AUTHOREA
Log in Sign Up Browse Preprints
LOG IN SIGN UP

1486 oceanography Preprints

Related keywords
oceanography sea-air interactions physical oceanography phenology biology ocean-bottom processes palinology sea ice zooplankton geology hydrology applied climatology descriptive oceanography environmental sciences atmospheric sciences environmental biogeochemistry shore and near-shore processes grazing chemical oceanography biogeochemistry glaciology geophysics climatology (global change) solid-earth and geophysics paleoclimatology + show more keywords
volcanology geochemistry paleontology biological oceanography geomagnetism and magnetic exploration physical climatology
FOLLOW
  • Email alerts
  • RSS feed
Please note: These are preprints and have not been peer reviewed. Data may be preliminary.
The flocculation state of mud in the lowermost freshwater reaches of the Mississippi...
Ryan Osborn
Kieran Bernard Jiamin Dunne

Ryan Osborn

and 4 more

November 04, 2022
We use in situ measurements of suspended mud to assess the flocculation state of the lowermost freshwater reaches of the Mississippi River. The goal of the study was to assess the flocculation state of the mud in the absence of seawater, the spatial distribution of floc sizes within the river, and to look for seasonal differences between summer and winter. The data was also used to examine whether measured floc sizes could explain observed vertical distributions of suspended sediment concentration through a Rouse profile analysis. The surveys were conducted at the same location during summer and winter at similar discharges and suspended sediment concentrations, and in situ measures of the size distribution of the mud over the longitudinal, transverse, and vertical directions within the river were obtained using a specially developed underwater imaging system. These novel observations show that mud in the Mississippi is flocculated with median floc sizes ranging from 50 to 200 microns depending on location and season. On average flocs were found to be 40 microns larger during summer than in winter and to slightly increase in size moving downriver from the Bonnet Carré Spillway to Venice, LA. Floc size statistics varied little over the depth or laterally across the river at a given station. Bulk settling velocities calculated from size measurements matched values obtained from a Rouse profile analysis at stations with sandy beds, but underestimated settling velocities using the same equation parameters for measurements made during winter over muddy beds.
A Simple Multiscale Intermediate Coupled Stochastic Model for El Niño Diversity and C...
Nan Chen
Xianghui Fang

Nan Chen

and 1 more

November 04, 2022
El Niño-Southern Oscillation (ENSO) is the most prominent interannual climate variability in the tropics and exhibits diverse features in spatiotemporal patterns. This paper develops a simple multiscale intermediate coupled stochastic model to capture the ENSO diversity and complexity. The model starts with a deterministic and linear coupled interannual atmosphere, ocean, and sea surface temperature (SST) system. It can generate two dominant linear solutions representing the eastern Pacific (EP) and the central Pacific (CP) El Niños, respectively. In addition to adopting a stochastic model for characterizing the intraseasonal wind bursts, another simple stochastic process is developed to describe the decadal variation of the background Walker circulation. The latter links the two dominant modes in a simple nonlinear fashion and advances the modulation of the strength and occurrence frequency of the EP and the CP events. Finally, cubic nonlinear damping is adopted to parameterize the relationship between subsurface temperatures and thermocline depth. The model succeeds in reproducing the spatiotemporal dynamical evolution of different types of ENSO events. It also accurately recovers the strongly non-Gaussian probability density function, the seasonal phase locking, the power spectrum, and the temporal autocorrelation function of the SST anomalies in all the three Niño regions (3, 3.4 and 4) across the equatorial Pacific. Furthermore, both the composites of the SST anomalies for various ENSO events and the strength-location bivariate distribution of equatorial Pacific SST maxima for the El Niño events from the model simulation highly resemble those from the observations.
Energy transmission pathways of equatorial waves and associated dissipation process i...
Yusuke Terada
Yukio Masumoto

