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Abstract

We demonstrate the use of information theory metrics, Shannon entropy and mutual information, for measuring internal and

forced variability in ensemble atmosphere, ocean, or climate models. This metric delineates intrinsic and extrinsic variability

reliably in a wider range of circumstances. Information entropy quantifies variability by the size of the visited probability

distribution, as opposed to variance that measures only its second moment. Shannon entropy and mutual information manage

correlated fields, apply to any data, and are insensitive to outliers and a change of units or scale. In the first part of this article,

we use climate model ensembles to illustrate an example featuring a highly skewed probability distribution (Arctic sea surface

temperature) to show that the new metric is robust even under sharp nonlinear behavior (freezing point). We apply these

two metrics to quantify internal vs forced variability in (1) idealized Gaussian and uniformly distributed data, (2) an initial

condition ensemble of a realistic coastal ocean model (OSOM), (3) the GFDL-ESM2M climate model large ensemble. Each

case illustrates the advantages of information theory metrics over variance-based metrics. Our chosen metric can be applied

to any ensemble of models where intrinsic and extrinsic factors compete to control variability and can be applied regardless of

if the ensemble spread is Gaussian. In the second part of this article, mutual information and Shannon entropy are used to

quantify the impact of different boundary forcing in a coastal ocean model. Information theory is useful as it enables ranking the

potential impacts of improving boundary and forcing conditions across multiple predicted variables with different dimensions.
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ABSTRACT: We demonstrate the use of information theory metrics, Shannon entropy and mutual

information, for measuring internal and forced variability in ensemble atmosphere, ocean, or

climate models. This metric delineates intrinsic and extrinsic variability reliably in a wider range

of circumstances. Information entropy quantifies variability by the size of the visited probability

distribution, as opposed to variance that measures only its second moment. Shannon entropy and

mutual information manage correlated fields, apply to any data, and are insensitive to outliers and a

change of units or scale. In the first part of this article, we use climate model ensembles to illustrate

an example featuring a highly skewed probability distribution (Arctic sea surface temperature) to

show that the new metric is robust even under sharp nonlinear behavior (freezing point). We apply

these two metrics to quantify internal vs forced variability in (1) idealized Gaussian and uniformly

distributed data, (2) an initial condition ensemble of a realistic coastal ocean model (OSOM),

(3) the GFDL-ESM2M climate model large ensemble. Each case illustrates the advantages of

information theory metrics over variance-based metrics. Our chosen metric can be applied to any

ensemble of models where intrinsic and extrinsic factors compete to control variability and can be

applied regardless of if the ensemble spread is Gaussian. In the second part of this article, mutual

information and Shannon entropy are used to quantify the impact of di�erent boundary forcing in

a coastal ocean model. Information theory is useful as it enables ranking the potential impacts

of improving boundary and forcing conditions across multiple predicted variables with di�erent

dimensions.
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Plain Language Summary31

It is important in climate and environmental modeling to distinguish variability that is caused32

by external forces versus variability that arises from within the system being modeled itself. In33

this paper, we study an ensemble of coastal ocean models, that are forced with tides, winds, and34

o�shore and atmospheric conditions and an ensemble of climate model simulations that are forced35

by greenhouse gases and solar warming. Here, we propose to use information theory–a way to36

count the number of physical states visited by a system under study–to quantify the amount of37

variability in these models that results from the external forcing versus from the internal forcing.38

In this way, we can prioritize improvements or inclusion of the di�erent forcings based on how39

large the model response to them is.40

1. Introduction41

In an ocean or climate model, it is pertinent to understand the cause of variability as it leads to42

implications for predictability, prioritization of data collections for assimilation, and provides an43

understanding of the dynamics at play in di�erent regions. In a coastal model, variability can arise44

from extrinsic factors such as wind forcing, solar and thermal forcing, tides, rivers, evaporation and45

precipitation, or it can be due to internal chaos inherent to the governing fluid equations (Sane et al.46

2021). In a climate model, modes of variability such as El Niño, the North Atlantic Oscillation,47

or the Southern Annular Mode, can conceal or delay the emergence of attributable anthropogenic48

climate change signals (Milinski et al. 2019). In high-resolution ocean models, internal chaos or49

intrinsic variability can also be due to eddies (Leroux et al. 2018; Llovel et al. 2018). Accurately50

quantifying the relative contribution of external and internal factors can help in elucidating the51

causes responsible for the observed variability in models, help to identify key observable metrics,52

and help quantify concepts such as the time of emergence of climate signals (Hawkins and Sutton53

2012).54

Numerous methods exist in the literature to quantify intrinsic and extrinsic variability using55

models or observations (e.g., Frankcombe et al. 2015; Schurer et al. 2013; Liang et al. 2020).56

Model ensembles–i.e., a set of simulations sharing the same forcing–naturally vary because each57

ensemble member follows the same governing equation (with same external forcings) with identical58

or similar parameterizations but di�er due to intrinsic chaos. Two types of model ensembles are59
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common: initial condition ensembles (where the same model is used repeatedly with perturbed60

initial conditions and intrinsic variability occurs via chaos), and multi-model ensembles (where a61

variety of models di�ering in numerics and parameterizations are used to simulate change under62

the same forcing–in this case “intrinsic” variability also includes aspects of model formulations).63

Most of the discussion here will focus on initial condition ensembles, but the metrics proposed can64

be adapted to both cases.65

To help visualize variability, a generic output from an ocean or atmospheric model is shown in66

Figure 1. Each color represents a di�erent ensemble member and the black solid line is the mean of67

those members. The black solid line is the signal mostly due to extrinsic factors (aside from finite68

ensemble size limits) and the model spread (schematized by the double-headed magenta arrow in69

Figure 1) can be considered due to intrinsic variability or internal chaos.70

F��. 1. A sketch of a typical ocean or climate model output for an arbitrary variable. Each ensemble is shown

in di�erent color and the mean of the ensemble is shown as black line. The ensemble mean can be considered

to be the trend set by external forcings. The model spread shown by double headed magenta arrow indicates the

model chaos.

