Data during the422

first predictability window (20 days) where results are still linked directly to the initial423

conditions have been ignored and the remaining simulation has been used to exam-424

ine variability within the “climate projection” of the model beyond when forecasts425

or predictions that rely deterministically on initial conditions are possible. During426

this phase the different ensemble members visit different possible futures within the427

envelope of the projected “climate” (see the related application of information theory428

to assess predictability in Sane et al. (2021)). The modeled temperature and salinity429

at each grid point typically do not follow Gaussian distributions as the skewness and430

kurtosis each grid point shown in Figure 4 for salinity and temperature of the sea sur-431

face and bottom for the Narragansett Bay region. The horizontal axis shows skewness432

and excess kurtosis, which are the third and fourth statistical moments, respectively,433

normalized by powers of the standard deviation to dimensionless ratio, and in the434
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Figure 3. Information theory metric of intrinsic vs. extrinsic variability γ as a function of

the correlation coefficient in idealized Gaussian correlated arrays (a and b) and idealized uni-

formly distributed arrays (c and d). The horizontal axis is the correlation coefficient between the

mean member and ensemble members. The vertical axis shows the information theory metric

γ from (7) and the traditional metric γstd from Equation (10). A second related experiment is

also shown adding (50 out of 10,000) “corrupted” outliers to each individual member. The in-

formation theory metric γ does not change for these outliers, which shows its robustness, while

γstd is highly sensitive. The results are similar for Gaussian distribution members and uniformly

distributed members. γ is more sensitive around linear correlation of 1. This is due to the loga-

rithmic nature of γ.

case of excess kurtosis a constant value of 3 is subtracted. For Gaussian distributions,435

both skewness and excess kurtosis should be close to zero. The vertical axis denotes436

the number of occurrences at a grid point. Observe that the majority of grid point437

values are away from zero and thus these variables are considerably non-Gaussian in438

OSOM. Therefore, the variance method in Equation (10) is at a disadvantage because439

the prevalence of higher statistical moments implies that the variance does not contain440

a complete description of the variability. The information theory metric (7) is suitable441

for such data as it takes into account higher moments and does not rely on Gaussian442

distributions.443

Figure 7 shows the ratio of intrinsic variability to total variability applied at every444

point in the OSOM grid. γstd is displayed on left whereas γ is shown in the center for445

comparison. The uncertainty in γ has been plotted in the third column in Figure 7.446

The features highlighted by both metrics are qualitatively different. The contribution447
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of intrinsic chaos to total variability is more uniform using the γ metric than using γstd.448

The intrinsic chaos displayed using γstd might be misleading because the probability449

distributions are non-Gaussian. Furthermore, where the γ metric highlights internal450

variability, it tends to agree in similar dynamical locations–all river mouths show high451

surface salinity intrinsic variability. While surface temperature intrinsic variability452

is higher in more open regions of the Bay, where eddies form intermittently due to453

varying topography. Also note that the ranges are quite different between γ and γstd,454

but this is to be expected from the different rate of increase with correlation seen in455

Figure 3. The Eastern North-South passageway of the bay shows different structure456

of γ than γstd of salinity.457

Figure 4. Grid point-wise skewness and excess kurtosis for OSOM output. Neither are close

to zero, e.g., within (-0.5, 0.5), suggesting that the temperature and salinity data distribution is

non-Gaussian.

3.1.3 Earth System Model Large Ensemble458

A complementary experiment was performed using γ to evaluate internal versus459

forced variability in global climate simulation output for the RCP8.5 climate change460

scenario using the GFDL-LE model (randomly selected among the models compared).461

The 30 members of the ensemble were utilized. The variability of sea surface temper-462

ature (Figures 5) and sea surface salinity (Figures 6) were estimated using both γ and463

γstd.464

Note in particular the Arctic sea surface temperatures in Figure 5, which have a465

highly skewed and excessive kurtosis distribution due to the freezing point of seawater.466

The standard metric (γstd) considers this region to be among the most intrinsically467

variable in the world, while the information theory metric considers it as a region of468

middling intrinsic variability–much lower than the equatorial regions where El Nino469

variability is profound. This region is also subject to intermittent and drastic swings470

in salinity as sea ice forms and melts, but note that the standard metric indicates low471

salinity variability while the information theory metric ranks it as high in Figure 6. It472

is clear that a Gaussian metric should not be applied to the Arctic due to the skewness473

and excess kurtosis, and in this case the inference is opposite using the standard and474

information theory metrics. In the equatorial Pacific, where Gaussian statistics are475

more reliable, the two metrics agree that internal variability is high.476
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Figure 5. Intrinsic to total variability for sea surface temperature using (a, b) γstd and (c, d)

γ. (e, f) Uncertainty range in γ found by sweeping across the bin width as explained in the text.