Yusuke Terada

and 1 more

November 04, 2022
Detailed pathway of wave energy exchange between the Pacific and Indian Oceans through the Indonesian archipelago and associated energy dissipation are investigated by using a reduced gravity model with realistic coastline. The wave energy flux analysis that can be applicable for all latitudes in a linear shallow water system is adopted. The energy fluxes diagnosed from the model outputs for the incoming Rossby waves from the Pacific clearly indicate two major energy pathways to the Indian Ocean; one turning southward in the Halmahera Sea and reaches the Indian Ocean via the Banda Sea and the Timor Passage, the other passing through the Makassar and Lombok Straits. The former route, however, is shifted to the western side of the island chain within the Banda Sea due to energy trapping around the island chain. It is also found that strong energy dissipation occurs along the northern coast of New Guinea when the period of the incoming Rossby wave is shorter than 1.5 year. In the case of the Kelvin waves from the Indian Ocean, it is found that the major energy pathway is through the Lombok and Makassar Straits to the Pacific Ocean. However, there appears another pathway along the eastern side of the Sulawesi Island in the Banda Sea to exit through the Molucca Sea only when the wave period is shorter than about one month. This secondary pathway makes it easier for the wave energy from the Indian Ocean to reach the western Pacific Ocean for the short period waves.
The AMOC needs a universally-accepted definition
Nicholas P. Foukal
leon Chafik

Nicholas P. Foukal

and 1 more

November 03, 2022
The debate over the historical and future evolution of the Atlantic Meridional Overturning Circulation (AMOC) has united scientists around a single topic, but this community has yet to unite around a single definition of the AMOC. In an effort to focus the debate around dynamics rather than semantics, we recommend that the community universally adopt a definition of the AMOC in density coordinates. We present evidence that the traditional depth space definition is insufficient at capturing elements of this circulation, especially at high latitudes where the northward and southward limbs of the AMOC are separated horizontally rather than vertically. Instead, the AMOC in density coordinates more realistically captures the water mass transformation process at high latitudes, shifts the maximum AMOC from the subtropical to the subpolar North Atlantic where the majority of the deep waters are formed, and depicts the peak in meridional heat transport associated with the subtropical gyre.
Evolution of bottom boundary layers on three dimensional topography -- Buoyancy adjus...
Arjun Jagannathan
Kaushik Srinivasan

Arjun Jagannathan

and 4 more

November 03, 2022
A current along a sloping bottom gives rise to upwelling, or downwelling Ekman transport within the stratified bottom boundary layer (BBL), also known as the bottom Ekman layer. In 1D models of slope currents, geostrophic vertical shear resulting from horizontal buoyancy gradients within the BBL is predicted to eventually bring the bottom stress to zero, leading to a shutdown, or \lq arrest \rq \, , of the BBL. Using 3D ROMS simulations, we explore how the dynamics of buoyancy adjustment in a current-ridge encounter problem differs from 1D and 2D temporal spin up problems. We show that in a downwelling BBL, the destruction of the ageostrophic BBL shear, and hence the bottom stress, is accomplished primarily by nonlinear straining effects during the initial topographic counter. As the current advects along the ridge slopes, the BBL deepens and evolves toward thermal wind balance. The onset of negative potential vorticity (NPV) modes of instability and their subsequent dissipation partially offsets the reduction of the BBL dissipation during the ridge-current interaction. On the upwelling side, although the bottom stress weakens substantially during the encounter, the BBL experiences a horizontal inflectional point instability and separates from the slopes before sustained along-slope stress reduction can occurred. In all our solutions, both the upwelling and downwelling BBLs are in a partially arrested state when the current separates from the ridge slope, characterized by a reduced, but non-zero bottom stress on the slopes.
The Global Distribution and Drivers of Grazing Dynamics Estimated from Inverse Modell...
Tyler Rohr

Tyler Rohr

and 4 more

December 07, 2022
We examine how zooplankton influence phytoplankton bloom phenology from the top-down, then use inverse modelling to infer the distribution and drivers of mean community zooplankton grazing dynamics based on the skill with which different simulated grazing formulations are able to recreate the observed seasonal cycle in phytoplankton biomass. We find that oligotrophic (eutrophic) biomes require more (less) efficient grazing dynamics, characteristic of micro- (meso-) zooplankton, leading to a strong relationship between the observed mean annual phytoplankton concentration in a region and the optimal grazing parameterization required to simulate it's observed phenology. Across the globe, we found that a type III functional response consistently exhibits more skill than a type II response, suggesting the mean dynamics of a coarse model grid-cell should offer stability and prey refuge at low biomass concentrations. These new observationally-based global distributions will be invaluable to help constrain, validate and develop next generation of biogeochemical models.
A Tale of Two Ice Shelves: Contrasting Behavior During the Regional Destabilization o...
Christian Wild
Tiago Segabinazzi Dotto

