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Abstract

We present a neural network (NN) based algorithm for the retrieval of cloud and aerosol properties from above cloud aerosol

(ACA) scenes. The large state space explored in ACA scenes causes traditional retrieval approaches slow and complicated.

This is especially true for optimal inversion retrieval approaches, where a growth in the number of dependent variables can

drastically complicate and slow the retrieval search. Our NN retrieval is applied to data from the airborne Research Scanning

Polarimeter (RSP), which measures both polarized and total reflectance in the spectral range of 410 to 2260 nm, scanning

along the flight track at ˜150 viewing zenith angles spanning the angular range between -60@ to 60@. We apply this algorithm

to field campaign data from the ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) 2016 and 2017

campaigns and compare to results obtained from other algorithms.
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The NN retrievals perform more poorly for the

ORACLES 2017 dataset despite changes intended

to improve results. Regression of the linearly

scaled NN retrievals from ORACLES 2017 dataset

reveal more complicated and nonlinear

relationships than those observed for 2016.Most

notably though, the comparison of the re
retrievals to PP or NJK retrieval shows different

behaviors. Because the ORACLES dataset 2017

dataset contains more instances of low-!, it is

probably that the issue here is related to biased

total reflectance that result in biased NN

retrievals that ingest them (whereas the PP

retrieval uses no polarized reflectance.

During ORACLES 2017 RSP often lacked useful

SWIR data, as a consequence we explored what

the consequences of excluding SWIR data from

training and input. We found that re retrievals

were very poor, but ! retrievals were less non-

linear but highly clustered around training bins.

Perhaps with a better training grid, SWIR-free

NN retrievals may have performed better.
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The impact of aerosols on clouds constitutes one of the greatest sources of uncertainty in

the understanding of Earth’s climate. Above cloud aerosol (ACA) scenes in particular can

impact the radiative budget (direct effect), cloud development (semi-direct effect), and

microphysics (indirect effects). Passive remote sensing retrievals of ACA scenes is difficult

because traditional retrieval approaches can be slow and complicated, due to the large state

space exploration required. This is especially true for optimal inversion approaches, where a

growth in the number of dependent variables can drastically complicate and slow the

retrieval search. One way way to improve the speed and convergence of such retrievals is to

provide a better ‘first guess’ obtained by a neural network (NN) for the retrieval to search

around [1]. In this study we aim to develop and improve a neural network (NN) based

algorithm for the retrieval of cloud properties in ACA scenes [2]. Our NN retrieval is applied

to data from the airborne Research Scanning Polarimeter (RSP), which measures both

polarized and total reflectances in nine visible and shortwave infrared bands, with each pixel

observed from numerous viewing angles. We apply the NN algorithm to RSP field campaign

data from the ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) 2016

and 2017 campaigns and compare to results obtained from other standard algorithms. We

will evaluate these retrievals using ORACLES data satisfying the following criteria:

The disparate uncertainties of total and

polarized reflectances from RSP observational

(and training) data required us to weight

network input relative to an instrument

uncertainty model.

Summary of Findings:

• We got something that works pretty well despite not being trained with ACA layer 

information.

• Appears to work better for 2016 data than for 2017 data, the change in the population of 

cloud properties (more thin and more broken clouds in 2017) is likely associated with this 

behavior.

• The NN behaves more like polarimetric retrieval when clouds are homogeneous, and when 

clouds are broken and inhomogeneous the retrieval behaves like the NJK retrieval.

Strengths and Limitations of our Approach:

• We created an algorithm that attempts to meld both total and polarized reflectance 

information into the same retrieval, to date there is no significant effort to hybridize 

retrievals of cloud microphysics like this. As a consequence our results are somewhere 

between polarimetric results and bispectral results.

• The need for the linear correction using a validation dataset is concerning. During evaluation 

of the training dataset we did not observe this.

• One of the strengths of a NN retrieval is that it can explore retrievals in situations where 

other retrievals are not performed for one reason or another – the linear scaling requirement 

hurts that argument.

• What we are comparing to is *not* truth and what we are training with is not considering a 

large component of the observed system (the presence of the aerosol above the cloud).

Future Research Goals:

• Embed an aerosol above cloud layer in the NN training set and train a network to retrieve 

aerosol and cloud properties.

• Use these NN retrievals as first guess estimates to accelerate an optimal estimation above 

cloud aerosol retrieval.