71

72

73

74

One method of quantifying intrinsic and extrinsic variability is to look at variances (second75

central statistical moment) of model spread and model mean (Leroux et al. 2018; Llovel et al.76

2018; Waldman et al. 2018; Yettella et al. 2018). Variance is su�cient to constrain all metrics of77

variability about the mean when distributions are Gaussian and uncorrelated, but a single statistical78

moment usually measures only part of a more complex variability. Many climatological variables79

show non-Gaussian distributions (e.g., Franzke et al. 2020). In fact, generalized variance might80

be misleading (e.g., Kowal 1971). Quantification of variability should be robust to or have known81
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dependence on changes in the units of the quantity or the scale (e.g., changing temperature from82

Celsius to Fahrenheit or Kelvin). Comparative metrics, such as intrinsic vs. extrinsic variability83

should not depend on these arbitrary choices of units at all.84

Variability, in essence, is a function of the number of occurrences or frequency of occurrence85

(or probability ?8 as a fraction over all visited system states) after appropriately binning the data86

(and thereby making the estimated and visited number of states finite rather than continuous).87

Information entropy metrics measure variability by taking into account the probability distribution88

of the binned data, drawing on the statistical mechanics concept of entropy in quantifying the89

number of microstates that a variable can occupy. The fundamental measure in information theory90

is the Shannon (1948) or information entropy which characterizes the amount of variability in a91

variable (Carcassi et al. 2019). The mutual information, another metric introduced by Shannon92

(1948), measures how much information one variable contains about another variable.93

Information theory is applied in signal processing, computer science, statistical mechanics,94

quantum mechanics, etc. It is used to quantify amount of information, disorder, freedom, or lack95

of freedom (Brissaud 2005). The application of these abstract notions to geophysical flows can96

have immense practical benefit when information entropy is interpreted as a measure of variability,97

as entropy does not rely on any particular parametric probability distribution. Metrics from98

information theory are not new to climate sciences. They have been introduced in predictability99

studies, evaluating the skill of statistical models, as well as uncertainty studies (e.g., Leung and100

North 1990; Schneider and Gri�es 1999; Kleeman 2002; DelSole and Tippett 2007; Majda and101

Gershgorin 2010; Stevenson et al. 2013) and recently in studying variability (Gomez 2020) and102

coastal predictability (Sane et al. 2021).103

In this article we bring well-established concepts of information theory to the particular applica-104

tion of measuring intrinsic and extrinsic variability for ensemble model runs within atmospheric105

and oceanographic modeling. Our metric uses Shannon entropy and mutual information. We in-106

directly employ conditional entropy, which depends on Shannon entropy and mutual information.107

To keep the metric intuitive, we have used Shannon entropy and mutual information and not cast108

it using conditional entropy.109

There are two parts to this article. In Part 1, we apply our metric to three sets of data: 1.110

Idealized Gaussian and uniformly distributed arrays with specified correlation 2. Ensemble output111
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of a regional coastal model (OSOM) (Sane et al. 2021) where most variables are non-Gaussian.112

Ensemble data for the duration of July-August of 2006 has been used. 3. The GFDL-ESM2M113

Large Ensemble (Rodgers et al. 2015; Deser et al. 2020), hereby referred to as GFDL-LE. This114

dataset contains historical and RCP 8.5 simulation data. All the monthly mean data from 1950 to115

2100 have been used in the analysis.116

117

In Part 2, we use OSOM to demonstrate the use of Shannon entropy and mutual information in118

evaluating the e�ects of altered boundary forcings. In coastal and estuarine systems, it is relevant119

to know which forcings are dominant which could potentially lead to prioritizing data collection to120

improve accuracy of the forcings. For example, is wind forcing dominant over river forcing, does121

using temporal averaged river runo� cause any appreciable changes in the estuarine circulation, or122

does change in the wind product alter circulation? These questions can be tackled by switching on123

and o� or modifying each forcing and comparing the predicted variables using information theory.124

Recent theoretical advances in understanding dynamical systems through the lens of information125

theory relate causality analysis and information transfer (e.g., Liang 2014). Although important,126

the transfer of such theoretical concepts into pragmatic research applications are few. Even basic127

concepts of information theory (Shannon entropy and mutual information) have been adopted128

in a limited capacity by the oceanic and atmospheric community to address problems arising129

in predictability and variability. We attempt to bridge the gap using approximate but practical130

framework which can be easily replicated and improved upon in the future, including causality131

analysis and the evolution of entropy within modeling systems like those studied here.132

a. Information theory133

We will introduce information theory concisely assuming the reader has no background134

knowledge–this section contains standard definitions. Consider a probability distribution ?8 ob-135

tained after binning data into # bins. The user chooses the appropriate number of bins or bin136

widths for the range of data. Shannon (1948) identified the average information content in #137

possible outcomes, equally or not equally likely, as given by:138

� =
#’
8=1

?8 log2(1/?8), (1)
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where � is the Shannon entropy with unit of bits when log is base 2 and ?8 is the probability of the139

8
C⌘ outcome. The factor log2(1/?8) measures the information of the 8

C⌘ outcome as proposed by140

Hartley (1928) and is also a measure of uncertainty (Cover 1999), as it measures the information141

gained by knowing that the 8C⌘ outcome has happened or equivalently that the variable falls in the142

8
C⌘ bin. The term information does not mean knowledge but it means the amount of uncertainty143

shown by a variable or the freedom that a variable has in visiting di�erent combinations of the #144

bins. Shannon (1948) found Equation 1 to provide the average information (or uncertainty) for145

all events in a record. For the entire set of elements, a highly probable event has less uncertainty146

associated with it and low probability event has high uncertainty associated with it. The prefactor147

?8 is thus used to weight the information over all possibilities. One way to interpret the need for148

the prefactor ?8 is that in repeated experiments the events with higher probability will occur more149

often, hence they should contribute more to a quantification of variability than infrequent events.150

Stone (2015) gives an intuitive way of understanding Shannon entropy using a binary tree.151

A binary tree is a tree chart which starts with one node and splits to two nodes at each node.152

