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Abstract

We seek to calibrate the flow law for polythermal ice through shear strain analysis. In a warming climate, increased melting of
glaciers and ice caps play a big role in sea level rise. Approximately 60% of the current contribution to sea level rise from ice loss
is attributed to glaciers and ice caps, raising the urgency of sharpening mass balance change predictions in regions of streaming
flow. Polythermal glaciers constitute a significant portion of these contributing glaciers, though our knowledge of their flow
dynamics is incomplete. Thermally complex polythermal glaciers have both warm and cold ice which lead to weak wet-based
beds, with significant amounts of basal sliding and deformable till. Consequently, polythermal glaciers experience significant
shear strain as their lateral shear margins sustain the majority of the resisting stress. Most in-situ and in-lab studies of natural
ice over recent years have focused on bodies of ice with frozen beds that experience minimal shear strain downglacier and across
vertical planes (with depth) relative to the bed. The lack of studies on wet-based polythermal glaciers causes uncertainties in
the flow law, as differences in flow law factors between polythermal ice and bodies of ice with frozen beds have the potential
to induce more than an order of magnitude difference in ice velocity. To improve calibration of the flow law for polythermal
ice, we seek to improve our understanding of their shear strain regimes. We developed and deployed tilt sensor systems on
the polythermal Jarvis Glacier in Alaska, where we drilled multiple boreholes close to Jarvis’ shear margin and installed three
boreholes with our tilt sensor systems. The tilt sensors measure gravity, magnetic and temperature data, and each system
consists of multiple sensors connected along a cable and serially communicating along a common data bus with a datalogger.
We have recently retrieved a year of Jarvis tilt sensor data and calculated the at-depth shear strain rates in the boreholes,
allowing evaluation of the at-depth shear strain rate regimes of polythermal ice against theoretical models developed using
Glen’s flow law. We present the development of our data collection methodology and the results of our shear strain analysis,

with suggestions for potential calibrations of the flow law for polythermal ice.
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* Support calibration efforts of the flow law for streaming ice

From Goldsby and Kohlstedt (1997a), in regions of low stress n experimentally approaches 2.4 or even < 2 (Goldsby and

Kohlstedt (2001)), and approaches n = 4.5 at the highest stress levels. JA and JE are in regions of low stress (¢ < 0.1 MPa) * The future of machine learning applications to glaciology
with large strains (up to ~1300% for JA and ~16% for JE), though we observe higher than expected n-values due to the
high total strains that are tough to account for on the basis of the strain history at JA and JE being unknown. High total
strains lead to higher strain rates over time and when coupled with potential dynamic recrystallization, lead to strong
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