Parameters  
[units]

ORACLES 2016 ORACLES 2017
# of 

grid 

points

Training Grid

# of 

grid 

points

Training Grid

Altitude [m]
N/A N/A 3 5000, 6000, 7000

re – [µm] 6 5, 7.5, 10, 12.5, 15, 20 6 5, 7.5, 10, 12.5, 15, 20

ve [-] 6 0.01, 0.03, 0.05, 0.07, 0.1, 0.15 6 0.01, 0.03, 0.05, 0.07, 0.1, 0.15

" [-] 6 2.5, 5, 10, 15, 20, 30 6 2.5, 5, 10, 15, 20, 30

SZA [˚] 12 10 to 65 in increments of 5 13 5 to 65 in increments of 5 

RAA [˚] 17
0, 2, 4, 6, 8, 12, 16, 20, 24, 28,

32, 40, 50, 60, 70, 80, 90
31 0 to 90 in increments of 3

#$% &', &), *, + = $% &', &), *, + − $̅ &', &), *, +
/ $̅ &', &), *, +

• Continuous along track scanner (not an imager)

• Can “see” the same point from different views

• ±60° from nadir w/ 152 viewing angles per scene 

• 9 bands in visible and shortwave infrared: 

– 410, 470, 555, 670, 864, 960, 1593, 1880, 2263 nm

• Simultaneous measurements of Stokes vector

I (intensity), Q and U (2 linear polarization)

– Measurement uncertainty: dI≅ 3% & dDoLP≅ 0.2%
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2
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Dashed lines are for 2017 flights.

Dotted lines are for 2016 flights
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RSP has three standard cloud retrieval algorithms 

that  all provide different perspectives on cloud 

retrievals [6,7]. Brief descriptions of each and a 

comparison of NJK and PP retrievals are shown.

• Nakajima-King: (NJK) [3]

– A nadir total reflectance retrieval based on the 

well known Nakajima-King approach. A look up 

table of SWIR and VNIR band pairs are used to 

retrieve re and ! uniquely.

• Parametric Polarimetric: (PP) [4]

– Curve fitting approach that fits single-scattering 

phase functions  to polarized reflectances to 

retrieve distribution parameters re, ve.

• Rainbow Fourier Transform (RFT) [5]

– Resembles the Fourier transform between droplet 

size distribution space and polarized reflectance 

space using special basis set functions. Retrieves 

full droplet size distribution - not just parameters.

• Deep network structure with four hidden layers

• Normalization layers re-standardize data

• Activation layer either tanh or ReLU

• Trained in a mini-batch mode with a rate of 

0.0001 and 100 epochs for each  training scenario.

• Network optimized using  Adam algorithm within 

the Keras Python API making use of a TensorFlow 

backend.

Parameter 
[units]

R2 |Bias| RMSE

" [-] 0.999 0.016 .021

re [µm] 0.987 0.044 0.076

ve [-] 0.941 0.094 0.16

One useful finding was that Found that

results for re retrieval depended on

cloud top height. This inspired us to

change the training set for the network

training set during the analysis of the

2017 dataset when the RSP instrument

would be flying at variable altitudes.

Additionally, there was a less consistent

and weaker dependence of the !
retrieval on the above cloud aerosol

optical thickness.

• Cloudy scenes as identified by other RSP retrieval methods

• Successful RSP retrievals using all other techniques

• Coincident RSP and HSRL data for cloud top height definition

• Instances with HSRL cloud top height below 2 km
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The initial output of the network exhibits clear linear

biases when compared to the other RSP retrievals. This

linear offset was absent during our training evaluation

exercise, and the high correlations of these retrievals

imply that the NN retrieval is otherwise generally

performing correctly. The source of this linear offset is

still an open question, though the current hypothesis is

that it is associated with the preprocessing of input data.

We experimented with different networks for the datasets available because

observational platform differences (high altitude 2016 and low altitude 2017)

required it. The primary difference between ORACLES 2016 and 2017 networks

stems from the training set grids defined above.

Networks using a tanh activation function estimated re well (and ! poorly) and

networks using a rectified linear unit (ReLU) activation function estimated ! well

(and re poorly). As a consequence separate networks are used for each NN retrieval.

Density regression plots of the linearly

scaled NN retrievals from the ORACLES 2016

dataset reveal strong statistical evidence

that the NN retrieval behaves well on

average.

In fact, these correlation and RMSE

characteristics are similar to those observed

when comparing two different standard RSP

cloud products (shown previously).

The histograms of each retrieval

reveals more detail, retrievals of

! (and to a lesser extent, re) are

clustering around the locations

of training set grid points.

The time series below show

that the spatial variability of the

NN retrieval behaves similarly

to the existing algorithms.

The example time series for ORACLES 2017 exhibits a poorer

spatial variability match to RSP retrievals This is largely

attributable to deviations that occur near dramatic

increases/decreases in ! or gaps in the cloud layer. Both of

these could be a possible indication of the influence of

inhomogeneous clouds and 3D radiative effects on total

reflectances that are subsequently driving NN retrieval biases.
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The evaluation dataset showed

that the network was well

trained for re and ! retrievals,

but not for ve (RMSE=range/2).
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