Christian T. Wild

and 9 more

June 30, 2022
The Dotson Ice Shelf has resisted acceleration and ice-front retreat despite high basal-melt rates and rapid disaggregation of the neighboring Crosson Ice Shelf. Because of this lack of acceleration, previous studies have assumed that Dotson is stable. Here we show clear evidence of Dotson's destabilization as it decelerates, contrary to the common assumption that ice-flow deceleration is synonymous with stability. Ungrounding of a series of pinning points initiated acceleration in the Upper Dotson in the early 2000s, which subsequently slowed ice flow in the Lower Dotson. Discharge from the tributary Kohler Glacier into Crosson increased, but non-proportionally. Using ICESat and ICESat-2 altimetry data we show that ungrounding of the remaining pinning points is linked to a tripling in basal melt rates between 2006-2016 and 2016-2020. Basal melt rates on Crosson doubled over the same period. The higher basal melt at Lower Dotson is consistent with the cyclonic ocean circulation in the Dotson cavity, which tends to lift isopycnals and allow warmer deep water to interact with the ice. Given current surface-lowering rates, we estimate that several remaining pinning points in the Upper Dotson will unground within one to three decades. The grounding line of Kohler Glacier will retreat past a bathymetric saddle by the late 2030s and merge into the Smith West Glacier catchment, raising concern that reconfiguration of regional ice-flow dynamics and new pathways for the intrusion of warm modified Circumpolar Deep Water could further accelerate grounding-line retreat in the Dotson-Crosson Ice Shelf System.
Direct comparison of the tsunami-generated magnetic field with sea level change for t...
Zhiheng Lin
Hiroaki Toh

Zhiheng Lin

and 2 more

July 29, 2021
The tsunami-generated magnetic field is a magnetic field that show up with the moving of tsunami. In the previous studies, researchers claimed that the tsunami-generated magnetic field arrives earlier than the tsunami sea level change based on analytical solutions and numerical simulations. In this paper, we used the world's first simultaneous data of sea level change and magnetic field in the 2009 Samoa and 2010 Chile tsunamis to study the relation between these two physical quantities. We found that the vertical component of tsunami magnetic field arrives earlier than the sea level change. Moreover, the horizontal component of tsunami magnetic field arrives even earlier than the vertical component. The tsunami magnetic field was also revealed that it can be used to estimate the tsunami wave height very accurately. We investigated the observed tsunami magnetic field by our 3-D time-domain simulation. However, the currently existing tsunami source models were unable to reproduce the observation in our research area. We confirmed that a better source model can improve the simulation. It follows that our high precision tsunami wave height data converted from the magnetic field should be used to construct a better tsunami source model.
Slow particle remineralization, rather than suppressed disaggregation, drives efficie...
Jacob Cram
Clara Fuchsman

Jacob Cram

and 13 more

December 20, 2021
Models and observations suggest that particle flux attenuation is lower across the mesopelagic zone of anoxic environments compared to oxic environments. Flux attenuation is controlled by microbial metabolism as well as aggregation and disaggregation by zooplankton, all of which also shape the relative abundance of differently sized particles. Observing and modeling particle spectra can provide information about the contributions of these processes. We measured particle size spectrum profiles at one station in the oligotrophic Eastern Tropical North Pacific Oxygen Deficient Zone (ETNP ODZ) using an underwater vision profiler (UVP), a high-resolution camera that counts and sizes particles. Measurements were taken at different times of day, over the course of a week. Comparing these data to particle flux measurements from sediment traps collected over the same time-period allowed us to constrain the particle size to flux relationship, and to generate highly resolved depth and time estimates of particle flux rates. We found that particle flux attenuated very little throughout the anoxic water column, and at some time-points appeared to increase. Comparing our observations to model predictions suggested that particles of all sizes remineralize more slowly in the ODZ than in oxic waters, and that large particles disaggregate into smaller particles, primarily between the base of the photic zone and 500 m. Acoustic measurements of multiple size classes of organisms suggested that many organisms migrated, during the day, to the region with high particle disaggregation. Our data suggest that diel-migrating organisms both actively transport biomass and disaggregate particles in the ODZ core.
Strongly eddying ocean simulations required to resolve Eocene model-data mismatch
Peter Dirk Nooteboom
Michiel Baatsen

