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Abstract

Observations of the solar wind ion-charge states suggested that the origin of solar wind is associated with nanoflare-like impulsive
events. It has been suggested by Che and Goldstein that the nearly isotropic electron halo observed in the solar wind electron
velocity distribution function may originate from nanoflare-accelerated electron beams below 1.1 R_{sun} from the solar surface
through the non-linear electron two-stream instability (ETSI). This model unifies the origins of kinetic waves, the electron halo,
and the coronal weak Type III bursts, and establishes a link between the solar wind observables and the electron dynamics
in nanoflares. One of the important predictions of this model is that the halo-core temperature ratio is anti-correlated with
the density ratio, and the minimum halo-core temperature ratio is \sim 4 , a relic of the ETSI heating and has been found
to be consistent with WIND, ACE and Helios observations. However, the density and the relative drift of the electron beams
in the source region in the corona, which are essential for the evolution of ETSI, cannot be directly measured. In this paper,
using a set of particle-in-cell simulations and kinetic theory, we show that a necessary condition for an isotropic halo to develop
is that the ratio of beam density n_b and the background n_0 be lower than a critical value N_c ~ 0.3. Heating of the core
electrons becomes weaker with decreasing beam density, while the heating of halo electrons becomes stronger. As a result, the
temperature ratio of the halo and core electrons increases with the decrease of the beam density. We apply these results to the

current observations and discuss the possible electron beam density produced in the nanoflares.
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The Origin of Electron Halo of Solar Wind Is A Puzzle

Pilipp et al, 1987, JGR Numerous studies show that the
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Strahl in the fast wind is believed to be formed by magnetic focusing effects.




The Origin of Electron Beams and Solar Flares
Benz, 2017
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Fig. 13 A schematic drawing of the standard flare scenario assuming energy release at high altitudes
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Fig. 16 Left a schematic drawing of the one-loop flare model. Right observation of an apparent X-point
behind a coronal mass ejection observed by LASCO/SOHO in white light (copyright by NASA)



—vidence of Nanoflare-associated Electron beams

Electron beams accelerated during nanoflares produce weak

coronal Type lll radio bursts with Tb~10A7 K~keV. The keV
electron beams — Free energy.
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Statistical survey 10,000 type lll radio bursts observed by the Nancy Radioheliograph
from 1998 to 2008 found associated with nanoflares (Saint-Hilaire et al, ApJ, 2013).



Nanoflares

(proposed by E. Parker in 1988. Recent Hi-C, SDO and IRIS provide both direct and indirect
evidences for the existence)
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Nanoflares may provide semi-continuous free energy.



The Connection Between Nanoflares
and Solar Wind
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Nanoflares: merging of small magnetic loops rooted from
photosphere due to the super granulation convection.
Solar Wind: originating from the plasma ejected by
Nanoflares.



Evidence of Nanoflare-Origin Solar Wind
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Generation of KAW and Whistler waves by
Weibel Instability and Inverse Energy Cascade

Che, Goldstein, and Vinas, PRL, 2014 -06 00 0.6 -09 0.0 1.0
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Formation of Electron Halo in the Solar Wind

Che & Goldstein, ApjL, 2014
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2. The mean relative drift between the core and halo-strahl is about
the core thermal speed, a relics of electron two-stream instability.



WIND Observation on the Core-Halo-strahl Temperature Relation

Thot/ T ~ 4 I, Cr Aot
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How Electron Beam Density Affects
the Formation of Electron Halo?

e We discovered that the electron beam density 7, beyond

0.3n,, (ny is the background density) the electron halo can
not be developed.

 Heating of the core electrons become weaker with
decreasing beam density while the heating of halo
electrons becomes stronger, explaining the physical
meaning of the predicted anti-correlated relation.
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Simulation Initial Parameters

Run 1 Run 2 Run 3 Run 4 Run 5
0 0.05 0.1 0.2 04 0.5
ny,/neg 0.053 0.11 0.25 0.67 1.0
Vp 80 60 40 20 15
Vg 84.2 66.6 50.0 334 30.0
vy 24.6 24.6 23.2 0 0
Y/ Wpe.o 0.29 0.35 0.4 0.38 0.38
kd; 13 17 20 30 33
Wp 43.6 54.4 58 43.6 42.5
K 1.68 1.98 2 1.33 1.13

Note. 6 = n;/ng—ratio of electron beam density to background electron
density; n;/n.o—density ratio of the beam and the core; v,—beam drift; v,—
relative drift; v,—the phase speed of ETSI; y~—growth rate; k—wave-number
of the fastest growing mode; Wp—beam kinetic energy flux; K—the total
kinetic energy of the core-beam.
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Figure 3. 2D power spectra (in logarithmic scale) of the parallel electric field fluctuation 8E. for different relative drifts.
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Figure 5. The 2D electron VDFs at different times for Run 1 (upper panels) and 2 (lower panels). Left panel: w,; t = 0; middle panel: w), ot = 800; right panel:
Wpeof = 10,400. A logarithmic scale is used in the plots.
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Figure 6. Top panels: images of electron VDFs f(v,, vy) in the 2D velocity space (vy, v,) at w,e ot = 10,400. Middle panels: cuts of the 2D electron VDFs along the
magnetic field. Bottom panels: cuts of the 2D electron VDFs perpendicular to the magnetic field. The red dashed lines are the total bi-Maxwellian functional fit (a sum

of green and blue lines). The model parameters are shown in Table 2.



Conclusions

 We discovered that the electron beam density n;,, beyond

0.3n,, (1, Is the background density) the electron halo can
not be developed.

 Heating of the core electrons become weaker with
decreasing beam density while the heating of halo
electrons becomes stronger, explaining the physical
meaning of the predicted anti-correlated relation.
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