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Abstract

Traditionally, the Saharan Air Layer (SAL) is defined as an elevated dry layer, frequently containing mineral dust transported
from North Africa. The presence and characteristics of the SAL have an impact on tropical Atlantic climate and also on tropical
cyclone development. However, recent observations from airborne campaigns in the Eastern Tropical Atlantic have found that
under heavier dust loadings, water vapor content is increased in the SAL, rather than decreased as expected. This work will
present airborne in-situ profile observations of dust loading and water vapor in the SAL from the AER-D field campaign during
August 2015 in the tropical East Atlantic. The radiative impact in the shortwave and longwave spectra of the enhanced water
vapor in the SAL will quantified and compared to that from mineral dust in the SAL. Trends in SAL water vapor over recent

decades from satellite observations will be presented to assess the representativity of the aircraft data.
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