We can see a difference in the magnitude and pattern of the intrinsic to total variability around

the Arctic region. Difference in other regions such as Mediterranean sea and Pacific equator is

also visible.

A less drastic failure occurs from the modest excess kurtosis in extratropical477

temperatures and in a few isolated regions in surface salinity. These regions are also478

non-Gaussian but are also not heavily skewed (i.e., they are more long-tailed and479

intermittent than Gaussian). These regions differ in the relative estimation of intrin-480

sic versus total variability. It is also the case that the γ metric is closer to one in481

most regions than γstd, which is expected when the correlation coefficients are low in482

Figure 3.483

3.2 Part B: Information Entropy and Boundary Forcing Results484

3.2.1 Impact due to changes in boundary conditions in coastal models:485

We show the results of the coastal model analysis under different forcing in486

Figures 8 and 9, under the same region as shown in Figure 7. The entropy has been487

plotted with respect to time as some variability occurs. In Figure 8, Shannon entropy488

is plotted for spatial quantities. For example, for surface salinity, all surface values489

have been considered to find the Shannon entropy using the flattening approach. If490

Shannon entropy is more or less equal for two forcings, it implies that they similarly491

affect variability. Both winds and rivers seem to have similar effects in this regard.492

However, Figure 9 displays mutual information which should be compared for two493

pairs of forcings. Greater mutual information implies that the two pairs share more494
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Figure 6. Intrinsic to total variability for sea surface salinity using (a, b) γstd and (c, d) γ. (e,

f) Uncertainty range in γ by sweeping across the bin width as explained in the text. We can see

a difference in the magnitude and pattern of the intrinsic to total variability around the Arctic

region. Difference in other regions such as Mediterranean sea and Pacific equator is also visible

bits of information, suggesting that one of the forcing in that pair can be replaced495

with the other without significantly affecting variability. For temperature dependence496

on wind in Figure 8, we see that only NAM and NECOFS, our two realistic forcing497

conditions, share much mutual information. Figure 9 shows zeroing the rivers strongly498

reduces the salinity variability. Futhermore, in terms of salinity impact, full rivers and499

mean rivers share information as do NAM and NECOFS wind forcing.500

4 Discussion501

Our numerical experiments performed using γ on idealized Gaussian arrays show502

that γ is monotonic and decreases as the linear correlation coefficient increases. Thus,503

apart from the qualitative differences the new metric finds when the data are non-504

Gaussian, the ranges of intrinsic versus total variability are quite different between γ505

and γstd. This is to be expected from the different rates of increase with correlation506

seen in Figure 3. The traditional metric (γstd) falls approximately linearly as the507

correlation coefficient increases, so that a correlation coefficient of 0.5 gives a γstd just508

above 0.5. The new metric γ agrees with γstd that a correlation of 0 implies γ = 1, and509

a correlation of 1 implies γ = 0, but for a correlation of 0.5 it is closer to γ = 0.9. Only510

very near the correlation coefficients of 1 does γ fall below 0.5. If a roughly linear511

dependence on the correlation coefficient is desired, γ can be raised to a power–γ3512

resembles γstd and γ6 resembles the correlation coefficient. These higher powers do513

not lose the ability to apply to non-Gaussian data nor become non-monotonic, but514
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Figure 7. Metrics γ vs γstd for the OSOM output. Both metrics show different contributions

of intrinsic variability to total variability. γ is more uniform in the domain than γstd. Right pan-

els show the uncertainty in γ due to binning choices. The color maps for γ and γstd are different

to highlight their different ranges. γstd for bottom temperature (not shown) has a maximum

value of 5%, and the pattern is almost uniform except at the river sources where the values are

on the lower side (less than 1%).
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Figure 8. Shannon entropy applied to temperature and salinity. Replacing fully time-varying

rivers with monthly mean river flow gives almost the same result for salinity. The same is true

by replacing the wind product with a different one. Setting the river to zero affects salinity, but

not temperature. Winds are important in terms of variability, but different wind products do not

noticeably alter variability.

they will lose their interpretation as a ratio of bits of information entropy, and instead515

reflect ratios of bits cubed of information entropy, etc. An alternative is to take γstd516

raised to a different power: γ
1/3
std is roughly similar to γ.517

The uncertainty associated with binning is small–typically much less than the518

variability across the domain and the metrics are thus not overly sensitive to the519

binning procedure. The exploration of alternative strategies to evaluate entropies will520

remain a topic of future investigation and may further improve precision.521

As can be seen in Figures 7, 5, and 6, information theory metrics show differ-522

ent patterns compared to variance metrics. Information theory metrics, especially523

mutual information, account for all non-linear shared information between the en-524

semble members and the mean including linear correlation, and this is one reason for525
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Figure 9. Mutual information applied to simulations from different forcings. Higher mutual

information implies higher similarity in terms of variability. For example, NAM-NECOFS val-

ues are higher than NAM-ZW implying that NAM and NECOFS are significantly different than

having no wind.