At each node you can take a left or right turn to proceed and if there are say 3 levels in the153

tree, then 8 (i.e. 23) outcomes or possible destinations exist. If a binary tree has N equally154

probable outcomes then the set of instructions required to reach the correct destination is given by155

⌘ = (#) (1/#) log2 (#) = log2 (#). The uncertainty about reaching the correct destination will be156

removed by providing log2 (#) bits of information. In other words, if entropy is ⌘ then 2⌘ states157

are possible.158

A second metric from Shannon (1948) which is also extensively used is now known as mutual159

information. The mutual information between two signals G and H denoted by � (-;. ) is (Cover160

1999)161

� =
#’
9=1

#’
8=1

?8 9 log2

✓
?8 9

?8 ? 9

◆
, (2)

where ?8 9 is joint probability of 8C⌘ outcome of G and 9
C⌘ outcome of H. The marginal probability of162

8
C⌘ and 9

C⌘ outcomes of G and H respectively are ?8 and ? 9 . The addend within the summations can163

be expanded to ?8 9

�
log2

�
?8 9

�
� log2 (?8)� log2

�
? 9

� �
. � can be interpreted as the extra information164

in entropy of marginal distributions of G and H over the joint distribution. Mutual information is165

symmetric between G and H and is the measure of how much information they share. For example,166
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if the distributions are statistically independent, then ?8 9 = ?8 ? 9 and thus � = 0. If the two records167

G and H are identical, then ?8 9 = ?8 = ? 9 and � = �. � is the average reduction in uncertainty in G168

from knowing H or vice versa and denotes how much information is transmitted between the two169

variables.170

In the context of ocean modeling (or in general climate modeling) entropy is used to measure171

variability in a model output or available data. This is in tandem with interpretation of Shannon172

entropy in physical sciences as given in Carcassi et al. (2019). When calculating the Shannon173

entropy we are concerned about the possible states (e.g. the various bins in a histogram) the vari-174

able can (and does) go into while the variable value and its dimensions are of lesser importance.175

Entropy metrics measure variability in bits (when logarithm is of base 2) and hence changing the176

scale, e.g. switching from Celsius to Fahrenheit for temperature, does not change the value of177

variability (under equivalent binning). Mutual information and entropy are both dimensionally178

agnostic. They are also not sensitive to outliers (due to the weighting prefactor) and can capture179

nonlinear interactions (Watanabe 1960; Correa and Lindstrom 2013) and discontinuous distribu-180

tions including intermittently visited states. We will present the e�ect of correlation and outliers181

by examples of idealized random vectors.182

The following methods and results sections are divided into the two parts of the overall paper183

objectives. Parts A of both sections relate to evaluating intrinsic and extrinsic variability in184

ensemble models. Parts B describe the usage of Shannon entropy and mutual information on185

coastal regional modeling data to understand and compare e�ects of using di�erent boundary186

conditions.187

2. Methods188

a. Part A: Intrinsic and Extrinsic variability for ensemble data189

We perform analysis on each grid point at the ocean surface or ocean bottom. Let a variable190

from the ensemble be given by 5 (=, C,G, H) where 5 is the variable, = denotes the index of the191

ensemble member and goes from 1 to # , C is the time index and goes from C1 to C" , G, H represents192

the spatial grid point at the surface or bottom. At a particular grid point 5 (=, C,G, H) is 5 (=, C). The193

total number of ensemble members is # and each member has " time steps. To get the signal due194

to extrinsic forcings, the "di�erencing" approach (Frankcombe et al. 2015) has been followed to195

8



estimate forced response. This approach involves averaging over the ensemble members to derive196

the ensemble mean. The ensemble mean is given by:197

6(C) = 1
#

==#’
==1

5 (=, C) (3)

6(C) is a single time varying signal for each grid point obtained by averaging across the ensemble198

members. There are potential problems with assuming the ensemble mean represents extrinsic199

variability only, such as if models are di�erently sensitive to the forcing signal based on the model’s200

equilibrium sensitivity as elaborated in Frankcombe et al. (2015). For a first order approximation,201

we will assume the ensemble mean is the best estimate of the forced response. Once 6(C) is202

obtained, the intrinsic variability can be estimated by subtracting the ensemble mean 6(C) from203

each ensemble member. Ensemble signal, forced response and intrinsic variability are then related204

by:205

5 (=, C) = 6(C) +[(=, C), (4)

where [(=, C) is the intrinsic variability or noise which di�ers from ensemble member to ensemble206

member. Note that the decomposition above takes place at each grid point. In Figure 1 a, 5 (=, C)207

are shown by multi-colored ensemble members. 6(C) is shown by thick black line. As seen Figure208

1 b, 6(C) has a probability distribution shown in gray color and subsequently has first, second,209

and possibly important higher statistical moments. The gray colored density histogram shows210

variability due to extrinsic factors and the pink colored density histogram shows total variability211

given by extrinsic and intrinsic factors.212

1) D��������� ��� ���������� ���������213

Analysis has been done with and without detrending the data to understand its impact. For214

detrending, a quadratic fit using least squares was found for the ensemble mean at each grid point215

and subtracted from all ensemble members and ensemble mean at the same grid point to get216

detrended data (e.g. Frankcombe et al. 2015). Detrending will remove some non-stationarity from217

the data but will also remove some part of the extrinsic variability. By this method, our aim is218

not to determine the forced response but to estimate the degree of variability contributed by the219

forced response (extrinsic response) and intrinsic variability originating from intrinsic chaos. The220
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ensemble mean 6(C) was found at each grid point after detrending. For the non-detrended case, the221

raw ensemble simulation data has been used to evaluate 6(C) and [(=, C).222

Usually we are limited in the number of ensemble members due to computational costs so223

we perform a jugaad in order to use all the ensemble members at once to evaluate information224

entropies. All the ensemble members given by 5 (=, C) are rearranged into a single row vector 5 as:225

5 = [ 5 (1, C1), 5 (1, C2), ... 5 (1, C"), 5 (2, C1), 5 (2, C2), ..... 5 (# �1, C"), 5 (# , C1), .... 5 (# , C")] , (5)

and 6 is row vector obtained by arranging # copies of 6(C) in the following fashion:226