Peter Dirk Nooteboom

and 7 more

November 17, 2021
Model simulations of past climates are increasingly found to compare well with proxy data at a global scale, but regional discrepancies remain. A persistent issue in modeling past greenhouse climates has been the temperature difference between equatorial and (sub-)polar regions, which is typically much larger in simulations than proxy data suggest. Particularly in the Eocene, multiple temperature proxies suggest extreme warmth in the southwest Pacific Ocean, where model simulations consistently suggest temperate conditions. Here we present new global ocean model simulations at 0.1° horizontal resolution for the middle-late Eocene. The eddies in the high-resolution model affect poleward heat transport and local time-mean flow in critical regions compared to the non-eddying flow in the standard low-resolution simulations. As a result, the high-resolution simulations produce higher surface temperatures near Antarctica and lower surface temperatures near the equator compared to the low-resolution simulations, leading to better correspondence with proxy reconstructions. Crucially, the high-resolution simulations are also much more consistent with biogeographic patterns in endemic-Antarctic and low-latitude-derived plankton, and thus resolve the long-standing discrepancy of warm subpolar ocean temperatures and isolating polar gyre circulation. The results imply that strongly eddying model simulations are required to reconcile discrepancies between regional proxy data and models, and demonstrate the importance of accurate regional paleobathymetry for proxy-model comparisons.
Edge displacement scores
Arne Melsom

Arne Melsom

February 11, 2021
As a consequence of a diminishing sea ice cover in the Arctic, activity is on the rise. The position of the sea ice edge, which is generally taken to define the extent of the ice cover, changes in response to dynamic and thermodynamic processes. Forecasts for sea ice expansion due to an advancing ice edge will provide information that can be of significance for operations in polar regions. However, the value of this information depends on the quality of the forecasts. Here, we present methods for examining the quality of forecasted sea ice expansion and the geographic location where the largest expansion are expected from the forecast results. The algorithm is simple to implement, and an examination of two years of model results and accompanying observations demonstrates the usefulness of the analysis.
ENSO diversity shows robust decadal variations that must be captured for accurate fut...
Bastien Dieppois
Antonietta Capotondi

Bastien Dieppois

and 5 more

September 30, 2021
El Niño-Southern Oscillation (ENSO) shows a large diversity of events that is modulated by climate variability and change. The representation of this diversity in climate models limits our ability to predict their impact on ecosystems and human livelihood. Here, we use multiple observational datasets to provide a probabilistic description of historical variations in event location and intensity, and to benchmark models, before examining future system trajectories. We find robust decadal variations in event intensities and locations in century-long observational datasets, which are associated with perturbations in equatorial wind-stress and thermocline depth, as well as extra-tropical anomalies in the North and South Pacific. Some climate models are capable of simulating such decadal variability in ENSO diversity, and the associated large-scale patterns. Projections of ENSO diversity in future climate change scenarios strongly depend on the magnitude of decadal variations, and the ability of climate models to reproduce them realistically over the 21st century.
A new observational evidence of generation and propagation of barotropic Rossby waves...
Kang Nyeong Lee
Chanhyung Jeon

Kang Nyeong Lee

and 5 more

May 17, 2022
Tropical instability waves (TIWs) in the equatorial eastern Pacific (EEP) exhibit 25–40-day westward-propagating fluctuations with seasonal and inter-annual variations, which are stronger during July–December and La Niña periods. They likely transfer their energy northward by forming barotropic Rossby waves (BTRWs). Long-term near-bottom current measurements at 10.5°N and 131.3°W during 2004–2013 revealed a spectral peak at 25–40 days, where significant coherences were found with satellite-measured sea surface height in a wide region of EEP with maxima approximately 5°N. Simulated deep currents from a data-assimilated ocean model concur with the observed near-bottom currents, and both currents vary seasonally and interannually, consistent with the typical characteristics of TIW. Further analyses using 25–40-day bandpass-filtered barotropic velocity data from the model revealed that they reasonably satisfied the theoretical dispersion relation of TIW-induced BTRW (BTRWTIW). We reconfirmed BTRWTIW propagating northward above 10°N in the northeastern Pacific by in-situ observations.
Quantifying Dynamical Proxy Potential through Shared Adjustment Physics in the North...
Nora Loose
Patrick Heimbach