the differences. We have argued that non-Gaussian statistics are another (which is526

not wholly independent of non-linear shared relationships). There are likely other as-527

pects of differences between these metrics, but the management of these two expected528

aspects of geophysical fluids–nonlinear relationships and non-Gaussian distributions—529

-justifies analyzing the data with nonparametric metrics in addition to second moment530

statistics.531

For the regional coastal model OSOM, forcings differ in shared information and532

as to how they affect different variables. As might be expected, river runoff is more533

important for salinity than for temperature. However, for July to August, replacing534

rivers with the monthly mean river flow gives nearly the same result (in terms of vari-535

ability) as fully time-varying rivers. Similarly, averaging the river runoff gives a similar536

effect for salinity compared to giving the observed river runoff in the simulations; see537

Figure 8. This might be due to lower river runoff during summer leading to lower538
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variability in the flow rate hence averaging river runoff might be appropriate. We can-539

not conclude if there will be a similar effect in winter because the higher river runoff540

lead to larger variability and replacing river runoff with its mean might be unfruitful.541

Temperature is less sensitive to any of the forcing alterations, because it has different542

sources and sinks than salinity. Switching the wind product from NAM to NECOFS543

does not have a significant effect on the sources or sinks of temperature or salinity,544

but switching the wind off definitely affects the parameters by eliminating wind-driven545

mixing altogether. Figure 9 shows that zero-wind (ZW) simulations are markedly dif-546

ferent from the rest in terms of mutual information (i.e. they do not covary), although547

very similar in terms of amount of spatial variability (Shannon entropy, Figure 8), be-548

cause even without winds tides, fluxes, and rivers still vary. The zero-river case tends549

to eliminate both variability and mutual information (ZR).550

If we were to prioritize improvements based on Shannon entropy and mutual551

information, note that the two highest mutual information cases are where NAM is552

substituted with NECOFS and where mean rivers are substituted for varying rivers.553

The first observation is important from a forecast perspective, because it means that we554

cannot easily tell the difference between different wind products, although something555

rather than zero winds should be used if the estuary needs to be forecast for the556

full 20 day predictability range (weather forecasts are reliable for only about 7 days557

in this region). Similarly, knowing that substituting the mean of the rivers for fully558

varying rivers has little impact implies that rivers can be fixed in time for forecasts559

beyond where they might be predicted based on expected weather and precipitation.560

Finally, despite the fact that Narragansett Bay is a dominantly tidally mixed estuary,561

among the sources of overall variability (i.e. sources of information entropy) considered,562

preserving an inflow of fresh water is key, even though that inflow can be steady. Winds563

do not appreciably increase information entropy of the Bay, but they are an important564

source of forced co-variation, and so are important for predictions but do not raise the565

overall level of variability.566

It should be noted that a major difference between coastal and global ensemble567

is in the way they are forced. The ocean in the coastal model has been forced by568

fixed atmosphere, tides, and rivers whereas the GFDL ESM2E has atmosphere which569

responds to the changes in the ocean. The intrinsic variability seen in the coastal570

ensemble is due to the ocean alone. The intrinsic variability observed in the global571

ensemble might not just be due to the ocean alone but might have all the possible572

sources present in the coupled system.573

5 Conclusion574

We showed usage of information theory metrics to determine contribution of in-575

trinsic chaos and external variability to total variability in ensemble model simulations.576

The metric consists of Shannon entropy and mutual information and is non-parametric577

compared to variance. We have applied metrics on idealized Gaussian arrays, as well578

as realistic coastal ocean and global climate models. We conclude that:579

1. The information theory metric is more reliable when outliers are present, because580

outliers get assigned less probability and because Gaussian distributions have a581

difficult time approximating long-tailed (i.e., outlier-prone) distributions.582

2. The information theory metric is more reliable when variability is non-Gaussian583

because it is based on nonparametric measures of the probability distributions584

and captures nonlinear correlations.585

3. The new information theory metric varies monotonically with ensemble member586

to ensemble mean correlation, but is quantified in fractions of bits required to587

capture internal variability versus bits required to capture total variability.588
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4. The use of the information theory ratio metric in a coastal ocean model ensemble589

and a climate model ensemble qualitatively changes the focus to regions that590

were previously erroneously labeled as having high or low internal variability.591