6 = [6(C1),6(C2), ...6(C"),|                     {z                     }
1

6(C1),6(C2), ...6(C"),|                     {z                     }
2

...6(C1),6(C2), ...6(C")|                    {z                    }
#

] (6)

This enables wide sampling and obtains an accurate probability distribution for 5 (assuming227

approximate stationarity, or enforcing stationarity by detrending), and enables 6 to be of the same228

size as 5 and having the same probability distribution as that of 6(C). The information statistics229

we get at each grid point are time invariant since the complete time series is considered. It is230

the user’s choice to choose either the complete time series or a section of it for analysis. We231

have chosen the whole time series, as this is a su�cient demonstration of the value of information232

theory metrics. A time-evolving analysis raises additional issues about causality and shifting233

probabilities distributions of climate states that are not the focus here (Liang 2013; DelSole and234

Tippett 2018). By using the whole time-series, we are treating all variability as drawn from the235

same distribution, and seek only to associate internal (associated with each ensemble member) and236

external (associated with the ensemble mean) sources of variability following Leroux et al. (2018).237

The time-series 5 and 6 are both expressed as row vectors of the same size, # ⇥" . This step238

is crucial as vectors having same number of elements are necessary to evaluate joint probability239

distribution. This enables us to calculate mutual information between 5 and 6.240

Calculating the Shannon entropy of 5 and mutual information between 5 and 6 is not a trivial241

task. In fact optimal binning for precise measurement of information entropies is a research topic242

in itself. Multiple techniques exist such as equidistant partitioning, equi-probable partitioning, :243

nearest neighbor, usage of B-spline curves for binning to name a few (e.g. see Hacine-Gharbi244
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et al. 2012; Kowalski et al. 2012; Knuth 2019). For a comprehensive review of the methods for245

estimating probability distribution see Papana and Kugiumtzis (2008). We have used equidistant246

partitioning throughout this article. For the case of GFDL-LE data, there were 1812 time steps247

available as monthly averages ranging from the year 1950 to 2100. As per Rice’s rule, 25 bins are248

needed for the GFDL-LE data. The bin width, XF, was calculated by dividing the range of data249

(maximum minus the minimum value) at the grid point with the least spread. The same bin width250

was used for all the grid points for Shannon entropy and mutual information. Equal bin width was251

used for the two variables in the joint probability and marginal probability calculation for mutual252

information. Maintaining the same bin width and range for all the grid points is crucial because253

information entropy strongly depends on the precision with which data is binned.254

2) P������� ������255

Using 5 and 6, we propose the following metric W, which has the same intent as metrics in256

(Leroux et al. 2018) to quantify the fraction of variability that is intrinsic, i.e., the typical amount257

that is unique to an ensemble member or statistical instance, but unlike (Leroux et al. 2018) this258

metric is built from standard information theory quantities:259

W = 1� � ( 5 ;6)
� ( 5 ) . (7)

� ( 5 ) is the Shannon entropy of 5 , and � ( 5 ;6) is mutual information between 5 and 6. � ( 5 ;6)260

calculates the contribution of extrinsic signal 6 to the whole ensemble. � ( 5 ) is the total variability261

in the ensemble output which is the result of extrinsic and intrinsic factors. The metric W gives the262

ratio of intrinsic variability to total variability.263

� ( 5 ) and � ( 5 ;6) are related through conditional entropy by � ( 5 ) = � ( 5 ;6) +� ( 5 |6) (Cover264

1999). � ( 5 |6) is the conditional entropy1, i.e., average uncertainty about the value of 5 after 6265

is known. It is the uncertainty in 5 that is not attributed to 6 but is attributed to noise [. Hence266

� ( 5 )� � ( 5 ;6) estimates variability due to intrinsic chaos, and W gives the fraction of the variability267

due to intrinsic chaos.268

Returning to the binary tree analogy, � ( 5 ;6) would be the set of instructions sent by a source to269

reach one among 2� ( 5 ) possible destinations in the presence of noise having � ( 5 |6) entropy. To270

1Conditional entropy � (- |. ) is defined by � (- |. ) =Õ
? (G |H)log2? (G |H) (Cover 1999). It is not necessary to calculate conditional entropy

to arrive at W, but understanding is aided by the expected relation between entropy and mutual information.
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capture the entropy in the noisy binary tree, to each of the 2� ( 5 ;6) micro state possibilities noise271 ⇣
2� ( 5 |6)

⌘
gets multiplied and the relation becomes 2� ( 5 ) = 2� ( 5 ;6)2� ( 5 |6) .272

� ( 5 ;6) takes into account any correlation or information shared between 5 and 6. This is vital273

because even though the model spread [ is being treated similarly to noise added to the mean274

signal, it might be that model spread depends on the mean signal. A simple example is if the275

model spread is relative (e.g., 10% of the mean signal), rather than absolute (e.g., 2 units), then276

there is information about the model spread contained in the ensemble mean signal. This situation277

is sometimes called multiplicative noise in contrast to additive noise. The nonlinear and chaotic278

nature of fluid mechanics often leads the mean flow to amplify the chaotic signal (e.g., eddies) and279

thereby result in altered variability statistics. When 5 ! 6, then � ( 5 ;6) ! � ( 5 ) = � (6) from280

(2). This makes W = 0 when there is no intrinsic variability or chaos. When intrinsic chaos fully281

dominates the ensemble output, i.e. 5 and 6 are fully decorrelated, then � ( 5 ;6) = 0 yielding W = 1.282