Nora Loose

and 3 more

May 25, 2020
Oceanic quantities of interest (QoIs), e.g., ocean heat content or transports, are often inaccessible to direct observation, due to the high cost of instrument deployment and logistical challenges. Therefore, oceanographers seek proxies for undersampled or unobserved QoIs. Conventionally, proxy potential is assessed via statistical correlations, which measure covariability without establishing causality. This paper introduces an alternative method: quantifying dynamical proxy potential. Using an adjoint model, this method unambiguously identifies the physical origins of covariability. A North Atlantic case study illustrates our method within the ECCO (Estimating the Circulation and Climate of the Ocean) state estimation framework. We find that wind forcing along the eastern and northern boundaries of the Atlantic drives a basin-wide response in North Atlantic circulation and temperature. Due to these large-scale teleconnections, a single subsurface temperature observation in the Irminger Sea informs heat transport across the remote Iceland-Scotland ridge (ISR), with a dynamical proxy potential of 19%. Dynamical proxy potential allows two equivalent interpretations: Irminger Sea subsurface temperature (i) shares 19% of its adjustment physics with ISR heat transport; (ii) reduces the uncertainty in ISR heat transport by 19% (independent of the measured temperature value), if the Irminger Sea observation is added without noise to the ECCO state estimate. With its two interpretations, dynamical proxy potential is simultaneously rooted in (i) ocean dynamics and (ii) uncertainty quantification and optimal observing system design, the latter being an emerging branch in computational science. The new method may therefore foster dynamics-based, quantitative ocean observing system design in the coming years.
A Global Model for Iodine Speciation in the Upper Ocean
Martin Wadley
David Stevens

Martin Robert Wadley

and 8 more

April 22, 2020
An ocean iodine cycling model is presented, which predicts upper ocean iodine speciation. The model comprises a three-layer advective and diffusive ocean circulation model of the upper ocean, and an iodine cycling model embedded within this circulation. The two primary reservoirs of iodine are represented, iodide and iodate. Iodate is reduced to iodide in the mixed layer in association with primary production, linked by an iodine to carbon (I:C) ratio. A satisfactory model fit with observations cannot be obtained with a globally constant I:C ratio, and the best fit is obtained when the I:C ratio is dependent on sea surface temperature, increasing at low temperatures. Comparisons with observed iodide distributions show that the best model fit is obtained when oxidation of iodide back to iodate is associated with mixed layer nitrification. Sensitivity tests, where model parameters and processes are perturbed, reveal that primary productivity, mixed layer depth, oxidation, advection, surface fresh water flux and the I:C ratio all have a role in determining surface iodide concentrations, and the timescale of iodide in the mixed layer is sufficiently long for non-local processes to be important. Comparisons of the modelled iodide surface field with parameterisations by other authors shows good agreement in regions where observations exist, but significant differences in regions without observations. This raises the question of whether the existing parameterisations are capturing the full range of processes involved in determining surface iodide, and shows the urgent need for observations in regions where there are currently none.
Carbon Budgets in Northwestern Gulf of Mexico Coastal Estuaries
Hongming Yao
Paul A Montagna

