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Abstract

Airborne allergic pollen is a well known trigger for several cases of public health issues affecting millions of people. The effect is
highly prevalent in the temperature region, especially in the North American region and Europe. For example, about 50 million
Americans are affected by pollen caused allergy and similarly, studies show quite a significant population of Europe is affected.
Contrary to the higher abundance of pollen in rural areas, pollen allergy is severe in urban areas than rural environments. Of
all sources, it is the Ambrosia pollen that affects most due to its abundant production, strong allergic potency and its high
prevalence near urban areas. Hence estimating the concentration of allergic pollen in the ambient atmosphere and notifying the
public is crucial for people with allergies and health professionals who care for them. In this workshop, we present estimation of
allergic pollen (particularly Ambrosia pollen) using advanced machine learning methods and input parameters from a suite of
sources ranging from land surface to global reanalysis models and NEXRAD weather radar measurements at location of Tulsa,
Oklahoma. We will present results of the machine learning model tested using an independent dataset and characterization of

each atmospheric and land surface parameters’ importance for the machine learning estimation.
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Objectives

) Health Impacts of Pollen

~50 million Americans have pollen allergy
In 2005 in the US alone:

3.5 million work days lost.

2 million school days lost.

Health care costs increase from 6
billion in 2000 to 11 billion in 2006.

Increase in Asthma attack.

Large number of people visit
emergency room.

Leads to death in highly
sensitive people during high
pollen season

« The objective of this research is to use machine
learning/deep learning to forecast allergic
pollen using atmospheric weather and land
surface (ECMWEF and MERRA) and

NEXRAD radar parameters.

Pollen measurements

Flowering

Dormancy

Figure 1: Life Cycle of Ambrosia.
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Figure 2: Pollen measurements made from 1987 to 2017.

Introduction: predictor variables
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Figure 3: Atmospheric and land surface parameters con-

trolling the distribution pollen
« We use a suite of meteorological and land

surface parameters from the ECMWEF,

MERRA and NEXRAD radar to forecast

allergic pollen

« T'his parameters control the production and
dispersion of allergenic pollen

« We use deep neural networks, random forest
and extreme gradient boosting.

Machine Learning

« Machine learning employs mathematical and
statistical approaches that ‘learn’ by example
from a training data set.

« It is suitable for problems in which we do not
have the functional relation between the
output parameter(s) we would like to estimate
and the set of predictors.

= We develop the model using the training set
(the data set from 1987 - 2011)

Machine Learning Process
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Neural networks are learning algorithms whose
performance is inspired in analogy the flow of in-

formation in the human brain.
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Figure 4: The neural network architecture.
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Figure 5: The Random Forest random sampling method

Results: Variable Importance
estimated
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Figure 6: Variable importance estimated using the random

forest machine learning method.

Results: forecasted pollen

Random Forest, R= 0.82

Deep Learning, R= 0.81
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Pollen Count
Pollen Count

Pollen Count
Pollen Count

Figure 7: Forecasted pollen using independent test data for

the 2012-2017 pollen season.

Results: estimated error
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Figure 8: Error estimated for the four machine learning

methods shown in Figure 7.

Pollen estimated using NEXRAD
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Figure 9: Pollen estimated over a large spatial area using
NEXRAD radar data.
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