We see that W satisfies the extremes of zero noise as well as total chaos.283

Another analogue for a climate system component is a noisy communication channel as given284

in Leung and North (1990), where the governing equations of ocean (atmosphere) modeling are285

taken to communicate from forcing to response. The extrinsic forcings are inputs to the channel,286

the intrinsic chaos is the noise created because of channel’s inherent mechanisms while the outputs287

are the ensemble members. A noiseless channel will give W as zero and completely noisy channel288

where output is independent of input will yield W as 1.289

A seemingly enticing and simpler alternative is W = 1� � (6)
� ( 5 ) , i.e. just the di�erence between290

ensemble entropy and mean entropy as a ratio with the ensemble entropy. However, this formulation291

is incorrect because � (6) does not quantify the contribution of extrinsic factors to the variability292

in the ensemble, it only quantifies the variability of the mean. Relatedly, � ( 5 ) �� (6) does not293

correctly manage mutual information between the ensemble members and their mean in estimating294

the intrinsic variability.295

Recently, another alternative was proposed by Gomez (2020): using Shannon entropy directly as296

a measure of intrinsic variability. They propose using Shannon entropy of model spread [(=, C) at297

each time step normalized by the logarithm of the number of bins utilized. Their metric has a lower298

limit of 0 and an upper limit of 1, where 0 denotes zero noise and hence zero intrinsic variability299

and 1 denotes complete intrinsic variability. Again, this metric is similar to W in building upon300
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information theory, but W takes into account the variability of the ensemble mean, correlations301

between the ensemble mean and the intrinsic variability, and it is time invariant. A time dependent302

version of W can be made using running time windows instead of the whole time series, but care303

in quantifying or controlling for lack of stationarity is needed in this interpretation (DelSole and304

Tippett 2018). The Gomez (2020) metric uses the spread of the ensemble members similar to305

measuring Shannon entropy whereas W utilizes, in an abstract sense, the set of instructions required306

to choose a destination for the particular variable among the possible model states.307

3) V������� ����� ������308

A variance based metric as given in (Leroux et al. 2018) has been utilized to compare to our309

information based metric. The variance based metric measures intrinsic and extrinsic variability310

using the second moment, variance. It involves calculation of the following terms f6 and f[ given311

by:312

f
2
6
=

1
"

C="’
C=1

⇣
6(C)�6(C)

⌘2
, (8)

313

f
2
[
(C) = 1

#

#’
==1

[(=, C)2
, (9)

where the overbar denotes temporal averaging. The total variability has been estimated314

as
⇣
f

2
6
+f2

[
(C)

⌘1/2
. The forced variability f6 is equivalent to � ( 5 ;6), and total variability315 ⇣

f
2
6
+f2

[
(C)

⌘1/2
is equivalent to � ( 5 ). Hence, W is compared with WBC3 given by316

WBC3 =

⇣
f

2
[
(C)

⌘1/2

⇣
f

2
6
+f2

[
(C)

⌘1/2 (10)

b. Part B317

1) I����� �� ������� �� �������� �������� �� ������� ������318

Here instead of using the new metric W, we use its components: Shannon entropy and mutual323

information individually to compare variability between di�erent simulations. Quantifying di�er-324

ences because of modifications in the extrinsic forcings may be required for coastal applications325
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F��. 2. Flattening process for comparing two dimensional fields using Shannon entropy and mutual information.

As the flattened arrays G1,G2, ... and H1, H2... might not have linear dependence on each other, using linear

dependence measure such as Pearson correlation will yield incorrect results. Mutual information measures

nonlinear correlations and hence captures all linear and non-linear dependence.

319

320

321

322

where systems vary predominantly due to external forcings. For these forcing significance ex-326

periments, OSOM was run after modifying the external forcings (Table 1). OSOM is forced by327

tides, river runo�, atmospheric winds and air-sea fluxes, etc. (Full details of the model can be328

found in Sane et al. 2021). For this comparison, we quantify the e�ects of altering forcing on 4329

modeled variables: sea surface temperature and salinity, and bottom temperature and salinity. Four330

altered forcing sets were utilized, beyond set (1) Full set of atmospheric forcings using the North331

American Mesoscale (NAM) analyses, a data-assimilating, high resolution (12 km) meteorologi-332

cal simulation (https://www.ncei.noaa.gov/data/north-american-mesoscale-model/333

access/historical/analysis) denoted as FF. FF stands for full forcing. (2) Full set of at-334

mospheric forcings but using the Northeast Coastal Ocean Forecast System (NECOFS) winds335

(Beardsley and Chen 2014) instead of NAM, denoted as NECOFS. (3) River flows are replaced336

with their monthly-averaged flow, other forcing as in FF (4) River flows set to zero, other forcing337
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as in FF. (5) Wind forcing set to zero, other forcing as in FF. These forcings have been tabulated in338

Table 1. The aim is to quantify the e�ect on total variability by removing or altering one of many339

processes which might contribute.340

Forcing Set Wind forcing River forcing

FF NAM As Observed

NECOFS NECOFS As Observed

MR NAM Time-averaged

ZR NAM Zero river input

ZW Zero winds As Observed

T���� 1. Di�erent types of forcing combinations employed to test their e�ect on variability. FF stands for full

forcing: winds, tides, rivers, etc. For more details see Sane et al. (2021). MR: mean rives; ZR: zero rivers; ZW:

zero wind.

341

342

343

To evaluate Shannon entropy, the spatial output at a particular instant of time was rearranged into344

a row vector by a process called ’flattening’ as shown in Figure 2. Land mask points were removed.345

A variable G which is a two-dimensional variable was converted to one-dimension (flattened) by346

concatenation. Shannon entropy was found out for the flattened variable at each time step to obtain347

time varying entropy of the surface or bottom variable.348

Mutual information was applied between the flattened row vectors. Our focus is towards a349

pragmatic approach on using information theory for simulation comparisons, as opposed to an350

equation for the evolution of Shannon entropy and mutual information with respect to time (see351

Liang and Kleeman 2005). Relative comparison between mutual information values is what we352

seek. For example, if mutual information of surface salinity between FF and MR is higher than353

between FF and ZR, this implies the penalty for using time-averaged river runo� is not as severe354

as using zero river runo�. Replacing FF with MR will give better results than ZR. Small errors in355

river runo� flow rates won’t cause appreciable changes to surface salinity than using zero rivers.356
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3. Results357

a. Part A358

1) I�������� G������� A�����359

We test our metric, W, equation (7) on synthetic data consisting of idealized arrays of Gaussian360

data: N(0,1). For a normal Gaussian distribution Shannon entropy depends2 only on the standard361

deviation f i.e. � = log2
�
2c4f2� . The variability in a Gaussian distribution can be increased or362

decreased by changing its standard deviation. Our goal is to compare W and WBC3 . We set out our363

numerical experiment as follows: we create 10 arrays, each having 10,000 elements drawn from a364