Hongming Yao

and 4 more

January 10, 2022
As coastal areas become more vulnerable to climatic impacts, the need for understanding estuarine carbon budgets with sufficient spatiotemporal resolution arises. Under various hydrologic extremes ranging from drought to hurricane-induced flooding, a mass balance model has been constructed for carbon fluxes and their variabilities in four estuaries along the northwestern Gulf of Mexico (nwGOM) coast over a four-year period (2014 – 2018). Loading of total organic carbon (TOC) and dissolved inorganic carbon (DIC) to estuaries include riverine discharge and lateral exchange from tidal wetland. The lateral exchanges of TOC and DIC reach 4.5 ± 5.7 and 8.9 ± 1.4 mol·C·m-2·yr-1, accounting for 86.5% and 62.7% of total TOC and DIC inputs into these estuaries, respectively. A relatively high regional CO2 efflux (4.0 ± 0.7 mol·C·m-2·yr-1) has been found, which is two times of the average value in North American coastal estuaries based on a previous study. Meanwhile, oceanic export is the major pathway for TOC (5.6 ± 1.7 mol·C·m-2·yr-1, 81.2% of total) and DIC (9.9 ± 2.9 mol·C·m-2·yr-1, 69.7% of total) loss. Yet uncertainties remain due to a varying extent of remineralization coastwide. In addition, the carbon budget exhibits high variability in response to the hydrologic changes. For example, storm or hurricane induced flooding can elevate CO2 efflux by 2 – 10 times in short periods of time. Flood following a drought state also increases lateral TOC exchange (from -3.5 ± 4.7 to 67.8 ± 17.6 mmol·C·m-2·d-1) but decreases lateral DIC exchange (from 28.9 ± 3.5 to -7.1 ± 7.6 mmol·C·m-2·d-1). The large variability of carbon budgets highlights the importance of high-resolution spatiotemporal coverage under different hydrologic conditions, as well as the significance of carbon contribution from tidal wetland on coastal carbon cycling.
Estimating radiative forcing with a nonconstant feedback parameter and linear respons...
Hege-Beate Fredriksen
Maria A.A. Rugenstein

Hege-Beate Fredriksen

and 2 more

November 16, 2021
A new algorithm is proposed for estimating time-evolving global forcing in climate models. The method is a further development of the work of Forster et al. (2013), taking into account the non-constancy of the global feedbacks. We assume that the non-constancy of this global feedback can be explained as a time-scale dependence, associated with linear temperature responses to the forcing on different time scales. With this method we obtain stronger forcing estimates than previously assumed for the representative concentration pathway experiments in the Coupled Model Intercomparison Project Phase 5 (CMIP5). The reason for the higher future forcing is that the global feedback parameter is more negative at shorter time scales than at longer time scales, consistent with the equilibrium climate sensitivity increasing with equilibration time. Our definition of forcing provides a clean separation of forcing and response, and we find that linear temperature response functions estimated from experiments with abrupt quadrupling of CO$_2$ can be used to predict responses also for future scenarios. In particular, we demonstrate that for most models, the response to our new forcing estimate applied on the 21st century scenarios provides a global surface temperature up to year 2100 consistent with the output of coupled model versions of the respective model.
Seasonal Forecast Skill of Arctic Sea Ice in Two Versions of a Dynamical Forecasting...
Joseph Martin
Michael Sigmond

Joseph Martin

and 2 more

December 17, 2020
In this study, we assess pan-Arctic and regional seasonal sea ice forecast skill in versions 1 and 2 of the Canadian Seasonal to Inter-annual Prediction System (CanSIPSv1 and CanSIPSv2) dynamical seasonal prediction systems. Each version applies a multi-model ensemble approach using two coupled general circulation models. CanSIPSv2 features a new model formulation (where one of the underlying models, CanCM3, was replaced with GEM-NEMO) and improved sea ice initialization. We show that the modifications made in the development of CanSIPSv2 substantially enhance forecast skill. For example, the lead time for skillful forecasts of detrended pan-Arctic September sea ice area increases from three months in CanSIPSv1 to seven months in CanSIPSv2. We also show that forecasts of detrended winter sea ice area are improved, with CanSIPSv2 producing skillful forecasts for all considered lead times (up to 11 months) for December, January, and February. We find that improvements in pan-Arctic forecast skill are due primarily to improved initialization methods.Further, a potential predictability experiment is conducted for one of the two CANSIPSv2 models, CanCM4, in order to establish – in conjunction with similar studies – the potential to further increase forecast skill with improved models, observations and initialization methods.
Partitioning uncertainty in projections of Arctic sea ice
David Bonan
Flavio Lehner