5. The use of Shannon entropy and mutual information can quickly focus atten-592

tion on which forcing choices cause the most variability and need attention as593

their substitutions significantly affect the outcomes. These conclusions can be594

drawn regardless of the fact that the dimensions of wind, rivers, salinity, and595

temperature have no specified unit conversion factors.596

6. In these ensemble simulations, the coastal ensemble had a much smaller intrinsic597

(chaotic) proportion of its total variability in comparison to the climate ensemble598

which had more intrinsic variability (weather, climate oscillations, etc.) as a599

proportion of its total. Importantly, the resolution of the models helps determine600

the proportion of intrinsic variability, so such comparisons are model-specific: a601

higher-resolution coastal model might well have a larger intrinsic fraction than602

a coarser climate model.603

7. For the global simulations, Arctic ocean is known to be salinity dominated and604

temperature plays the role of a passive tracer when near the freezing point605

(Timmermans & Jayne, 2016), (MacKinnon et al., 2016) Information theory606

metric γ clearly shows high intrinsic variability in temperature at the Arctic607

and extrinsic forcing is low to moderate. This implies the intrinsic variability in608

temperature is extraneous to the dynamics of the Arctic Ocean.609

Other applications of these and similar information theory metrics are likely to610

be revealing of new behavior and sensitivity of models.611

6 Data Availability Statement612

We have made the code and data available at https://doi.org/10.5281/zenodo613

.7992844. The GFDL-ESM2M Large Ensemble climate model data can be accessed614

from https://www.cesm.ucar.edu/community-projects/mmlea and has been de-615

scribed in (Rodgers et al., 2015) and (Deser et al., 2020).616

Acknowledgments617

The Rhode Island Coastal Ecology Assessment Innovation & Modeling grant618

(NSF 1655221) supported this work. B. Fox-Kemper was also supported by ONR619

N00014-17-1-2963. This material is based upon work conducted at a Rhode Island620

NSF EPSCoR research facility Center for Computation and Visualization (Brown Uni-621

versity), supported in part by the National Science Foundation EPSCoR Cooperative622

Agreement OIA 1655221.623

References624

Beardsley, R. C., & Chen, C. (2014). Northeast coastal ocean forecast system625

(necofs): A multi-scale global-regional-estuarine fvcom model. AGUFM , 2014 ,626

OS23C–1211.627

Brissaud, J. B. (2005). The meanings of entropy. Entropy , 7 (1), 68–96. doi: 10628

.3390/e7010068629

Campuzano, S., De Santis, A., Pavón-Carrasco, F. J., Osete, M. L., & Qamili, E.630

(2018). New perspectives in the study of the earth’s magnetic field and climate631

connection: The use of transfer entropy. PloS One, 13 (11), e0207270.632

Carcassi, G., Aidala, C. A., & Barbour, J. (2021). Variability as a better characteri-633

zation of shannon entropy. European Journal of Physics, 42 (4), 045102.634

Correa, C. D., & Lindstrom, P. (2013). The mutual information diagram for un-635

–21–



manuscript submitted to JGR: Oceans

certainty visualization. International Journal for Uncertainty Quantification,636

3 (3).637

Cover, T. M. (1999). Elements of information theory. John Wiley & Sons.638

DelSole, T., & Tippett, M. K. (2007). Predictability: Recent insights from informa-639

tion theory. Reviews of Geophysics, 45 (4).640

DelSole, T., & Tippett, M. K. (2018). Predictability in a changing climate. Climate641

Dynamics, 51 (1), 531–545.642

Demirtas, H. (2014). Generating bivariate uniform data with a full range of correla-643

tions and connections to bivariate binary data. Communications in Statistics-644

Theory and Methods, 43 (17), 3574–3579.645

Deser, C., Lehner, F., Rodgers, K., Ault, T., Delworth, T., DiNezio, P., . . . Ting, M.646

(2020). Insights from earth system model initial-condition large ensembles and647

future prospects [dataset]. Nature Climate Change, 1–10.648

Eshima, N. (2020). Statistical data analysis and entropy. In (p. 13-14). Springer.649

Frankcombe, L. M., England, M. H., Mann, M. E., & Steinman, B. A. (2015). Sep-650

arating internal variability from the externally forced climate response. Journal651

of Climate, 28 (20), 8184–8202.652

Franzke, C. L. E., Barbosa, S., Blender, R., Fredriksen, H.-B., Laepple, T., Lambert,653

F., . . . Yuan, N. (2020). The structure of climate variability across scales.654

Reviews of Geophysics, 58 (2), e2019RG000657.655

Freedman, D., & Diaconis, P. (1981). On the histogram as a density estimator:656

L 2 theory. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete,657

57 (4), 453–476.658

Gomez, B. G. (2020). Intrinsic ocean variability modulated by the atmosphere in the659

gulf of mexico: an ensemble modelling study (Unpublished doctoral disserta-660
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