Gaussian distribution. Any two arrays from those 10 have a prescribed linear Pearson correlation365

coe�cient from 0 to 1.366

Thus, the 10 arrays covary linearly with a specified correlation coe�cient. These 10 arrays367

represent ensemble members from climate simulations. The mean of 10 members gives us the368

synthetic forced variability signal as would be determined from the model output; averaging over369

the 10 ensemble members reduces the contribution from uncorrelated variability and rea�rms the370

covarying component into the forced variability. We apply W and WBC3 on this synthetic ensemble371

by varying the prescribed correlation coe�cient from 0 to 1. Figure 3 shows that as expected372

both metrics increase as the correlation decreases, i.e., as internal variability dominates forced.373

Both metrics behave similarly when correlation decreases, i.e. noise increases but W is more374

sensitive as correlation tends to 1. This distinction is due to the logarithmic nature of Shannon375

entropy for Gaussian distributions–in essence, information measured in bits is not proportional to376

distance measured between distributions in terms of summed variance–in the examples following377

the consequences of this distinction will become clearer. Critically both functions are monotonic378

with correlation, however so relative comparisons (more intrinsic fraction in this region vs. that379

region) are preserved.380

A second related experiment was derived from the first is also shown in Figure 3: adding outliers381

outside of the Gaussian distribution. 50 out of 10000 elements of each individual member were382

artificially corrupted (values were set to a constant value of 5) to test the sensitivity of both the383

metrics. Figure 3 shows that W is insensitive to outliers while WBC3 is not. W is not sensitive because384

2� = log2 2c4f2 is the Shannon entropy of a Gaussian distribution when probability density is continuous with f as standard deviation. The
Shannon entropy of a discrete probability distribution di�ers, which is inconsequential here but the reader is encouraged to read Jaynes (1962).
Consistently here discretely sampled and binned probability distributions are obtained directly from data without any further parameterization.

16



outliers occur less frequently and hence do not a�ect the probability distribution much, especially385

with the prefactor in (1) and (2). Hence information theory metrics are robust in comparison to386

using standard deviation (or variance). If the outliers (extreme events) occur at higher frequencies,387

information metrics will naturally start sensing them even if they are discontinuous from the typical388

conditions (e.g., multimodal distributions). The above process was repeated for 100 ensemble389

members each sampled from Gaussian distributions. Increasing the number of ensemble members390

does not change the result qualitatively for both the experiments. The results for 10 member391

Gaussian ensemble is shown in Figure 3 a and 100 member in Figure 3 b.392

Additionally, a set of experiment was done by using uniformly distributed data * (�1,1). The393

prescribed correlated vectors were created using the procedure outlined in Demirtas (2014). 10394

and 100 ensemble members were created and W and WBC3 was found between the members and their395

mean. Results are shown in Figure 3 c, d respectively. The outlier had a value of 1.5. In all the396

cases, W was less sensitive to outliers than WBC3 .397

2) R������� ������� ����� ������406

In this section we show the results of applying W and WBC3 on realistic simulation data from the407

Ocean State Ocean Model, hereafter OSOM (Sane et al. 2021). OSOM uses the Regional Ocean408

Modeling System (ROMS) (Shchepetkin and McWilliams 2005) to model Narragansett Bay and409

surrounding coastal oceanic regions and waterways. OSOM’s primary purpose is for understanding410

and predictive modeling and forecasting of the estuarine state and climate of this Rhode Island411

body. Sane et al. (2021) gives more details about the model.412

Using OSOM, an ensemble of simulations have been performed using perturbed initial (ocean)413

conditions under the same atmospheric and tidal forcing for the months July - August of 2006. This414

ensemble consists of 10 members. The data during the first predictability window ( 20 days) that is415

sensitive to initial conditions has been ignored and the remaining simulation has been used to look416

at variability within the “climate projection” of the model beyond when forecasts sensitive to initial417

conditions are possible (see the related application of information theory to assess predictability418

in Sane et al. 2021). We examine whether the modeled temperature and salinity at each grid point419

follow normal distributions by evaluating the skewness and kurtosis of the ensemble mean at each420

grid point. Figure 4 shows skewness and kurtosis for sea surface salinity and temperature as well421
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F��. 3. Information theory metric of intrinsic vs. extrinsic variability W as a function of correlation coe�cient

in idealized Gaussian correlated arrays (a and b) and idealized uniformly distributed arrays (c and d). The

horizontal axis is the correlation coe�cient between mean member and ensemble members. The vertical axis

shows the information theory metric W from (7) and the traditional metric WBC3 from Equation (10). A second

related experiment adding (50 out of 10,000) “corrupted” outliers to each individual member is also shown. The

information theory metric W does not change for these outliers which shows its robustness while WBC3 is highly

sensitive. Results are similar for Gaussian distribution members and uniformly distributed members. W is more

sensitive towards linear correlation of 1. This is due to the logarithmic nature of W.

398

399

400

401

402

403

404

405

as bottom salinity and temperature for the Narragansett Bay region. The horizontal axis shows422

skewness and excess kurtosis, which are the third and fourth statistical moments respectively,423

normalized by powers of the standard deviation to dimensionless ratio and in the case of excess424
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kurtosis a constant value of 3 is subtracted. For Gaussian distributions, skewness and excess425

kurtosis both should be close to zero. The vertical axis denotes the number of occurrences at a426

grid point. Observe that the majority of grid point values are away from zero. These variables427

are considerably non-Gaussian in OSOM. Thus, Equation (10) is at a disadvantage, because the428

prevalence of higher statistical moments implies that the variance does not contain a complete429

description of the variability. The information theory metric (7) is suitable for such data as it takes430

into account higher moments and does not rely on Gaussian distributions.431

Figure 5 shows the ratio of intrinsic variability to total variability applied on every grid point432

for OSOM. W is displayed on left whereas WBC3 is shown on right for comparison. The features433

highlighted by both metrics are qualitatively di�erent. The contribution of intrinsic chaos to total434

variability is more uniform using the W metric than using WBC3 . The intrinsic chaos displayed using435