David Bonan

and 2 more

December 17, 2020
Improved knowledge of the contributing sources of uncertainty in projections of Arctic sea ice over the 21st century is essential for evaluating impacts of a changing Arctic environment. Here, we consider the role of internal variability, model structure and emissions scenario in projections of Arctic sea-ice area (SIA) by using six single model initial-condition large ensembles and a suite of models participating in Phase 5 of the Coupled Model Intercomparison Project. For projections of September Arctic SIA change, internal variability accounts for as much as 40-60% of the total uncertainty in the next decade, while emissions scenario dominates uncertainty toward the end of the century. Model structure accounts for approximately 60-70% of the total uncertainty by mid-century and declines to 30% at the end of the 21st century during the summer months. For projections of wintertime Arctic SIA change, internal variability contributes as much as 50-60% of the total uncertainty in the next decade and impacts total uncertainty at longer lead times when compared to the summertime. Model structure contributes most of the remaining uncertainty with emissions scenario contributing little to the total uncertainty during the winter months. At regional scales, the contribution of internal variability can vary widely and strongly depends on the month and region. For wintertime SIA change in the GIN and Barents Seas, internal variability contributes approximately 60-70% to the total uncertainty over the coming decades and remains important much longer than in other regions. We further find that the relative contribution of internal variability to total uncertainty is state-dependent and increases as sea ice volume declines. These results demonstrate the need to improve the representation of internal variability of Arctic SIA in models, which is a significant source of uncertainty in future projections.
Popular extreme sea level metrics can better communicate impacts
D.J. Rasmussen
Michael Oppenheimer

D.J. Rasmussen

and 4 more

August 25, 2021
Estimates of changes in the frequency or height of contemporary extreme sea levels (ESLs) under various climate change scenarios are often used by climate and sea level scientists to help communicate the physical basis for societal concern regarding sea-level rise. Changes in ESLs (i.e., the hazard) are often represented using various metrics and indicators that, when anchored to salient impacts on human systems and the natural environment, provide useful information to policy makers, stakeholders, and the general public. While changes in hazards are often anchored to impacts at local scales, aggregate global summary metrics generally lack the context of local exposure and vulnerability that facilitates translating hazards into impacts. Contextualizing changes in hazards is also needed when communicating the timing of when projected ESL frequencies cross critical thresholds, such as the year in which ESLs higher than the design height benchmark of protective infrastructure (e.g., the 100-yr water level) are expected to occur within the lifetime of that infrastructure. We present specific examples demonstrating the need for such contextualization using a simple flood exposure model, local sea-level rise projections, and population exposure estimates for 414 global cities. We suggest regional and global climate assessment reports integrate global, regional, and local perspectives on coastal risk to address hazard, vulnerability and exposure simultaneously.
Mapping altimetry in the forthcoming SWOT era by back-and-forth nudging a one-layer q...
Florian Le Guillou
Sammy Metref

Florian Le Guillou

and 6 more

November 04, 2020
During the past 25 years, altimetric observations of the ocean surface from space have been mapped to provide two dimensional sea surface height (SSH) fields which are crucial for scientific research and operational applications. The SSH fields can be reconstructed from conventional altimetric data using temporal and spatial interpolation. For instance, the standard DUACS products are created with an optimal interpolation method which is effective for both low temporal and low spatial resolution. However, the upcoming next-generation SWOT mission will provide very high spatial resolution but with low temporal resolution. The present paper makes the case that this temporal-spatial discrepancy induces the need for new advanced mapping techniques involving information on the ocean dynamics. An algorithm is introduced, dubbed the BFN-QG, that uses a simple data assimilation method, the back-and-forth nudging, to interpolate altimetric data while respecting quasigeostrophic dynamics. The BFN-QG is tested in an observing system simulation experiments and compared to the DUACS products. The experiments consider as reference the high-resolution numerical model simulation NATL60 from which are produced realistic data: four conventional altimetric nadirs and SWOT data. In a combined nadirs and SWOT scenario, the BFN-QG substantially improves the mapping by reducing the root-mean-square errors and increasing the spectral effective resolution by 40km. Also, the BFN-QG method can be adapted to combine large-scale corrections from nadirs data and small-scale corrections from SWOT data so as to reduce the impact of SWOT correlated noises and still provide accurate SSH maps.
Scenario-based Modelling of Waves Generated by Sublacustrine Explosive Eruptions at L...
Matthew Hayward
Emily Lane