WBC3 might be misleading because the probability distributions are non-Gaussian. Furthermore,436

where the W metric highlights internal variability tends to agree in similar dynamical locations–all437

river mouths show high surface salinity intrinsic variability. While surface temperature intrinsic438

variability is higher in more open regions of the Bay where eddies form intermittently due to439

varying topography. Also note that the ranges are quite di�erent between W and WBC3 , but this is to440

be expected from the di�erent rate of increase with correlation seen in Figure 3.441

3) C�������� E���� S����� M���� ����� ��������464

A complementary experiment was performed by using W to evaluate internal vs. forced variability465

in the global climate simulation output for climate change scenario RCP8.5 using the (randomly466

selected among the models compared) GFDL-LE model. All the 40 members from the ensemble467

were utilized. Variability of sea surface temperature (Figures 6) as well as sea surface salinity468

(Figures 7) were estimated using both W and WBC3 (upper left and upper right). Similar results469

were obtained for the detrended data for temperature (Figures 8) and salinity (Figures 9) The470

skewness and excess kurtosis of the ensemble mean were also plotted to find the deviation of471

variables away from Gaussian distributions (lower). Regions shaded in purple have low values472

of excess kurtosis and skewness and might be considered Gaussian. The detrended data shows a473

higher percentage of intrinsic variability than non-detrended data which suggests that detrending474
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F��. 4. Grid point wise kurtosis for OSOM output. Kurtosis is not closer to zero within (-0.5, 0.5) suggesting

the data distribution is non Gaussian.

442

443

has removed some proportion of extrinsic variability, presumably the climate change signal present475

in these simulations.476

Note in particular the Arctic sea surface temperatures, which have a highly skewed and excessive477

kurtosis distribution due to the freezing point of seawater. The standard metric (WBC3) deems this478

region to be among the most intrinsically variable in the world, while the information theory metric479

has it as a low intrinsic variability region. It is clear that a Gaussian metric should not be applied480

to this region due to the skewness and excess kurtosis, and in this case the inference is opposite481

using the two metrics. In the equatorial Pacific where Gaussian statistics are more reliable, the two482

metrics agree that internal variability is high.483

A less drastic failure occurs from the modest excess kurtosis in extra-tropical temperatures and484

in a few isolated regions in surface salinity. These regions are also non-Gaussian, but also are485

not heavily skewed (i.e., they are more long-tailed and intermittent than Gaussian). These regions486

di�er in relative estimation of intrinsic versus total variability. It is also the case that the W metric487

is closer to one in most regions than WBC3 , which is to be expected when the correlation coe�cients488

are low from Figure 3.489
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F��. 5. Metrics W vs WBC3 for OSOM output. Both metrics show di�erent contribution of intrinsic variability

to total variability. W is more uniform throughout the domain than WBC3 . Colormaps for W and WBC3 are di�erent

to highlight the di�erent ranges each of them have. WBC3 for bottom temperature has maximum value of 5%, and

pattern is almost uniform except at the river sources where values are on the lower side (less than 1%).

444

445

446
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F��. 6. Top: Intrinsic to total variability percentage for sea surface temperature. Bottom: Excess kurtosis

and skewness of the ensemble mean of temperature at each grid point. Values closer to zero (within 0.5 of

zero, purple shades) are considered approximately Gaussian. The deviation of ensemble mean away from non

normality implies that the ensemble members are also non normal. The Arctic regions have the most skewness

and excess kurtosis implying non-Gaussian distributions.

448

449

450

451

452

b. Part B490

1) I����� ��� �� ������� �� �������� ���������� �� ������� ������:491

We show results of the coastal model analysis under di�erent forcing in Figures 10 and 11.499

Entropy has been plotted with respect to time to aid understanding. In Figure 10, Shannon entropy500

is plotted for spatial quantities. For example, for surface salinity, all the surface values have been501

considered to find Shannon entropy using the flattening approach. Figure 11 displays mutual502

information. It is user’s choice to choose the type of domain, here we have chosen the same domain503

of OSOM as shown in Figure 5. If Shannon entropy is more or less equal for two forcings, it implies504

they similarly a�ect variability. Mutual information should be compared for two pairs of forcings.505

Greater mutual information implies the two pairs share more bits of information, suggesting one506

of the forcing in that pair can be replaced with the other without significantly a�ecting variability.507
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F��. 7. Top: Intrinsic to total variability percentage for sea surface salinity. Bottom: Kurtosis and skewness

of the ensemble mean of salinity at each grid point. Values closer to zero (within 0.5 of zero, purple shades) are

considered approximately Gaussian.

453

454

455

4. Discussion508

Our numerical experiments performed using W on idealized Gaussian arrays show that W is509

monotonic and decreases as the linear Pearson correlation coe�cient increases. Thus aside from510

the qualitative di�erences the new metric finds when the data are non-Gaussian, the ranges of511

intrinsic versus total variability are quite di�erent between W and WBC3 . This is to be expected from512

the di�erent rates of increase with correlation seen in Figure 3. The traditional metric (WBC3) falls513

approximately linearly as the correlation coe�cient increases, so that a correlation coe�cient of514

0.5 gives a WBC3 just above 0.5. The new metric W agrees with WBC3 that correlation of 0 implies515

W = 1, and correlation of 1 implies W = 0, but for a correlation of 0.5 is closer to W = 0.9. Only very516

near correlation coe�cients of 1 does W fall below 0.5. If roughly linear dependence on correlation517

coe�cient is desired, W can be raised to a power–W3 resembles WBC3 and W
6 resembles the correlation518

coe�cient. These higher powers do not lose the ability to apply to non-Gaussian data nor become519

non-monotonic, but they will lose their interpretation as a ratio of bits of information entropy, and520
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F��. 8. Top: Intrinsic to total variability percentage for detrended sea surface temperature. Bottom: Excess

kurtosis and skewness of the ensemble mean of temperature at each grid point. Values closer to zero (within 0.5

of zero, purple shades) are considered approximately Gaussian. The deviation of ensemble mean away from non

normality implies that the ensemble members are also non normal. The Arctic regions have the most skewness

and excess kurtosis implying non-Gaussian distributions.

456

457

458

459

460

instead reflect ratios of bits cubed of information entropy, etc. An alternative is to take WBC3 raised521

to a di�erent power: W1/3
BC3

is roughly similar to W.522

To check for sensitivity due to our binning choice, the endpoints of each bin were shifted by523

XF/2 and the results were compared. In theory, such a shift should not meaningfully a�ect the524

outcome, so this comparison gives a sense of how sensitive the results are to binning choices. For525

temperature, the raw GFDL-LE data (without detrending) gave an error of 4.7% in W (see next526

section for definition) and detrended data gave an error of 11%. For salinity, the error in W for527

raw data was 1.7% and for detrended data was 2%. Similar analysis for ROMS-OSOM coastal528

ensemble data gave negligible error for shifting the bin endpoints. Di�erent binning strategies will529

be left to be explored for future research.530

As can be seen in Figures 5, 6, and 7, information theory metrics show di�erent patterns when531

compared to variance. Information theory metrics, especially mutual information, account for532
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F��. 9. Top: Intrinsic to total variability percentage for detrended sea surface salinity. Bottom: Kurtosis and

skewness of the ensemble mean of salinity at each grid point. Values closer to zero (within 0.5 of zero, purple

shades) are considered approximately Gaussian.

461

462

463

all non-linear shared information between the ensemble members and the mean including linear533

correlation, and this is one reason for the di�erences. We have argued that non-Gaussian statistics534

are another (which is not wholly independent of non-linear shared relationships). There are likely535

other aspects of di�erences between these metrics, but the management of these two expected536

aspects of geophysical fluids–nonlinear relationships and non-Gaussian distributions–justify the537

introduction of the new metric.538

For the regional coastal model OSOM, forcings di�er as to how they a�ect di�erent variables.539

As might be expected, river runo� is more important for salinity than for temperature. However,540

for July-August, replacing rivers with the monthly-mean river flow gives nearly the same result541

(in terms of variability) as fully time-varying rivers. For the duration considered (July-August),542

averaging the river runo� gives similar e�ect for salinity as compared to giving the observed543

river runo� in the simulations, see Figure 10. Temperature is less sensitive to any of the forcing544

alterations, because although temperature and salinity are passive tracers they have di�erent sources545

and sinks. Switching the wind product from NAM to NECOFS does not have any significant e�ect546
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F��. 10. Shannon entropy applied to temperature and salinity. Replacing fully time varying rivers with

monthly-mean river flow gives almost the same result for salinity. Same is true by replacing wind product with a

di�erent one. Rivers set to zero a�ects salinity but not temperature. Winds are important in terms of variability

but di�erent wind products do not noticeably alter variability.

492

493

494

495

on the sources or sinks of temperature or salinity, but switching the wind o� definitely a�ects547

the parameters by eliminating wind-driven mixing altogether. Figure 11 shows that zero wind548

(ZW) simulations are markedly di�erent than the rest in terms of mutual information (i.e., they549
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F��. 11. Mutual information applied to simulations from di�erent forcings. Higher mutual information implies

higher similarity in terms of variability. For example NAM-NECOFS values are higher than NAM-ZW implying

that NAM and NECOFS are significantly di�erent than having no wind.

496

497

498

do not covary), although very similar in terms of amount of spatial variability (Shannon entropy,550

Figure 10), because even without winds tides, fluxes, and rivers still vary. The zero river case tends551

to eliminate both variability and mutual information (ZR). Please note that our simulations are for552

July-August, and results might be di�erent for di�erent season.553
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If we were to prioritize improvements based on Shannon entropy and mutual information, note554

that the two highest mutual information cases are where NAM is substituted with NECOFS and555

where mean rivers are substituted for varying rivers. The first observation is important from a556

forecast perspective, because it means that we can not easily tell the di�erence between di�erent557

wind products, although something rather than zero winds should be used if the estuary needs to be558

forecasted for the full 20 day predictability range (weather forecasts are reliable for about 7 days in559

this region). Similarly, knowing that substituting the mean of the rivers for the fully varying rivers560

has little impact implies that rivers can be fixed in time for forecasts beyond where they might be561

predicted based on expected weather and precipitation. Finally, despite the fact that Narragansett562

Bay is a dominantly tidally-mixed estuary, among the sources of overall variability (i.e., sources563

of information entropy) considered, preserving an inflow of fresh water is key, even though that564

inflow can be steady. Winds do not appreciably increase information entropy of the Bay, but they565

are an important source of forced co-variation, and so are important for predictions but do not raise566

the overall level of variability.567

5. Conclusion568

We have proposed an information theory metric to determine contribution of intrinsic chaos and569

external variability to total variability in ensemble model simulations. Our metric uses Shannon570

entropy and mutual information and has several advantages over using only standard deviation (or571

variance). We have applied our metric on idealized Gaussian arrays as well as realistic coastal572

ocean and global climate model. We conclude that:573

1. The new information theory metric is more reliable when outliers are present, because out-574

liers get assigned less probability and because Gaussian distributions have a di�cult time575

approximating long-tailed (i.e., outlier prone) distributions.576

2. The new information theory metric is more reliable when variability is non-Gaussian because577

it is based on non-parametric measures of the probability distributions.578

3. The new information theory metric varies monotonically with ensemble member to ensemble579

mean correlation, but is quantified in fraction of bits required to capture internal variability580

versus bits required to capture of total variability.581
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4. The use of the information theory metric in a coastal ocean model ensemble and a climate582

model ensemble qualitatively changes the focus to regions that were previously erroneously583

labeled as having high or low internal variability.584

5. In this case, the coastal ensemble had a much smaller intrinsic (chaotic) proportion of its585

total variability in comparison to the climate ensemble had more intrinsic (weather, climate586

oscillations, etc.) as a proportion of its total. Importantly, the resolution of the models helps587

determine the proportion of intrinsic variability, so such comparisons are model-specific:588

a higher resolution coastal model might well have a larger intrinsic fraction than a coarser589

climate model.590
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