Matthew Hayward

and 4 more

October 24, 2022
Volcanogenic tsunami and wave hazard remains less understood than that of other tsunami sources. Volcanoes can generate waves in a multitude of ways, including subaqueous explosions. Recent events, including a highly explosive eruption at Hunga Tonga-Hunga Ha’apai and subsequent tsunami in January 2022, have reinforced the necessity to explore and quantify volcanic tsunami sources. We utilise a non-hydrostatic multilayer numerical method to simulate 20 scenarios of sublacustrine explosive eruptions under Lake Taupō, New Zealand, across five locations and four eruption sizes. Waves propagate around the entire lake within 15 minutes, and there is a minimum explosive size required to generate significant waves (positive amplitudes incident on foreshore of >1 m) from the impulsive displacement of water from the eruption itself. This corresponds to a mass eruption rate of 5.8x10^7 kg s^-1, or VEI 5 equivalent. Inundation is mapped across five built areas and becomes significant near shore when considering only the two largest sizes, above VEI 5, which preferentially impact areas of low-gradient run-up. In addition, novel hydrographic output is produced showing the impact of incident waves on the Waikato river inlet draining the lake, and is potentially useful for future structural impact analysis. Waves generated from these explosive source types are highly dispersive, resulting in hazard rapidly diminishing with distance from the source. With improved computational efficiency, a probabilistic study could be formulated and other, potentially more significant, volcanic source mechanisms should be investigated.
Upslope Sediment Transport on Continental Margins: A Process-Oriented Numerical Study
Jochen Kaempf

Jochen Kaempf

October 04, 2020
Using the method of process-oriented hydrodynamic modelling, this work investigates the dispersal of particles in stratified fluids on continental margins. The focus is placed on steady-state density distributions that are governed by an advective-diffusive balance. In this case, particles can still be advected across isopycnal surfaces, given that turbulent fluctuations do generally not offset the advective displacement of a particle. The validity of this fundamental principle is demonstrated here with the diapycnal upslope sediment transport in a bottom Ekman layer that forms under a stratified geostrophic slope current. Similarly, this study demonstrates that interaction between slope currents with a submarine channel can facilitate a continuous diapycnal upslope flux of particles, confined to the lowermost 10-20 m of the water column. Velocity anomalies that facilitate this upslope sediment flux are the signature of standing topographic Rossby waves, that can only develop for slope currents that are left-bounded (right-bounded) by shallower water in the northern (southern) hemisphere. Findings of sensitivity studies confirm the existence of up-channel flows for a wide range of parameter values. Under the assumption that particles remain suspended in the water column, the inclusion of gravitational settling significantly increases the up-channel sediment flux. Sediment settling operates to trap particles close to the seafloor within the core of bottom-intensified up-channel flow. The author postulates that this mechanism plays an important role in biogeochemical cycles at continental margins.
Insights into Water Mass Origins in the Central Arctic Ocean from in-situ Dissolved O...
Colin A Stedmon
Rainer M. W. Amon

Colin A Stedmon

and 10 more

July 20, 2021
The Arctic Ocean receives a large supply of dissolved organic matter (DOM) from its catchment and shelf sediments, which can be traced across much of the basin’s upper waters. This signature can potentially be used as a tracer. On the shelf, the combination of river discharge and sea-ice formation, modifies water densities and mixing considerably. These waters are a source of the halocline layer that covers much of the Arctic Ocean, but also contain elevated levels of DOM. Here we demonstrate how this can be used as a supplementary tracer and contribute to evaluating ocean circulation in the Arctic. A fraction of the organic compounds that DOM consists of fluoresce and can be measured using in-situ fluorometers. When deployed on autonomous platforms these provide high temporal and spatial resolution measurements over long periods. The results of an analysis of data derived from several Ice Tethered Profilers (ITPs) offer a unique spatial coverage of the distribution of DOM in the surface 800m below Arctic sea-ice. Water mass analysis using temperature, salinity and DOM fluorescence, can clearly distinguish between the contribution of Siberian terrestrial DOM and marine DOM from the Chukchi shelf to the waters of the halocline. The findings offer a new approach to trace the distribution of Pacific waters and its export from the Arctic Ocean. Our results indicate the potential to extend the approach to separate freshwater contributions from, sea-ice melt, riverine discharge and the Pacific Ocean.
← Previous 1 2 3 4 5 6 7 8 9 … 61 62 Next →
Back to search
Authorea
  • Home
  • About
  • Product
  • Preprints
  • Pricing
  • Blog
  • Twitter
  • Help
  • Terms of Use
  • Privacy Policy